1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 
11 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
12 
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
14 				     struct inode *inode,
15 				     u64 endoff,
16 				     const u64 destoff,
17 				     const u64 olen,
18 				     int no_time_update)
19 {
20 	struct btrfs_root *root = BTRFS_I(inode)->root;
21 	int ret;
22 
23 	inode_inc_iversion(inode);
24 	if (!no_time_update)
25 		inode->i_mtime = inode->i_ctime = current_time(inode);
26 	/*
27 	 * We round up to the block size at eof when determining which
28 	 * extents to clone above, but shouldn't round up the file size.
29 	 */
30 	if (endoff > destoff + olen)
31 		endoff = destoff + olen;
32 	if (endoff > inode->i_size) {
33 		i_size_write(inode, endoff);
34 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
35 	}
36 
37 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
38 	if (ret) {
39 		btrfs_abort_transaction(trans, ret);
40 		btrfs_end_transaction(trans);
41 		goto out;
42 	}
43 	ret = btrfs_end_transaction(trans);
44 out:
45 	return ret;
46 }
47 
copy_inline_to_page(struct btrfs_inode * inode,const u64 file_offset,char * inline_data,const u64 size,const u64 datal,const u8 comp_type)48 static int copy_inline_to_page(struct btrfs_inode *inode,
49 			       const u64 file_offset,
50 			       char *inline_data,
51 			       const u64 size,
52 			       const u64 datal,
53 			       const u8 comp_type)
54 {
55 	const u64 block_size = btrfs_inode_sectorsize(inode);
56 	const u64 range_end = file_offset + block_size - 1;
57 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
58 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
59 	struct extent_changeset *data_reserved = NULL;
60 	struct page *page = NULL;
61 	struct address_space *mapping = inode->vfs_inode.i_mapping;
62 	int ret;
63 
64 	ASSERT(IS_ALIGNED(file_offset, block_size));
65 
66 	/*
67 	 * We have flushed and locked the ranges of the source and destination
68 	 * inodes, we also have locked the inodes, so we are safe to do a
69 	 * reservation here. Also we must not do the reservation while holding
70 	 * a transaction open, otherwise we would deadlock.
71 	 */
72 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
73 					   block_size);
74 	if (ret)
75 		goto out;
76 
77 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
78 				   btrfs_alloc_write_mask(mapping));
79 	if (!page) {
80 		ret = -ENOMEM;
81 		goto out_unlock;
82 	}
83 
84 	ret = set_page_extent_mapped(page);
85 	if (ret < 0)
86 		goto out_unlock;
87 
88 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
89 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
90 			 0, 0, NULL);
91 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
92 	if (ret)
93 		goto out_unlock;
94 
95 	/*
96 	 * After dirtying the page our caller will need to start a transaction,
97 	 * and if we are low on metadata free space, that can cause flushing of
98 	 * delalloc for all inodes in order to get metadata space released.
99 	 * However we are holding the range locked for the whole duration of
100 	 * the clone/dedupe operation, so we may deadlock if that happens and no
101 	 * other task releases enough space. So mark this inode as not being
102 	 * possible to flush to avoid such deadlock. We will clear that flag
103 	 * when we finish cloning all extents, since a transaction is started
104 	 * after finding each extent to clone.
105 	 */
106 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
107 
108 	if (comp_type == BTRFS_COMPRESS_NONE) {
109 		memcpy_to_page(page, 0, data_start, datal);
110 		flush_dcache_page(page);
111 	} else {
112 		ret = btrfs_decompress(comp_type, data_start, page, 0,
113 				       inline_size, datal);
114 		if (ret)
115 			goto out_unlock;
116 		flush_dcache_page(page);
117 	}
118 
119 	/*
120 	 * If our inline data is smaller then the block/page size, then the
121 	 * remaining of the block/page is equivalent to zeroes. We had something
122 	 * like the following done:
123 	 *
124 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
125 	 * $ sync  # (or fsync)
126 	 * $ xfs_io -c "falloc 0 4K" file
127 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
128 	 *
129 	 * So what's in the range [500, 4095] corresponds to zeroes.
130 	 */
131 	if (datal < block_size) {
132 		memzero_page(page, datal, block_size - datal);
133 		flush_dcache_page(page);
134 	}
135 
136 	SetPageUptodate(page);
137 	ClearPageChecked(page);
138 	set_page_dirty(page);
139 out_unlock:
140 	if (page) {
141 		unlock_page(page);
142 		put_page(page);
143 	}
144 	if (ret)
145 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
146 					     block_size, true);
147 	btrfs_delalloc_release_extents(inode, block_size);
148 out:
149 	extent_changeset_free(data_reserved);
150 
151 	return ret;
152 }
153 
154 /*
155  * Deal with cloning of inline extents. We try to copy the inline extent from
156  * the source inode to destination inode when possible. When not possible we
157  * copy the inline extent's data into the respective page of the inode.
158  */
clone_copy_inline_extent(struct inode * dst,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 size,const u8 comp_type,char * inline_data,struct btrfs_trans_handle ** trans_out)159 static int clone_copy_inline_extent(struct inode *dst,
160 				    struct btrfs_path *path,
161 				    struct btrfs_key *new_key,
162 				    const u64 drop_start,
163 				    const u64 datal,
164 				    const u64 size,
165 				    const u8 comp_type,
166 				    char *inline_data,
167 				    struct btrfs_trans_handle **trans_out)
168 {
169 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
170 	struct btrfs_root *root = BTRFS_I(dst)->root;
171 	const u64 aligned_end = ALIGN(new_key->offset + datal,
172 				      fs_info->sectorsize);
173 	struct btrfs_trans_handle *trans = NULL;
174 	struct btrfs_drop_extents_args drop_args = { 0 };
175 	int ret;
176 	struct btrfs_key key;
177 
178 	if (new_key->offset > 0) {
179 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
180 					  inline_data, size, datal, comp_type);
181 		goto out;
182 	}
183 
184 	key.objectid = btrfs_ino(BTRFS_I(dst));
185 	key.type = BTRFS_EXTENT_DATA_KEY;
186 	key.offset = 0;
187 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
188 	if (ret < 0) {
189 		return ret;
190 	} else if (ret > 0) {
191 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
192 			ret = btrfs_next_leaf(root, path);
193 			if (ret < 0)
194 				return ret;
195 			else if (ret > 0)
196 				goto copy_inline_extent;
197 		}
198 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
199 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
200 		    key.type == BTRFS_EXTENT_DATA_KEY) {
201 			/*
202 			 * There's an implicit hole at file offset 0, copy the
203 			 * inline extent's data to the page.
204 			 */
205 			ASSERT(key.offset > 0);
206 			ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
207 						  inline_data, size, datal,
208 						  comp_type);
209 			goto out;
210 		}
211 	} else if (i_size_read(dst) <= datal) {
212 		struct btrfs_file_extent_item *ei;
213 
214 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
215 				    struct btrfs_file_extent_item);
216 		/*
217 		 * If it's an inline extent replace it with the source inline
218 		 * extent, otherwise copy the source inline extent data into
219 		 * the respective page at the destination inode.
220 		 */
221 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
222 		    BTRFS_FILE_EXTENT_INLINE)
223 			goto copy_inline_extent;
224 
225 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
226 					  inline_data, size, datal, comp_type);
227 		goto out;
228 	}
229 
230 copy_inline_extent:
231 	ret = 0;
232 	/*
233 	 * We have no extent items, or we have an extent at offset 0 which may
234 	 * or may not be inlined. All these cases are dealt the same way.
235 	 */
236 	if (i_size_read(dst) > datal) {
237 		/*
238 		 * At the destination offset 0 we have either a hole, a regular
239 		 * extent or an inline extent larger then the one we want to
240 		 * clone. Deal with all these cases by copying the inline extent
241 		 * data into the respective page at the destination inode.
242 		 */
243 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
244 					  inline_data, size, datal, comp_type);
245 		goto out;
246 	}
247 
248 	btrfs_release_path(path);
249 	/*
250 	 * If we end up here it means were copy the inline extent into a leaf
251 	 * of the destination inode. We know we will drop or adjust at most one
252 	 * extent item in the destination root.
253 	 *
254 	 * 1 unit - adjusting old extent (we may have to split it)
255 	 * 1 unit - add new extent
256 	 * 1 unit - inode update
257 	 */
258 	trans = btrfs_start_transaction(root, 3);
259 	if (IS_ERR(trans)) {
260 		ret = PTR_ERR(trans);
261 		trans = NULL;
262 		goto out;
263 	}
264 	drop_args.path = path;
265 	drop_args.start = drop_start;
266 	drop_args.end = aligned_end;
267 	drop_args.drop_cache = true;
268 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
269 	if (ret)
270 		goto out;
271 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
272 	if (ret)
273 		goto out;
274 
275 	write_extent_buffer(path->nodes[0], inline_data,
276 			    btrfs_item_ptr_offset(path->nodes[0],
277 						  path->slots[0]),
278 			    size);
279 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
280 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
281 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
282 out:
283 	if (!ret && !trans) {
284 		/*
285 		 * No transaction here means we copied the inline extent into a
286 		 * page of the destination inode.
287 		 *
288 		 * 1 unit to update inode item
289 		 */
290 		trans = btrfs_start_transaction(root, 1);
291 		if (IS_ERR(trans)) {
292 			ret = PTR_ERR(trans);
293 			trans = NULL;
294 		}
295 	}
296 	if (ret && trans) {
297 		btrfs_abort_transaction(trans, ret);
298 		btrfs_end_transaction(trans);
299 	}
300 	if (!ret)
301 		*trans_out = trans;
302 
303 	return ret;
304 }
305 
306 /**
307  * btrfs_clone() - clone a range from inode file to another
308  *
309  * @src: Inode to clone from
310  * @inode: Inode to clone to
311  * @off: Offset within source to start clone from
312  * @olen: Original length, passed by user, of range to clone
313  * @olen_aligned: Block-aligned value of olen
314  * @destoff: Offset within @inode to start clone
315  * @no_time_update: Whether to update mtime/ctime on the target inode
316  */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)317 static int btrfs_clone(struct inode *src, struct inode *inode,
318 		       const u64 off, const u64 olen, const u64 olen_aligned,
319 		       const u64 destoff, int no_time_update)
320 {
321 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
322 	struct btrfs_path *path = NULL;
323 	struct extent_buffer *leaf;
324 	struct btrfs_trans_handle *trans;
325 	char *buf = NULL;
326 	struct btrfs_key key;
327 	u32 nritems;
328 	int slot;
329 	int ret;
330 	const u64 len = olen_aligned;
331 	u64 last_dest_end = destoff;
332 
333 	ret = -ENOMEM;
334 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
335 	if (!buf)
336 		return ret;
337 
338 	path = btrfs_alloc_path();
339 	if (!path) {
340 		kvfree(buf);
341 		return ret;
342 	}
343 
344 	path->reada = READA_FORWARD;
345 	/* Clone data */
346 	key.objectid = btrfs_ino(BTRFS_I(src));
347 	key.type = BTRFS_EXTENT_DATA_KEY;
348 	key.offset = off;
349 
350 	while (1) {
351 		u64 next_key_min_offset = key.offset + 1;
352 		struct btrfs_file_extent_item *extent;
353 		u64 extent_gen;
354 		int type;
355 		u32 size;
356 		struct btrfs_key new_key;
357 		u64 disko = 0, diskl = 0;
358 		u64 datao = 0, datal = 0;
359 		u8 comp;
360 		u64 drop_start;
361 
362 		/* Note the key will change type as we walk through the tree */
363 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
364 				0, 0);
365 		if (ret < 0)
366 			goto out;
367 		/*
368 		 * First search, if no extent item that starts at offset off was
369 		 * found but the previous item is an extent item, it's possible
370 		 * it might overlap our target range, therefore process it.
371 		 */
372 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
373 			btrfs_item_key_to_cpu(path->nodes[0], &key,
374 					      path->slots[0] - 1);
375 			if (key.type == BTRFS_EXTENT_DATA_KEY)
376 				path->slots[0]--;
377 		}
378 
379 		nritems = btrfs_header_nritems(path->nodes[0]);
380 process_slot:
381 		if (path->slots[0] >= nritems) {
382 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
383 			if (ret < 0)
384 				goto out;
385 			if (ret > 0)
386 				break;
387 			nritems = btrfs_header_nritems(path->nodes[0]);
388 		}
389 		leaf = path->nodes[0];
390 		slot = path->slots[0];
391 
392 		btrfs_item_key_to_cpu(leaf, &key, slot);
393 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
394 		    key.objectid != btrfs_ino(BTRFS_I(src)))
395 			break;
396 
397 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
398 
399 		extent = btrfs_item_ptr(leaf, slot,
400 					struct btrfs_file_extent_item);
401 		extent_gen = btrfs_file_extent_generation(leaf, extent);
402 		comp = btrfs_file_extent_compression(leaf, extent);
403 		type = btrfs_file_extent_type(leaf, extent);
404 		if (type == BTRFS_FILE_EXTENT_REG ||
405 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
406 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
407 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
408 			datao = btrfs_file_extent_offset(leaf, extent);
409 			datal = btrfs_file_extent_num_bytes(leaf, extent);
410 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
411 			/* Take upper bound, may be compressed */
412 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
413 		}
414 
415 		/*
416 		 * The first search might have left us at an extent item that
417 		 * ends before our target range's start, can happen if we have
418 		 * holes and NO_HOLES feature enabled.
419 		 */
420 		if (key.offset + datal <= off) {
421 			path->slots[0]++;
422 			goto process_slot;
423 		} else if (key.offset >= off + len) {
424 			break;
425 		}
426 		next_key_min_offset = key.offset + datal;
427 		size = btrfs_item_size_nr(leaf, slot);
428 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
429 				   size);
430 
431 		btrfs_release_path(path);
432 
433 		memcpy(&new_key, &key, sizeof(new_key));
434 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
435 		if (off <= key.offset)
436 			new_key.offset = key.offset + destoff - off;
437 		else
438 			new_key.offset = destoff;
439 
440 		/*
441 		 * Deal with a hole that doesn't have an extent item that
442 		 * represents it (NO_HOLES feature enabled).
443 		 * This hole is either in the middle of the cloning range or at
444 		 * the beginning (fully overlaps it or partially overlaps it).
445 		 */
446 		if (new_key.offset != last_dest_end)
447 			drop_start = last_dest_end;
448 		else
449 			drop_start = new_key.offset;
450 
451 		if (type == BTRFS_FILE_EXTENT_REG ||
452 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
453 			struct btrfs_replace_extent_info clone_info;
454 
455 			/*
456 			 *    a  | --- range to clone ---|  b
457 			 * | ------------- extent ------------- |
458 			 */
459 
460 			/* Subtract range b */
461 			if (key.offset + datal > off + len)
462 				datal = off + len - key.offset;
463 
464 			/* Subtract range a */
465 			if (off > key.offset) {
466 				datao += off - key.offset;
467 				datal -= off - key.offset;
468 			}
469 
470 			clone_info.disk_offset = disko;
471 			clone_info.disk_len = diskl;
472 			clone_info.data_offset = datao;
473 			clone_info.data_len = datal;
474 			clone_info.file_offset = new_key.offset;
475 			clone_info.extent_buf = buf;
476 			clone_info.is_new_extent = false;
477 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
478 					drop_start, new_key.offset + datal - 1,
479 					&clone_info, &trans);
480 			if (ret)
481 				goto out;
482 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
483 			/*
484 			 * Inline extents always have to start at file offset 0
485 			 * and can never be bigger then the sector size. We can
486 			 * never clone only parts of an inline extent, since all
487 			 * reflink operations must start at a sector size aligned
488 			 * offset, and the length must be aligned too or end at
489 			 * the i_size (which implies the whole inlined data).
490 			 */
491 			ASSERT(key.offset == 0);
492 			ASSERT(datal <= fs_info->sectorsize);
493 			if (key.offset != 0 || datal > fs_info->sectorsize)
494 				return -EUCLEAN;
495 
496 			ret = clone_copy_inline_extent(inode, path, &new_key,
497 						       drop_start, datal, size,
498 						       comp, buf, &trans);
499 			if (ret)
500 				goto out;
501 		}
502 
503 		btrfs_release_path(path);
504 
505 		/*
506 		 * If this is a new extent update the last_reflink_trans of both
507 		 * inodes. This is used by fsync to make sure it does not log
508 		 * multiple checksum items with overlapping ranges. For older
509 		 * extents we don't need to do it since inode logging skips the
510 		 * checksums for older extents. Also ignore holes and inline
511 		 * extents because they don't have checksums in the csum tree.
512 		 */
513 		if (extent_gen == trans->transid && disko > 0) {
514 			BTRFS_I(src)->last_reflink_trans = trans->transid;
515 			BTRFS_I(inode)->last_reflink_trans = trans->transid;
516 		}
517 
518 		last_dest_end = ALIGN(new_key.offset + datal,
519 				      fs_info->sectorsize);
520 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
521 						destoff, olen, no_time_update);
522 		if (ret)
523 			goto out;
524 		if (new_key.offset + datal >= destoff + len)
525 			break;
526 
527 		btrfs_release_path(path);
528 		key.offset = next_key_min_offset;
529 
530 		if (fatal_signal_pending(current)) {
531 			ret = -EINTR;
532 			goto out;
533 		}
534 
535 		cond_resched();
536 	}
537 	ret = 0;
538 
539 	if (last_dest_end < destoff + len) {
540 		/*
541 		 * We have an implicit hole that fully or partially overlaps our
542 		 * cloning range at its end. This means that we either have the
543 		 * NO_HOLES feature enabled or the implicit hole happened due to
544 		 * mixing buffered and direct IO writes against this file.
545 		 */
546 		btrfs_release_path(path);
547 
548 		/*
549 		 * When using NO_HOLES and we are cloning a range that covers
550 		 * only a hole (no extents) into a range beyond the current
551 		 * i_size, punching a hole in the target range will not create
552 		 * an extent map defining a hole, because the range starts at or
553 		 * beyond current i_size. If the file previously had an i_size
554 		 * greater than the new i_size set by this clone operation, we
555 		 * need to make sure the next fsync is a full fsync, so that it
556 		 * detects and logs a hole covering a range from the current
557 		 * i_size to the new i_size. If the clone range covers extents,
558 		 * besides a hole, then we know the full sync flag was already
559 		 * set by previous calls to btrfs_replace_file_extents() that
560 		 * replaced file extent items.
561 		 */
562 		if (last_dest_end >= i_size_read(inode))
563 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
564 				&BTRFS_I(inode)->runtime_flags);
565 
566 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
567 				last_dest_end, destoff + len - 1, NULL, &trans);
568 		if (ret)
569 			goto out;
570 
571 		ret = clone_finish_inode_update(trans, inode, destoff + len,
572 						destoff, olen, no_time_update);
573 	}
574 
575 out:
576 	btrfs_free_path(path);
577 	kvfree(buf);
578 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
579 
580 	return ret;
581 }
582 
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)583 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
584 				       struct inode *inode2, u64 loff2, u64 len)
585 {
586 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
587 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
588 }
589 
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)590 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
591 				     struct inode *inode2, u64 loff2, u64 len)
592 {
593 	if (inode1 < inode2) {
594 		swap(inode1, inode2);
595 		swap(loff1, loff2);
596 	} else if (inode1 == inode2 && loff2 < loff1) {
597 		swap(loff1, loff2);
598 	}
599 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
600 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
601 }
602 
btrfs_double_mmap_lock(struct inode * inode1,struct inode * inode2)603 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
604 {
605 	if (inode1 < inode2)
606 		swap(inode1, inode2);
607 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
608 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
609 }
610 
btrfs_double_mmap_unlock(struct inode * inode1,struct inode * inode2)611 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
612 {
613 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
614 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
615 }
616 
btrfs_extent_same_range(struct inode * src,u64 loff,u64 len,struct inode * dst,u64 dst_loff)617 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
618 				   struct inode *dst, u64 dst_loff)
619 {
620 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
621 	int ret;
622 
623 	/*
624 	 * Lock destination range to serialize with concurrent readpages() and
625 	 * source range to serialize with relocation.
626 	 */
627 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
628 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
629 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
630 
631 	return ret;
632 }
633 
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)634 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
635 			     struct inode *dst, u64 dst_loff)
636 {
637 	int ret;
638 	u64 i, tail_len, chunk_count;
639 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
640 
641 	spin_lock(&root_dst->root_item_lock);
642 	if (root_dst->send_in_progress) {
643 		btrfs_warn_rl(root_dst->fs_info,
644 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
645 			      root_dst->root_key.objectid,
646 			      root_dst->send_in_progress);
647 		spin_unlock(&root_dst->root_item_lock);
648 		return -EAGAIN;
649 	}
650 	root_dst->dedupe_in_progress++;
651 	spin_unlock(&root_dst->root_item_lock);
652 
653 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
654 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
655 
656 	for (i = 0; i < chunk_count; i++) {
657 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
658 					      dst, dst_loff);
659 		if (ret)
660 			goto out;
661 
662 		loff += BTRFS_MAX_DEDUPE_LEN;
663 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
664 	}
665 
666 	if (tail_len > 0)
667 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
668 out:
669 	spin_lock(&root_dst->root_item_lock);
670 	root_dst->dedupe_in_progress--;
671 	spin_unlock(&root_dst->root_item_lock);
672 
673 	return ret;
674 }
675 
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)676 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
677 					u64 off, u64 olen, u64 destoff)
678 {
679 	struct inode *inode = file_inode(file);
680 	struct inode *src = file_inode(file_src);
681 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
682 	int ret;
683 	int wb_ret;
684 	u64 len = olen;
685 	u64 bs = fs_info->sb->s_blocksize;
686 
687 	/*
688 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
689 	 * eof block into the middle of a file, which would result in corruption
690 	 * if the file size is not blocksize aligned. So we don't need to check
691 	 * for that case here.
692 	 */
693 	if (off + len == src->i_size)
694 		len = ALIGN(src->i_size, bs) - off;
695 
696 	if (destoff > inode->i_size) {
697 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
698 
699 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
700 		if (ret)
701 			return ret;
702 		/*
703 		 * We may have truncated the last block if the inode's size is
704 		 * not sector size aligned, so we need to wait for writeback to
705 		 * complete before proceeding further, otherwise we can race
706 		 * with cloning and attempt to increment a reference to an
707 		 * extent that no longer exists (writeback completed right after
708 		 * we found the previous extent covering eof and before we
709 		 * attempted to increment its reference count).
710 		 */
711 		ret = btrfs_wait_ordered_range(inode, wb_start,
712 					       destoff - wb_start);
713 		if (ret)
714 			return ret;
715 	}
716 
717 	/*
718 	 * Lock destination range to serialize with concurrent readpages() and
719 	 * source range to serialize with relocation.
720 	 */
721 	btrfs_double_extent_lock(src, off, inode, destoff, len);
722 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
723 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
724 
725 	/*
726 	 * We may have copied an inline extent into a page of the destination
727 	 * range, so wait for writeback to complete before truncating pages
728 	 * from the page cache. This is a rare case.
729 	 */
730 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
731 	ret = ret ? ret : wb_ret;
732 	/*
733 	 * Truncate page cache pages so that future reads will see the cloned
734 	 * data immediately and not the previous data.
735 	 */
736 	truncate_inode_pages_range(&inode->i_data,
737 				round_down(destoff, PAGE_SIZE),
738 				round_up(destoff + len, PAGE_SIZE) - 1);
739 
740 	return ret;
741 }
742 
btrfs_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)743 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
744 				       struct file *file_out, loff_t pos_out,
745 				       loff_t *len, unsigned int remap_flags)
746 {
747 	struct inode *inode_in = file_inode(file_in);
748 	struct inode *inode_out = file_inode(file_out);
749 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
750 	bool same_inode = inode_out == inode_in;
751 	u64 wb_len;
752 	int ret;
753 
754 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
755 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
756 
757 		if (btrfs_root_readonly(root_out))
758 			return -EROFS;
759 
760 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
761 		    inode_in->i_sb != inode_out->i_sb)
762 			return -EXDEV;
763 	}
764 
765 	/* Don't make the dst file partly checksummed */
766 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
767 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
768 		return -EINVAL;
769 	}
770 
771 	/*
772 	 * Now that the inodes are locked, we need to start writeback ourselves
773 	 * and can not rely on the writeback from the VFS's generic helper
774 	 * generic_remap_file_range_prep() because:
775 	 *
776 	 * 1) For compression we must call filemap_fdatawrite_range() range
777 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
778 	 *    helper only calls it once;
779 	 *
780 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
781 	 *    waits for the writeback to complete, i.e. for IO to be done, and
782 	 *    not for the ordered extents to complete. We need to wait for them
783 	 *    to complete so that new file extent items are in the fs tree.
784 	 */
785 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
786 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
787 	else
788 		wb_len = ALIGN(*len, bs);
789 
790 	/*
791 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
792 	 * any in progress could create its ordered extents after we wait for
793 	 * existing ordered extents below).
794 	 */
795 	inode_dio_wait(inode_in);
796 	if (!same_inode)
797 		inode_dio_wait(inode_out);
798 
799 	/*
800 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
801 	 *
802 	 * Btrfs' back references do not have a block level granularity, they
803 	 * work at the whole extent level.
804 	 * NOCOW buffered write without data space reserved may not be able
805 	 * to fall back to CoW due to lack of data space, thus could cause
806 	 * data loss.
807 	 *
808 	 * Here we take a shortcut by flushing the whole inode, so that all
809 	 * nocow write should reach disk as nocow before we increase the
810 	 * reference of the extent. We could do better by only flushing NOCOW
811 	 * data, but that needs extra accounting.
812 	 *
813 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
814 	 * CoWed anyway, not affecting nocow part.
815 	 */
816 	ret = filemap_flush(inode_in->i_mapping);
817 	if (ret < 0)
818 		return ret;
819 
820 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
821 				       wb_len);
822 	if (ret < 0)
823 		return ret;
824 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
825 				       wb_len);
826 	if (ret < 0)
827 		return ret;
828 
829 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
830 					    len, remap_flags);
831 }
832 
file_sync_write(const struct file * file)833 static bool file_sync_write(const struct file *file)
834 {
835 	if (file->f_flags & (__O_SYNC | O_DSYNC))
836 		return true;
837 	if (IS_SYNC(file_inode(file)))
838 		return true;
839 
840 	return false;
841 }
842 
btrfs_remap_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,loff_t len,unsigned int remap_flags)843 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
844 		struct file *dst_file, loff_t destoff, loff_t len,
845 		unsigned int remap_flags)
846 {
847 	struct inode *src_inode = file_inode(src_file);
848 	struct inode *dst_inode = file_inode(dst_file);
849 	bool same_inode = dst_inode == src_inode;
850 	int ret;
851 
852 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
853 		return -EINVAL;
854 
855 	if (same_inode) {
856 		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
857 	} else {
858 		lock_two_nondirectories(src_inode, dst_inode);
859 		btrfs_double_mmap_lock(src_inode, dst_inode);
860 	}
861 
862 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
863 					  &len, remap_flags);
864 	if (ret < 0 || len == 0)
865 		goto out_unlock;
866 
867 	if (remap_flags & REMAP_FILE_DEDUP)
868 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
869 	else
870 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
871 
872 out_unlock:
873 	if (same_inode) {
874 		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
875 	} else {
876 		btrfs_double_mmap_unlock(src_inode, dst_inode);
877 		unlock_two_nondirectories(src_inode, dst_inode);
878 	}
879 
880 	/*
881 	 * If either the source or the destination file was opened with O_SYNC,
882 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
883 	 * source files/ranges, so that after a successful return (0) followed
884 	 * by a power failure results in the reflinked data to be readable from
885 	 * both files/ranges.
886 	 */
887 	if (ret == 0 && len > 0 &&
888 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
889 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
890 		if (ret == 0)
891 			ret = btrfs_sync_file(dst_file, destoff,
892 					      destoff + len - 1, 0);
893 	}
894 
895 	return ret < 0 ? ret : len;
896 }
897