1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16 
17 /**
18  * typedef dma_cookie_t - an opaque DMA cookie
19  *
20  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21  */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE	1
24 
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 	return cookie < 0 ? cookie : 0;
28 }
29 
30 /**
31  * enum dma_status - DMA transaction status
32  * @DMA_COMPLETE: transaction completed
33  * @DMA_IN_PROGRESS: transaction not yet processed
34  * @DMA_PAUSED: transaction is paused
35  * @DMA_ERROR: transaction failed
36  */
37 enum dma_status {
38 	DMA_COMPLETE,
39 	DMA_IN_PROGRESS,
40 	DMA_PAUSED,
41 	DMA_ERROR,
42 	DMA_OUT_OF_ORDER,
43 };
44 
45 /**
46  * enum dma_transaction_type - DMA transaction types/indexes
47  *
48  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
49  * automatically set as dma devices are registered.
50  */
51 enum dma_transaction_type {
52 	DMA_MEMCPY,
53 	DMA_XOR,
54 	DMA_PQ,
55 	DMA_XOR_VAL,
56 	DMA_PQ_VAL,
57 	DMA_MEMSET,
58 	DMA_MEMSET_SG,
59 	DMA_INTERRUPT,
60 	DMA_PRIVATE,
61 	DMA_ASYNC_TX,
62 	DMA_SLAVE,
63 	DMA_CYCLIC,
64 	DMA_INTERLEAVE,
65 	DMA_COMPLETION_NO_ORDER,
66 	DMA_REPEAT,
67 	DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69 	DMA_TX_TYPE_END,
70 };
71 
72 /**
73  * enum dma_transfer_direction - dma transfer mode and direction indicator
74  * @DMA_MEM_TO_MEM: Async/Memcpy mode
75  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78  */
79 enum dma_transfer_direction {
80 	DMA_MEM_TO_MEM,
81 	DMA_MEM_TO_DEV,
82 	DMA_DEV_TO_MEM,
83 	DMA_DEV_TO_DEV,
84 	DMA_TRANS_NONE,
85 };
86 
87 /**
88  * Interleaved Transfer Request
89  * ----------------------------
90  * A chunk is collection of contiguous bytes to be transferred.
91  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92  * ICGs may or may not change between chunks.
93  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94  *  that when repeated an integral number of times, specifies the transfer.
95  * A transfer template is specification of a Frame, the number of times
96  *  it is to be repeated and other per-transfer attributes.
97  *
98  * Practically, a client driver would have ready a template for each
99  *  type of transfer it is going to need during its lifetime and
100  *  set only 'src_start' and 'dst_start' before submitting the requests.
101  *
102  *
103  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
104  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105  *
106  *    ==  Chunk size
107  *    ... ICG
108  */
109 
110 /**
111  * struct data_chunk - Element of scatter-gather list that makes a frame.
112  * @size: Number of bytes to read from source.
113  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
114  * @icg: Number of bytes to jump after last src/dst address of this
115  *	 chunk and before first src/dst address for next chunk.
116  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118  * @dst_icg: Number of bytes to jump after last dst address of this
119  *	 chunk and before the first dst address for next chunk.
120  *	 Ignored if dst_inc is true and dst_sgl is false.
121  * @src_icg: Number of bytes to jump after last src address of this
122  *	 chunk and before the first src address for next chunk.
123  *	 Ignored if src_inc is true and src_sgl is false.
124  */
125 struct data_chunk {
126 	size_t size;
127 	size_t icg;
128 	size_t dst_icg;
129 	size_t src_icg;
130 };
131 
132 /**
133  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134  *	 and attributes.
135  * @src_start: Bus address of source for the first chunk.
136  * @dst_start: Bus address of destination for the first chunk.
137  * @dir: Specifies the type of Source and Destination.
138  * @src_inc: If the source address increments after reading from it.
139  * @dst_inc: If the destination address increments after writing to it.
140  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141  *		Otherwise, source is read contiguously (icg ignored).
142  *		Ignored if src_inc is false.
143  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144  *		Otherwise, destination is filled contiguously (icg ignored).
145  *		Ignored if dst_inc is false.
146  * @numf: Number of frames in this template.
147  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148  * @sgl: Array of {chunk,icg} pairs that make up a frame.
149  */
150 struct dma_interleaved_template {
151 	dma_addr_t src_start;
152 	dma_addr_t dst_start;
153 	enum dma_transfer_direction dir;
154 	bool src_inc;
155 	bool dst_inc;
156 	bool src_sgl;
157 	bool dst_sgl;
158 	size_t numf;
159 	size_t frame_size;
160 	struct data_chunk sgl[];
161 };
162 
163 /**
164  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165  *  control completion, and communicate status.
166  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167  *  this transaction
168  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169  *  acknowledges receipt, i.e. has a chance to establish any dependency
170  *  chains
171  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174  *  sources that were the result of a previous operation, in the case of a PQ
175  *  operation it continues the calculation with new sources
176  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177  *  on the result of this operation
178  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179  *  cleared or freed
180  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181  *  data and the descriptor should be in different format from normal
182  *  data descriptors.
183  * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184  *  repeated when it ends until a transaction is issued on the same channel
185  *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186  *  interleaved transactions and is ignored for all other transaction types.
187  * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188  *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189  *  repeated transaction ends. Not setting this flag when the previously queued
190  *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191  *  to never be processed and stay in the issued queue forever. The flag is
192  *  ignored if the previous transaction is not a repeated transaction.
193  */
194 enum dma_ctrl_flags {
195 	DMA_PREP_INTERRUPT = (1 << 0),
196 	DMA_CTRL_ACK = (1 << 1),
197 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
198 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199 	DMA_PREP_CONTINUE = (1 << 4),
200 	DMA_PREP_FENCE = (1 << 5),
201 	DMA_CTRL_REUSE = (1 << 6),
202 	DMA_PREP_CMD = (1 << 7),
203 	DMA_PREP_REPEAT = (1 << 8),
204 	DMA_PREP_LOAD_EOT = (1 << 9),
205 };
206 
207 /**
208  * enum sum_check_bits - bit position of pq_check_flags
209  */
210 enum sum_check_bits {
211 	SUM_CHECK_P = 0,
212 	SUM_CHECK_Q = 1,
213 };
214 
215 /**
216  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219  */
220 enum sum_check_flags {
221 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223 };
224 
225 
226 /**
227  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228  * See linux/cpumask.h
229  */
230 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231 
232 /**
233  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
234  * @memcpy_count: transaction counter
235  * @bytes_transferred: byte counter
236  */
237 
238 /**
239  * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
240  * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
241  *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
242  *  helper) to the descriptor.
243  *
244  * Client drivers interested to use this mode can follow:
245  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
246  *   1. prepare the descriptor (dmaengine_prep_*)
247  *	construct the metadata in the client's buffer
248  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
249  *	descriptor
250  *   3. submit the transfer
251  * - DMA_DEV_TO_MEM:
252  *   1. prepare the descriptor (dmaengine_prep_*)
253  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
254  *	descriptor
255  *   3. submit the transfer
256  *   4. when the transfer is completed, the metadata should be available in the
257  *	attached buffer
258  *
259  * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
260  *  driver. The client driver can ask for the pointer, maximum size and the
261  *  currently used size of the metadata and can directly update or read it.
262  *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
263  *  provided as helper functions.
264  *
265  *  Note: the metadata area for the descriptor is no longer valid after the
266  *  transfer has been completed (valid up to the point when the completion
267  *  callback returns if used).
268  *
269  * Client drivers interested to use this mode can follow:
270  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
271  *   1. prepare the descriptor (dmaengine_prep_*)
272  *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
273  *	metadata area
274  *   3. update the metadata at the pointer
275  *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
276  *	of data the client has placed into the metadata buffer
277  *   5. submit the transfer
278  * - DMA_DEV_TO_MEM:
279  *   1. prepare the descriptor (dmaengine_prep_*)
280  *   2. submit the transfer
281  *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
282  *	pointer to the engine's metadata area
283  *   4. Read out the metadata from the pointer
284  *
285  * Note: the two mode is not compatible and clients must use one mode for a
286  * descriptor.
287  */
288 enum dma_desc_metadata_mode {
289 	DESC_METADATA_NONE = 0,
290 	DESC_METADATA_CLIENT = BIT(0),
291 	DESC_METADATA_ENGINE = BIT(1),
292 };
293 
294 struct dma_chan_percpu {
295 	/* stats */
296 	unsigned long memcpy_count;
297 	unsigned long bytes_transferred;
298 };
299 
300 /**
301  * struct dma_router - DMA router structure
302  * @dev: pointer to the DMA router device
303  * @route_free: function to be called when the route can be disconnected
304  */
305 struct dma_router {
306 	struct device *dev;
307 	void (*route_free)(struct device *dev, void *route_data);
308 };
309 
310 /**
311  * struct dma_chan - devices supply DMA channels, clients use them
312  * @device: ptr to the dma device who supplies this channel, always !%NULL
313  * @slave: ptr to the device using this channel
314  * @cookie: last cookie value returned to client
315  * @completed_cookie: last completed cookie for this channel
316  * @chan_id: channel ID for sysfs
317  * @dev: class device for sysfs
318  * @name: backlink name for sysfs
319  * @dbg_client_name: slave name for debugfs in format:
320  *	dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
321  * @device_node: used to add this to the device chan list
322  * @local: per-cpu pointer to a struct dma_chan_percpu
323  * @client_count: how many clients are using this channel
324  * @table_count: number of appearances in the mem-to-mem allocation table
325  * @router: pointer to the DMA router structure
326  * @route_data: channel specific data for the router
327  * @private: private data for certain client-channel associations
328  */
329 struct dma_chan {
330 	struct dma_device *device;
331 	struct device *slave;
332 	dma_cookie_t cookie;
333 	dma_cookie_t completed_cookie;
334 
335 	/* sysfs */
336 	int chan_id;
337 	struct dma_chan_dev *dev;
338 	const char *name;
339 #ifdef CONFIG_DEBUG_FS
340 	char *dbg_client_name;
341 #endif
342 
343 	struct list_head device_node;
344 	struct dma_chan_percpu __percpu *local;
345 	int client_count;
346 	int table_count;
347 
348 	/* DMA router */
349 	struct dma_router *router;
350 	void *route_data;
351 
352 	void *private;
353 };
354 
355 /**
356  * struct dma_chan_dev - relate sysfs device node to backing channel device
357  * @chan: driver channel device
358  * @device: sysfs device
359  * @dev_id: parent dma_device dev_id
360  * @chan_dma_dev: The channel is using custom/different dma-mapping
361  * compared to the parent dma_device
362  */
363 struct dma_chan_dev {
364 	struct dma_chan *chan;
365 	struct device device;
366 	int dev_id;
367 	bool chan_dma_dev;
368 };
369 
370 /**
371  * enum dma_slave_buswidth - defines bus width of the DMA slave
372  * device, source or target buses
373  */
374 enum dma_slave_buswidth {
375 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
376 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
377 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
378 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
379 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
380 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
381 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
382 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
383 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
384 };
385 
386 /**
387  * struct dma_slave_config - dma slave channel runtime config
388  * @direction: whether the data shall go in or out on this slave
389  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
390  * legal values. DEPRECATED, drivers should use the direction argument
391  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
392  * the dir field in the dma_interleaved_template structure.
393  * @src_addr: this is the physical address where DMA slave data
394  * should be read (RX), if the source is memory this argument is
395  * ignored.
396  * @dst_addr: this is the physical address where DMA slave data
397  * should be written (TX), if the source is memory this argument
398  * is ignored.
399  * @src_addr_width: this is the width in bytes of the source (RX)
400  * register where DMA data shall be read. If the source
401  * is memory this may be ignored depending on architecture.
402  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
403  * @dst_addr_width: same as src_addr_width but for destination
404  * target (TX) mutatis mutandis.
405  * @src_maxburst: the maximum number of words (note: words, as in
406  * units of the src_addr_width member, not bytes) that can be sent
407  * in one burst to the device. Typically something like half the
408  * FIFO depth on I/O peripherals so you don't overflow it. This
409  * may or may not be applicable on memory sources.
410  * @dst_maxburst: same as src_maxburst but for destination target
411  * mutatis mutandis.
412  * @src_port_window_size: The length of the register area in words the data need
413  * to be accessed on the device side. It is only used for devices which is using
414  * an area instead of a single register to receive the data. Typically the DMA
415  * loops in this area in order to transfer the data.
416  * @dst_port_window_size: same as src_port_window_size but for the destination
417  * port.
418  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
419  * with 'true' if peripheral should be flow controller. Direction will be
420  * selected at Runtime.
421  * @slave_id: Slave requester id. Only valid for slave channels. The dma
422  * slave peripheral will have unique id as dma requester which need to be
423  * pass as slave config.
424  * @peripheral_config: peripheral configuration for programming peripheral
425  * for dmaengine transfer
426  * @peripheral_size: peripheral configuration buffer size
427  *
428  * This struct is passed in as configuration data to a DMA engine
429  * in order to set up a certain channel for DMA transport at runtime.
430  * The DMA device/engine has to provide support for an additional
431  * callback in the dma_device structure, device_config and this struct
432  * will then be passed in as an argument to the function.
433  *
434  * The rationale for adding configuration information to this struct is as
435  * follows: if it is likely that more than one DMA slave controllers in
436  * the world will support the configuration option, then make it generic.
437  * If not: if it is fixed so that it be sent in static from the platform
438  * data, then prefer to do that.
439  */
440 struct dma_slave_config {
441 	enum dma_transfer_direction direction;
442 	phys_addr_t src_addr;
443 	phys_addr_t dst_addr;
444 	enum dma_slave_buswidth src_addr_width;
445 	enum dma_slave_buswidth dst_addr_width;
446 	u32 src_maxburst;
447 	u32 dst_maxburst;
448 	u32 src_port_window_size;
449 	u32 dst_port_window_size;
450 	bool device_fc;
451 	unsigned int slave_id;
452 	void *peripheral_config;
453 	size_t peripheral_size;
454 };
455 
456 /**
457  * enum dma_residue_granularity - Granularity of the reported transfer residue
458  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
459  *  DMA channel is only able to tell whether a descriptor has been completed or
460  *  not, which means residue reporting is not supported by this channel. The
461  *  residue field of the dma_tx_state field will always be 0.
462  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
463  *  completed segment of the transfer (For cyclic transfers this is after each
464  *  period). This is typically implemented by having the hardware generate an
465  *  interrupt after each transferred segment and then the drivers updates the
466  *  outstanding residue by the size of the segment. Another possibility is if
467  *  the hardware supports scatter-gather and the segment descriptor has a field
468  *  which gets set after the segment has been completed. The driver then counts
469  *  the number of segments without the flag set to compute the residue.
470  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
471  *  burst. This is typically only supported if the hardware has a progress
472  *  register of some sort (E.g. a register with the current read/write address
473  *  or a register with the amount of bursts/beats/bytes that have been
474  *  transferred or still need to be transferred).
475  */
476 enum dma_residue_granularity {
477 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
478 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
479 	DMA_RESIDUE_GRANULARITY_BURST = 2,
480 };
481 
482 /**
483  * struct dma_slave_caps - expose capabilities of a slave channel only
484  * @src_addr_widths: bit mask of src addr widths the channel supports.
485  *	Width is specified in bytes, e.g. for a channel supporting
486  *	a width of 4 the mask should have BIT(4) set.
487  * @dst_addr_widths: bit mask of dst addr widths the channel supports
488  * @directions: bit mask of slave directions the channel supports.
489  *	Since the enum dma_transfer_direction is not defined as bit flag for
490  *	each type, the dma controller should set BIT(<TYPE>) and same
491  *	should be checked by controller as well
492  * @min_burst: min burst capability per-transfer
493  * @max_burst: max burst capability per-transfer
494  * @max_sg_burst: max number of SG list entries executed in a single burst
495  *	DMA tansaction with no software intervention for reinitialization.
496  *	Zero value means unlimited number of entries.
497  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
498  *	       for resume later)
499  * @cmd_resume: true, if resume is supported
500  * @cmd_terminate: true, if terminate cmd is supported
501  * @residue_granularity: granularity of the reported transfer residue
502  * @descriptor_reuse: if a descriptor can be reused by client and
503  * resubmitted multiple times
504  */
505 struct dma_slave_caps {
506 	u32 src_addr_widths;
507 	u32 dst_addr_widths;
508 	u32 directions;
509 	u32 min_burst;
510 	u32 max_burst;
511 	u32 max_sg_burst;
512 	bool cmd_pause;
513 	bool cmd_resume;
514 	bool cmd_terminate;
515 	enum dma_residue_granularity residue_granularity;
516 	bool descriptor_reuse;
517 };
518 
dma_chan_name(struct dma_chan * chan)519 static inline const char *dma_chan_name(struct dma_chan *chan)
520 {
521 	return dev_name(&chan->dev->device);
522 }
523 
524 void dma_chan_cleanup(struct kref *kref);
525 
526 /**
527  * typedef dma_filter_fn - callback filter for dma_request_channel
528  * @chan: channel to be reviewed
529  * @filter_param: opaque parameter passed through dma_request_channel
530  *
531  * When this optional parameter is specified in a call to dma_request_channel a
532  * suitable channel is passed to this routine for further dispositioning before
533  * being returned.  Where 'suitable' indicates a non-busy channel that
534  * satisfies the given capability mask.  It returns 'true' to indicate that the
535  * channel is suitable.
536  */
537 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
538 
539 typedef void (*dma_async_tx_callback)(void *dma_async_param);
540 
541 enum dmaengine_tx_result {
542 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
543 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
544 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
545 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
546 };
547 
548 struct dmaengine_result {
549 	enum dmaengine_tx_result result;
550 	u32 residue;
551 };
552 
553 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
554 				const struct dmaengine_result *result);
555 
556 struct dmaengine_unmap_data {
557 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
558 	u16 map_cnt;
559 #else
560 	u8 map_cnt;
561 #endif
562 	u8 to_cnt;
563 	u8 from_cnt;
564 	u8 bidi_cnt;
565 	struct device *dev;
566 	struct kref kref;
567 	size_t len;
568 	dma_addr_t addr[];
569 };
570 
571 struct dma_async_tx_descriptor;
572 
573 struct dma_descriptor_metadata_ops {
574 	int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
575 		      size_t len);
576 
577 	void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
578 			 size_t *payload_len, size_t *max_len);
579 	int (*set_len)(struct dma_async_tx_descriptor *desc,
580 		       size_t payload_len);
581 };
582 
583 /**
584  * struct dma_async_tx_descriptor - async transaction descriptor
585  * ---dma generic offload fields---
586  * @cookie: tracking cookie for this transaction, set to -EBUSY if
587  *	this tx is sitting on a dependency list
588  * @flags: flags to augment operation preparation, control completion, and
589  *	communicate status
590  * @phys: physical address of the descriptor
591  * @chan: target channel for this operation
592  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
593  * descriptor pending. To be pushed on .issue_pending() call
594  * @callback: routine to call after this operation is complete
595  * @callback_param: general parameter to pass to the callback routine
596  * @desc_metadata_mode: core managed metadata mode to protect mixed use of
597  *	DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
598  *	DESC_METADATA_NONE
599  * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
600  *	DMA driver if metadata mode is supported with the descriptor
601  * ---async_tx api specific fields---
602  * @next: at completion submit this descriptor
603  * @parent: pointer to the next level up in the dependency chain
604  * @lock: protect the parent and next pointers
605  */
606 struct dma_async_tx_descriptor {
607 	dma_cookie_t cookie;
608 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
609 	dma_addr_t phys;
610 	struct dma_chan *chan;
611 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
612 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
613 	dma_async_tx_callback callback;
614 	dma_async_tx_callback_result callback_result;
615 	void *callback_param;
616 	struct dmaengine_unmap_data *unmap;
617 	enum dma_desc_metadata_mode desc_metadata_mode;
618 	struct dma_descriptor_metadata_ops *metadata_ops;
619 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
620 	struct dma_async_tx_descriptor *next;
621 	struct dma_async_tx_descriptor *parent;
622 	spinlock_t lock;
623 #endif
624 };
625 
626 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)627 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
628 				 struct dmaengine_unmap_data *unmap)
629 {
630 	kref_get(&unmap->kref);
631 	tx->unmap = unmap;
632 }
633 
634 struct dmaengine_unmap_data *
635 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
636 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
637 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)638 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
639 				 struct dmaengine_unmap_data *unmap)
640 {
641 }
642 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)643 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
644 {
645 	return NULL;
646 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)647 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
648 {
649 }
650 #endif
651 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)652 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
653 {
654 	if (!tx->unmap)
655 		return;
656 
657 	dmaengine_unmap_put(tx->unmap);
658 	tx->unmap = NULL;
659 }
660 
661 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)662 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
663 {
664 }
txd_unlock(struct dma_async_tx_descriptor * txd)665 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
666 {
667 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)668 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
669 {
670 	BUG();
671 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)672 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
673 {
674 }
txd_clear_next(struct dma_async_tx_descriptor * txd)675 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
676 {
677 }
txd_next(struct dma_async_tx_descriptor * txd)678 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
679 {
680 	return NULL;
681 }
txd_parent(struct dma_async_tx_descriptor * txd)682 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
683 {
684 	return NULL;
685 }
686 
687 #else
txd_lock(struct dma_async_tx_descriptor * txd)688 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
689 {
690 	spin_lock_bh(&txd->lock);
691 }
txd_unlock(struct dma_async_tx_descriptor * txd)692 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
693 {
694 	spin_unlock_bh(&txd->lock);
695 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)696 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
697 {
698 	txd->next = next;
699 	next->parent = txd;
700 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)701 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
702 {
703 	txd->parent = NULL;
704 }
txd_clear_next(struct dma_async_tx_descriptor * txd)705 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
706 {
707 	txd->next = NULL;
708 }
txd_parent(struct dma_async_tx_descriptor * txd)709 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
710 {
711 	return txd->parent;
712 }
txd_next(struct dma_async_tx_descriptor * txd)713 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
714 {
715 	return txd->next;
716 }
717 #endif
718 
719 /**
720  * struct dma_tx_state - filled in to report the status of
721  * a transfer.
722  * @last: last completed DMA cookie
723  * @used: last issued DMA cookie (i.e. the one in progress)
724  * @residue: the remaining number of bytes left to transmit
725  *	on the selected transfer for states DMA_IN_PROGRESS and
726  *	DMA_PAUSED if this is implemented in the driver, else 0
727  * @in_flight_bytes: amount of data in bytes cached by the DMA.
728  */
729 struct dma_tx_state {
730 	dma_cookie_t last;
731 	dma_cookie_t used;
732 	u32 residue;
733 	u32 in_flight_bytes;
734 };
735 
736 /**
737  * enum dmaengine_alignment - defines alignment of the DMA async tx
738  * buffers
739  */
740 enum dmaengine_alignment {
741 	DMAENGINE_ALIGN_1_BYTE = 0,
742 	DMAENGINE_ALIGN_2_BYTES = 1,
743 	DMAENGINE_ALIGN_4_BYTES = 2,
744 	DMAENGINE_ALIGN_8_BYTES = 3,
745 	DMAENGINE_ALIGN_16_BYTES = 4,
746 	DMAENGINE_ALIGN_32_BYTES = 5,
747 	DMAENGINE_ALIGN_64_BYTES = 6,
748 	DMAENGINE_ALIGN_128_BYTES = 7,
749 	DMAENGINE_ALIGN_256_BYTES = 8,
750 };
751 
752 /**
753  * struct dma_slave_map - associates slave device and it's slave channel with
754  * parameter to be used by a filter function
755  * @devname: name of the device
756  * @slave: slave channel name
757  * @param: opaque parameter to pass to struct dma_filter.fn
758  */
759 struct dma_slave_map {
760 	const char *devname;
761 	const char *slave;
762 	void *param;
763 };
764 
765 /**
766  * struct dma_filter - information for slave device/channel to filter_fn/param
767  * mapping
768  * @fn: filter function callback
769  * @mapcnt: number of slave device/channel in the map
770  * @map: array of channel to filter mapping data
771  */
772 struct dma_filter {
773 	dma_filter_fn fn;
774 	int mapcnt;
775 	const struct dma_slave_map *map;
776 };
777 
778 /**
779  * struct dma_device - info on the entity supplying DMA services
780  * @chancnt: how many DMA channels are supported
781  * @privatecnt: how many DMA channels are requested by dma_request_channel
782  * @channels: the list of struct dma_chan
783  * @global_node: list_head for global dma_device_list
784  * @filter: information for device/slave to filter function/param mapping
785  * @cap_mask: one or more dma_capability flags
786  * @desc_metadata_modes: supported metadata modes by the DMA device
787  * @max_xor: maximum number of xor sources, 0 if no capability
788  * @max_pq: maximum number of PQ sources and PQ-continue capability
789  * @copy_align: alignment shift for memcpy operations
790  * @xor_align: alignment shift for xor operations
791  * @pq_align: alignment shift for pq operations
792  * @fill_align: alignment shift for memset operations
793  * @dev_id: unique device ID
794  * @dev: struct device reference for dma mapping api
795  * @owner: owner module (automatically set based on the provided dev)
796  * @src_addr_widths: bit mask of src addr widths the device supports
797  *	Width is specified in bytes, e.g. for a device supporting
798  *	a width of 4 the mask should have BIT(4) set.
799  * @dst_addr_widths: bit mask of dst addr widths the device supports
800  * @directions: bit mask of slave directions the device supports.
801  *	Since the enum dma_transfer_direction is not defined as bit flag for
802  *	each type, the dma controller should set BIT(<TYPE>) and same
803  *	should be checked by controller as well
804  * @min_burst: min burst capability per-transfer
805  * @max_burst: max burst capability per-transfer
806  * @max_sg_burst: max number of SG list entries executed in a single burst
807  *	DMA tansaction with no software intervention for reinitialization.
808  *	Zero value means unlimited number of entries.
809  * @residue_granularity: granularity of the transfer residue reported
810  *	by tx_status
811  * @device_alloc_chan_resources: allocate resources and return the
812  *	number of allocated descriptors
813  * @device_router_config: optional callback for DMA router configuration
814  * @device_free_chan_resources: release DMA channel's resources
815  * @device_prep_dma_memcpy: prepares a memcpy operation
816  * @device_prep_dma_xor: prepares a xor operation
817  * @device_prep_dma_xor_val: prepares a xor validation operation
818  * @device_prep_dma_pq: prepares a pq operation
819  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
820  * @device_prep_dma_memset: prepares a memset operation
821  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
822  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
823  * @device_prep_slave_sg: prepares a slave dma operation
824  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
825  *	The function takes a buffer of size buf_len. The callback function will
826  *	be called after period_len bytes have been transferred.
827  * @device_prep_interleaved_dma: Transfer expression in a generic way.
828  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
829  * @device_caps: May be used to override the generic DMA slave capabilities
830  *	with per-channel specific ones
831  * @device_config: Pushes a new configuration to a channel, return 0 or an error
832  *	code
833  * @device_pause: Pauses any transfer happening on a channel. Returns
834  *	0 or an error code
835  * @device_resume: Resumes any transfer on a channel previously
836  *	paused. Returns 0 or an error code
837  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
838  *	or an error code
839  * @device_synchronize: Synchronizes the termination of a transfers to the
840  *  current context.
841  * @device_tx_status: poll for transaction completion, the optional
842  *	txstate parameter can be supplied with a pointer to get a
843  *	struct with auxiliary transfer status information, otherwise the call
844  *	will just return a simple status code
845  * @device_issue_pending: push pending transactions to hardware
846  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
847  * @device_release: called sometime atfer dma_async_device_unregister() is
848  *     called and there are no further references to this structure. This
849  *     must be implemented to free resources however many existing drivers
850  *     do not and are therefore not safe to unbind while in use.
851  * @dbg_summary_show: optional routine to show contents in debugfs; default code
852  *     will be used when this is omitted, but custom code can show extra,
853  *     controller specific information.
854  */
855 struct dma_device {
856 	struct kref ref;
857 	unsigned int chancnt;
858 	unsigned int privatecnt;
859 	struct list_head channels;
860 	struct list_head global_node;
861 	struct dma_filter filter;
862 	dma_cap_mask_t  cap_mask;
863 	enum dma_desc_metadata_mode desc_metadata_modes;
864 	unsigned short max_xor;
865 	unsigned short max_pq;
866 	enum dmaengine_alignment copy_align;
867 	enum dmaengine_alignment xor_align;
868 	enum dmaengine_alignment pq_align;
869 	enum dmaengine_alignment fill_align;
870 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
871 
872 	int dev_id;
873 	struct device *dev;
874 	struct module *owner;
875 	struct ida chan_ida;
876 	struct mutex chan_mutex;	/* to protect chan_ida */
877 
878 	u32 src_addr_widths;
879 	u32 dst_addr_widths;
880 	u32 directions;
881 	u32 min_burst;
882 	u32 max_burst;
883 	u32 max_sg_burst;
884 	bool descriptor_reuse;
885 	enum dma_residue_granularity residue_granularity;
886 
887 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
888 	int (*device_router_config)(struct dma_chan *chan);
889 	void (*device_free_chan_resources)(struct dma_chan *chan);
890 
891 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
892 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
893 		size_t len, unsigned long flags);
894 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
895 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
896 		unsigned int src_cnt, size_t len, unsigned long flags);
897 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
898 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
899 		size_t len, enum sum_check_flags *result, unsigned long flags);
900 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
901 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
902 		unsigned int src_cnt, const unsigned char *scf,
903 		size_t len, unsigned long flags);
904 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
905 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
906 		unsigned int src_cnt, const unsigned char *scf, size_t len,
907 		enum sum_check_flags *pqres, unsigned long flags);
908 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
909 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
910 		unsigned long flags);
911 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
912 		struct dma_chan *chan, struct scatterlist *sg,
913 		unsigned int nents, int value, unsigned long flags);
914 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
915 		struct dma_chan *chan, unsigned long flags);
916 
917 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
918 		struct dma_chan *chan, struct scatterlist *sgl,
919 		unsigned int sg_len, enum dma_transfer_direction direction,
920 		unsigned long flags, void *context);
921 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
922 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
923 		size_t period_len, enum dma_transfer_direction direction,
924 		unsigned long flags);
925 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
926 		struct dma_chan *chan, struct dma_interleaved_template *xt,
927 		unsigned long flags);
928 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
929 		struct dma_chan *chan, dma_addr_t dst, u64 data,
930 		unsigned long flags);
931 
932 	void (*device_caps)(struct dma_chan *chan,
933 			    struct dma_slave_caps *caps);
934 	int (*device_config)(struct dma_chan *chan,
935 			     struct dma_slave_config *config);
936 	int (*device_pause)(struct dma_chan *chan);
937 	int (*device_resume)(struct dma_chan *chan);
938 	int (*device_terminate_all)(struct dma_chan *chan);
939 	void (*device_synchronize)(struct dma_chan *chan);
940 
941 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
942 					    dma_cookie_t cookie,
943 					    struct dma_tx_state *txstate);
944 	void (*device_issue_pending)(struct dma_chan *chan);
945 	void (*device_release)(struct dma_device *dev);
946 	/* debugfs support */
947 #ifdef CONFIG_DEBUG_FS
948 	void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
949 	struct dentry *dbg_dev_root;
950 #endif
951 };
952 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)953 static inline int dmaengine_slave_config(struct dma_chan *chan,
954 					  struct dma_slave_config *config)
955 {
956 	if (chan->device->device_config)
957 		return chan->device->device_config(chan, config);
958 
959 	return -ENOSYS;
960 }
961 
is_slave_direction(enum dma_transfer_direction direction)962 static inline bool is_slave_direction(enum dma_transfer_direction direction)
963 {
964 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
965 }
966 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)967 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
968 	struct dma_chan *chan, dma_addr_t buf, size_t len,
969 	enum dma_transfer_direction dir, unsigned long flags)
970 {
971 	struct scatterlist sg;
972 	sg_init_table(&sg, 1);
973 	sg_dma_address(&sg) = buf;
974 	sg_dma_len(&sg) = len;
975 
976 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
977 		return NULL;
978 
979 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
980 						  dir, flags, NULL);
981 }
982 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)983 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
984 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
985 	enum dma_transfer_direction dir, unsigned long flags)
986 {
987 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
988 		return NULL;
989 
990 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
991 						  dir, flags, NULL);
992 }
993 
994 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
995 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)996 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
997 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
998 	enum dma_transfer_direction dir, unsigned long flags,
999 	struct rio_dma_ext *rio_ext)
1000 {
1001 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1002 		return NULL;
1003 
1004 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1005 						  dir, flags, rio_ext);
1006 }
1007 #endif
1008 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1009 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1010 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1011 		size_t period_len, enum dma_transfer_direction dir,
1012 		unsigned long flags)
1013 {
1014 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1015 		return NULL;
1016 
1017 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1018 						period_len, dir, flags);
1019 }
1020 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1021 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1022 		struct dma_chan *chan, struct dma_interleaved_template *xt,
1023 		unsigned long flags)
1024 {
1025 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1026 		return NULL;
1027 	if (flags & DMA_PREP_REPEAT &&
1028 	    !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1029 		return NULL;
1030 
1031 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1032 }
1033 
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1034 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1035 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1036 		unsigned long flags)
1037 {
1038 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1039 		return NULL;
1040 
1041 	return chan->device->device_prep_dma_memset(chan, dest, value,
1042 						    len, flags);
1043 }
1044 
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1045 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1046 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1047 		size_t len, unsigned long flags)
1048 {
1049 	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1050 		return NULL;
1051 
1052 	return chan->device->device_prep_dma_memcpy(chan, dest, src,
1053 						    len, flags);
1054 }
1055 
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1056 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1057 		enum dma_desc_metadata_mode mode)
1058 {
1059 	if (!chan)
1060 		return false;
1061 
1062 	return !!(chan->device->desc_metadata_modes & mode);
1063 }
1064 
1065 #ifdef CONFIG_DMA_ENGINE
1066 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1067 				   void *data, size_t len);
1068 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1069 				      size_t *payload_len, size_t *max_len);
1070 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1071 				    size_t payload_len);
1072 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1073 static inline int dmaengine_desc_attach_metadata(
1074 		struct dma_async_tx_descriptor *desc, void *data, size_t len)
1075 {
1076 	return -EINVAL;
1077 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1078 static inline void *dmaengine_desc_get_metadata_ptr(
1079 		struct dma_async_tx_descriptor *desc, size_t *payload_len,
1080 		size_t *max_len)
1081 {
1082 	return NULL;
1083 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1084 static inline int dmaengine_desc_set_metadata_len(
1085 		struct dma_async_tx_descriptor *desc, size_t payload_len)
1086 {
1087 	return -EINVAL;
1088 }
1089 #endif /* CONFIG_DMA_ENGINE */
1090 
1091 /**
1092  * dmaengine_terminate_all() - Terminate all active DMA transfers
1093  * @chan: The channel for which to terminate the transfers
1094  *
1095  * This function is DEPRECATED use either dmaengine_terminate_sync() or
1096  * dmaengine_terminate_async() instead.
1097  */
dmaengine_terminate_all(struct dma_chan * chan)1098 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1099 {
1100 	if (chan->device->device_terminate_all)
1101 		return chan->device->device_terminate_all(chan);
1102 
1103 	return -ENOSYS;
1104 }
1105 
1106 /**
1107  * dmaengine_terminate_async() - Terminate all active DMA transfers
1108  * @chan: The channel for which to terminate the transfers
1109  *
1110  * Calling this function will terminate all active and pending descriptors
1111  * that have previously been submitted to the channel. It is not guaranteed
1112  * though that the transfer for the active descriptor has stopped when the
1113  * function returns. Furthermore it is possible the complete callback of a
1114  * submitted transfer is still running when this function returns.
1115  *
1116  * dmaengine_synchronize() needs to be called before it is safe to free
1117  * any memory that is accessed by previously submitted descriptors or before
1118  * freeing any resources accessed from within the completion callback of any
1119  * previously submitted descriptors.
1120  *
1121  * This function can be called from atomic context as well as from within a
1122  * complete callback of a descriptor submitted on the same channel.
1123  *
1124  * If none of the two conditions above apply consider using
1125  * dmaengine_terminate_sync() instead.
1126  */
dmaengine_terminate_async(struct dma_chan * chan)1127 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1128 {
1129 	if (chan->device->device_terminate_all)
1130 		return chan->device->device_terminate_all(chan);
1131 
1132 	return -EINVAL;
1133 }
1134 
1135 /**
1136  * dmaengine_synchronize() - Synchronize DMA channel termination
1137  * @chan: The channel to synchronize
1138  *
1139  * Synchronizes to the DMA channel termination to the current context. When this
1140  * function returns it is guaranteed that all transfers for previously issued
1141  * descriptors have stopped and it is safe to free the memory associated
1142  * with them. Furthermore it is guaranteed that all complete callback functions
1143  * for a previously submitted descriptor have finished running and it is safe to
1144  * free resources accessed from within the complete callbacks.
1145  *
1146  * The behavior of this function is undefined if dma_async_issue_pending() has
1147  * been called between dmaengine_terminate_async() and this function.
1148  *
1149  * This function must only be called from non-atomic context and must not be
1150  * called from within a complete callback of a descriptor submitted on the same
1151  * channel.
1152  */
dmaengine_synchronize(struct dma_chan * chan)1153 static inline void dmaengine_synchronize(struct dma_chan *chan)
1154 {
1155 	might_sleep();
1156 
1157 	if (chan->device->device_synchronize)
1158 		chan->device->device_synchronize(chan);
1159 }
1160 
1161 /**
1162  * dmaengine_terminate_sync() - Terminate all active DMA transfers
1163  * @chan: The channel for which to terminate the transfers
1164  *
1165  * Calling this function will terminate all active and pending transfers
1166  * that have previously been submitted to the channel. It is similar to
1167  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1168  * stopped and that all complete callbacks have finished running when the
1169  * function returns.
1170  *
1171  * This function must only be called from non-atomic context and must not be
1172  * called from within a complete callback of a descriptor submitted on the same
1173  * channel.
1174  */
dmaengine_terminate_sync(struct dma_chan * chan)1175 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1176 {
1177 	int ret;
1178 
1179 	ret = dmaengine_terminate_async(chan);
1180 	if (ret)
1181 		return ret;
1182 
1183 	dmaengine_synchronize(chan);
1184 
1185 	return 0;
1186 }
1187 
dmaengine_pause(struct dma_chan * chan)1188 static inline int dmaengine_pause(struct dma_chan *chan)
1189 {
1190 	if (chan->device->device_pause)
1191 		return chan->device->device_pause(chan);
1192 
1193 	return -ENOSYS;
1194 }
1195 
dmaengine_resume(struct dma_chan * chan)1196 static inline int dmaengine_resume(struct dma_chan *chan)
1197 {
1198 	if (chan->device->device_resume)
1199 		return chan->device->device_resume(chan);
1200 
1201 	return -ENOSYS;
1202 }
1203 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1204 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1205 	dma_cookie_t cookie, struct dma_tx_state *state)
1206 {
1207 	return chan->device->device_tx_status(chan, cookie, state);
1208 }
1209 
dmaengine_submit(struct dma_async_tx_descriptor * desc)1210 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1211 {
1212 	return desc->tx_submit(desc);
1213 }
1214 
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1215 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1216 					 size_t off1, size_t off2, size_t len)
1217 {
1218 	return !(((1 << align) - 1) & (off1 | off2 | len));
1219 }
1220 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1221 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1222 				       size_t off2, size_t len)
1223 {
1224 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1225 }
1226 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1227 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1228 				      size_t off2, size_t len)
1229 {
1230 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1231 }
1232 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1233 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1234 				     size_t off2, size_t len)
1235 {
1236 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1237 }
1238 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1239 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1240 				       size_t off2, size_t len)
1241 {
1242 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1243 }
1244 
1245 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1246 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1247 {
1248 	dma->max_pq = maxpq;
1249 	if (has_pq_continue)
1250 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1251 }
1252 
dmaf_continue(enum dma_ctrl_flags flags)1253 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1254 {
1255 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1256 }
1257 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1258 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1259 {
1260 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1261 
1262 	return (flags & mask) == mask;
1263 }
1264 
dma_dev_has_pq_continue(struct dma_device * dma)1265 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1266 {
1267 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1268 }
1269 
dma_dev_to_maxpq(struct dma_device * dma)1270 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1271 {
1272 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1273 }
1274 
1275 /* dma_maxpq - reduce maxpq in the face of continued operations
1276  * @dma - dma device with PQ capability
1277  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1278  *
1279  * When an engine does not support native continuation we need 3 extra
1280  * source slots to reuse P and Q with the following coefficients:
1281  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1282  * 2/ {01} * Q : use Q to continue Q' calculation
1283  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1284  *
1285  * In the case where P is disabled we only need 1 extra source:
1286  * 1/ {01} * Q : use Q to continue Q' calculation
1287  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1288 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1289 {
1290 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1291 		return dma_dev_to_maxpq(dma);
1292 	if (dmaf_p_disabled_continue(flags))
1293 		return dma_dev_to_maxpq(dma) - 1;
1294 	if (dmaf_continue(flags))
1295 		return dma_dev_to_maxpq(dma) - 3;
1296 	BUG();
1297 }
1298 
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1299 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1300 				      size_t dir_icg)
1301 {
1302 	if (inc) {
1303 		if (dir_icg)
1304 			return dir_icg;
1305 		if (sgl)
1306 			return icg;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1312 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1313 					   struct data_chunk *chunk)
1314 {
1315 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1316 				 chunk->icg, chunk->dst_icg);
1317 }
1318 
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1319 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1320 					   struct data_chunk *chunk)
1321 {
1322 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1323 				 chunk->icg, chunk->src_icg);
1324 }
1325 
1326 /* --- public DMA engine API --- */
1327 
1328 #ifdef CONFIG_DMA_ENGINE
1329 void dmaengine_get(void);
1330 void dmaengine_put(void);
1331 #else
dmaengine_get(void)1332 static inline void dmaengine_get(void)
1333 {
1334 }
dmaengine_put(void)1335 static inline void dmaengine_put(void)
1336 {
1337 }
1338 #endif
1339 
1340 #ifdef CONFIG_ASYNC_TX_DMA
1341 #define async_dmaengine_get()	dmaengine_get()
1342 #define async_dmaengine_put()	dmaengine_put()
1343 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1344 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1345 #else
1346 #define async_dma_find_channel(type) dma_find_channel(type)
1347 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1348 #else
async_dmaengine_get(void)1349 static inline void async_dmaengine_get(void)
1350 {
1351 }
async_dmaengine_put(void)1352 static inline void async_dmaengine_put(void)
1353 {
1354 }
1355 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1356 async_dma_find_channel(enum dma_transaction_type type)
1357 {
1358 	return NULL;
1359 }
1360 #endif /* CONFIG_ASYNC_TX_DMA */
1361 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1362 				  struct dma_chan *chan);
1363 
async_tx_ack(struct dma_async_tx_descriptor * tx)1364 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1365 {
1366 	tx->flags |= DMA_CTRL_ACK;
1367 }
1368 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1369 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1370 {
1371 	tx->flags &= ~DMA_CTRL_ACK;
1372 }
1373 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1374 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1375 {
1376 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1377 }
1378 
1379 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1380 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1381 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1382 {
1383 	set_bit(tx_type, dstp->bits);
1384 }
1385 
1386 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1387 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1388 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1389 {
1390 	clear_bit(tx_type, dstp->bits);
1391 }
1392 
1393 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1394 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1395 {
1396 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1397 }
1398 
1399 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1400 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1401 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1402 {
1403 	return test_bit(tx_type, srcp->bits);
1404 }
1405 
1406 #define for_each_dma_cap_mask(cap, mask) \
1407 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1408 
1409 /**
1410  * dma_async_issue_pending - flush pending transactions to HW
1411  * @chan: target DMA channel
1412  *
1413  * This allows drivers to push copies to HW in batches,
1414  * reducing MMIO writes where possible.
1415  */
dma_async_issue_pending(struct dma_chan * chan)1416 static inline void dma_async_issue_pending(struct dma_chan *chan)
1417 {
1418 	chan->device->device_issue_pending(chan);
1419 }
1420 
1421 /**
1422  * dma_async_is_tx_complete - poll for transaction completion
1423  * @chan: DMA channel
1424  * @cookie: transaction identifier to check status of
1425  * @last: returns last completed cookie, can be NULL
1426  * @used: returns last issued cookie, can be NULL
1427  *
1428  * If @last and @used are passed in, upon return they reflect the driver
1429  * internal state and can be used with dma_async_is_complete() to check
1430  * the status of multiple cookies without re-checking hardware state.
1431  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1432 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1433 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1434 {
1435 	struct dma_tx_state state;
1436 	enum dma_status status;
1437 
1438 	status = chan->device->device_tx_status(chan, cookie, &state);
1439 	if (last)
1440 		*last = state.last;
1441 	if (used)
1442 		*used = state.used;
1443 	return status;
1444 }
1445 
1446 /**
1447  * dma_async_is_complete - test a cookie against chan state
1448  * @cookie: transaction identifier to test status of
1449  * @last_complete: last know completed transaction
1450  * @last_used: last cookie value handed out
1451  *
1452  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1453  * the test logic is separated for lightweight testing of multiple cookies
1454  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1455 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1456 			dma_cookie_t last_complete, dma_cookie_t last_used)
1457 {
1458 	if (last_complete <= last_used) {
1459 		if ((cookie <= last_complete) || (cookie > last_used))
1460 			return DMA_COMPLETE;
1461 	} else {
1462 		if ((cookie <= last_complete) && (cookie > last_used))
1463 			return DMA_COMPLETE;
1464 	}
1465 	return DMA_IN_PROGRESS;
1466 }
1467 
1468 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1469 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1470 {
1471 	if (!st)
1472 		return;
1473 
1474 	st->last = last;
1475 	st->used = used;
1476 	st->residue = residue;
1477 }
1478 
1479 #ifdef CONFIG_DMA_ENGINE
1480 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1481 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1482 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1483 void dma_issue_pending_all(void);
1484 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1485 				       dma_filter_fn fn, void *fn_param,
1486 				       struct device_node *np);
1487 
1488 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1489 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1490 
1491 void dma_release_channel(struct dma_chan *chan);
1492 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1493 #else
dma_find_channel(enum dma_transaction_type tx_type)1494 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1495 {
1496 	return NULL;
1497 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1498 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1499 {
1500 	return DMA_COMPLETE;
1501 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1502 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1503 {
1504 	return DMA_COMPLETE;
1505 }
dma_issue_pending_all(void)1506 static inline void dma_issue_pending_all(void)
1507 {
1508 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1509 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1510 						     dma_filter_fn fn,
1511 						     void *fn_param,
1512 						     struct device_node *np)
1513 {
1514 	return NULL;
1515 }
dma_request_chan(struct device * dev,const char * name)1516 static inline struct dma_chan *dma_request_chan(struct device *dev,
1517 						const char *name)
1518 {
1519 	return ERR_PTR(-ENODEV);
1520 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1521 static inline struct dma_chan *dma_request_chan_by_mask(
1522 						const dma_cap_mask_t *mask)
1523 {
1524 	return ERR_PTR(-ENODEV);
1525 }
dma_release_channel(struct dma_chan * chan)1526 static inline void dma_release_channel(struct dma_chan *chan)
1527 {
1528 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1529 static inline int dma_get_slave_caps(struct dma_chan *chan,
1530 				     struct dma_slave_caps *caps)
1531 {
1532 	return -ENXIO;
1533 }
1534 #endif
1535 
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1536 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1537 {
1538 	struct dma_slave_caps caps;
1539 	int ret;
1540 
1541 	ret = dma_get_slave_caps(tx->chan, &caps);
1542 	if (ret)
1543 		return ret;
1544 
1545 	if (!caps.descriptor_reuse)
1546 		return -EPERM;
1547 
1548 	tx->flags |= DMA_CTRL_REUSE;
1549 	return 0;
1550 }
1551 
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1552 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1553 {
1554 	tx->flags &= ~DMA_CTRL_REUSE;
1555 }
1556 
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1557 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1558 {
1559 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1560 }
1561 
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1562 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1563 {
1564 	/* this is supported for reusable desc, so check that */
1565 	if (!dmaengine_desc_test_reuse(desc))
1566 		return -EPERM;
1567 
1568 	return desc->desc_free(desc);
1569 }
1570 
1571 /* --- DMA device --- */
1572 
1573 int dma_async_device_register(struct dma_device *device);
1574 int dmaenginem_async_device_register(struct dma_device *device);
1575 void dma_async_device_unregister(struct dma_device *device);
1576 int dma_async_device_channel_register(struct dma_device *device,
1577 				      struct dma_chan *chan);
1578 void dma_async_device_channel_unregister(struct dma_device *device,
1579 					 struct dma_chan *chan);
1580 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1581 #define dma_request_channel(mask, x, y) \
1582 	__dma_request_channel(&(mask), x, y, NULL)
1583 
1584 /* Deprecated, please use dma_request_chan() directly */
1585 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1586 dma_request_slave_channel(struct device *dev, const char *name)
1587 {
1588 	struct dma_chan *ch = dma_request_chan(dev, name);
1589 
1590 	return IS_ERR(ch) ? NULL : ch;
1591 }
1592 
1593 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1594 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1595 				  dma_filter_fn fn, void *fn_param,
1596 				  struct device *dev, const char *name)
1597 {
1598 	struct dma_chan *chan;
1599 
1600 	chan = dma_request_slave_channel(dev, name);
1601 	if (chan)
1602 		return chan;
1603 
1604 	if (!fn || !fn_param)
1605 		return NULL;
1606 
1607 	return __dma_request_channel(&mask, fn, fn_param, NULL);
1608 }
1609 
1610 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1611 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1612 {
1613 	switch (dir) {
1614 	case DMA_DEV_TO_MEM:
1615 		return "DEV_TO_MEM";
1616 	case DMA_MEM_TO_DEV:
1617 		return "MEM_TO_DEV";
1618 	case DMA_MEM_TO_MEM:
1619 		return "MEM_TO_MEM";
1620 	case DMA_DEV_TO_DEV:
1621 		return "DEV_TO_DEV";
1622 	default:
1623 		return "invalid";
1624 	}
1625 }
1626 
dmaengine_get_dma_device(struct dma_chan * chan)1627 static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1628 {
1629 	if (chan->dev->chan_dma_dev)
1630 		return &chan->dev->device;
1631 
1632 	return chan->device->dev;
1633 }
1634 
1635 #endif /* DMAENGINE_H */
1636