1// Copyright 2013 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package pointer
6
7// This file defines the main datatypes and Analyze function of the pointer analysis.
8
9import (
10	"fmt"
11	"go/token"
12	"go/types"
13	"io"
14	"os"
15	"reflect"
16	"runtime"
17	"runtime/debug"
18	"sort"
19
20	"golang.org/x/tools/go/callgraph"
21	"golang.org/x/tools/go/ssa"
22	"golang.org/x/tools/go/types/typeutil"
23)
24
25const (
26	// optimization options; enable all when committing
27	optRenumber = true // enable renumbering optimization (makes logs hard to read)
28	optHVN      = true // enable pointer equivalence via Hash-Value Numbering
29
30	// debugging options; disable all when committing
31	debugHVN           = false // enable assertions in HVN
32	debugHVNVerbose    = false // enable extra HVN logging
33	debugHVNCrossCheck = false // run solver with/without HVN and compare (caveats below)
34	debugTimers        = false // show running time of each phase
35)
36
37// object.flags bitmask values.
38const (
39	otTagged   = 1 << iota // type-tagged object
40	otIndirect             // type-tagged object with indirect payload
41	otFunction             // function object
42)
43
44// An object represents a contiguous block of memory to which some
45// (generalized) pointer may point.
46//
47// (Note: most variables called 'obj' are not *objects but nodeids
48// such that a.nodes[obj].obj != nil.)
49//
50type object struct {
51	// flags is a bitset of the node type (ot*) flags defined above.
52	flags uint32
53
54	// Number of following nodes belonging to the same "object"
55	// allocation.  Zero for all other nodes.
56	size uint32
57
58	// data describes this object; it has one of these types:
59	//
60	// ssa.Value	for an object allocated by an SSA operation.
61	// types.Type	for an rtype instance object or *rtype-tagged object.
62	// string	for an instrinsic object, e.g. the array behind os.Args.
63	// nil		for an object allocated by an instrinsic.
64	//		(cgn provides the identity of the intrinsic.)
65	data interface{}
66
67	// The call-graph node (=context) in which this object was allocated.
68	// May be nil for global objects: Global, Const, some Functions.
69	cgn *cgnode
70}
71
72// nodeid denotes a node.
73// It is an index within analysis.nodes.
74// We use small integers, not *node pointers, for many reasons:
75// - they are smaller on 64-bit systems.
76// - sets of them can be represented compactly in bitvectors or BDDs.
77// - order matters; a field offset can be computed by simple addition.
78type nodeid uint32
79
80// A node is an equivalence class of memory locations.
81// Nodes may be pointers, pointed-to locations, neither, or both.
82//
83// Nodes that are pointed-to locations ("labels") have an enclosing
84// object (see analysis.enclosingObject).
85//
86type node struct {
87	// If non-nil, this node is the start of an object
88	// (addressable memory location).
89	// The following obj.size nodes implicitly belong to the object;
90	// they locate their object by scanning back.
91	obj *object
92
93	// The type of the field denoted by this node.  Non-aggregate,
94	// unless this is an tagged.T node (i.e. the thing
95	// pointed to by an interface) in which case typ is that type.
96	typ types.Type
97
98	// subelement indicates which directly embedded subelement of
99	// an object of aggregate type (struct, tuple, array) this is.
100	subelement *fieldInfo // e.g. ".a.b[*].c"
101
102	// Solver state for the canonical node of this pointer-
103	// equivalence class.  Each node is created with its own state
104	// but they become shared after HVN.
105	solve *solverState
106}
107
108// An analysis instance holds the state of a single pointer analysis problem.
109type analysis struct {
110	config      *Config                     // the client's control/observer interface
111	prog        *ssa.Program                // the program being analyzed
112	log         io.Writer                   // log stream; nil to disable
113	panicNode   nodeid                      // sink for panic, source for recover
114	nodes       []*node                     // indexed by nodeid
115	flattenMemo map[types.Type][]*fieldInfo // memoization of flatten()
116	trackTypes  map[types.Type]bool         // memoization of shouldTrack()
117	constraints []constraint                // set of constraints
118	cgnodes     []*cgnode                   // all cgnodes
119	genq        []*cgnode                   // queue of functions to generate constraints for
120	intrinsics  map[*ssa.Function]intrinsic // non-nil values are summaries for intrinsic fns
121	globalval   map[ssa.Value]nodeid        // node for each global ssa.Value
122	globalobj   map[ssa.Value]nodeid        // maps v to sole member of pts(v), if singleton
123	localval    map[ssa.Value]nodeid        // node for each local ssa.Value
124	localobj    map[ssa.Value]nodeid        // maps v to sole member of pts(v), if singleton
125	atFuncs     map[*ssa.Function]bool      // address-taken functions (for presolver)
126	mapValues   []nodeid                    // values of makemap objects (indirect in HVN)
127	work        nodeset                     // solver's worklist
128	result      *Result                     // results of the analysis
129	track       track                       // pointerlike types whose aliasing we track
130	deltaSpace  []int                       // working space for iterating over PTS deltas
131
132	// Reflection & intrinsics:
133	hasher              typeutil.Hasher // cache of type hashes
134	reflectValueObj     types.Object    // type symbol for reflect.Value (if present)
135	reflectValueCall    *ssa.Function   // (reflect.Value).Call
136	reflectRtypeObj     types.Object    // *types.TypeName for reflect.rtype (if present)
137	reflectRtypePtr     *types.Pointer  // *reflect.rtype
138	reflectType         *types.Named    // reflect.Type
139	rtypes              typeutil.Map    // nodeid of canonical *rtype-tagged object for type T
140	reflectZeros        typeutil.Map    // nodeid of canonical T-tagged object for zero value
141	runtimeSetFinalizer *ssa.Function   // runtime.SetFinalizer
142}
143
144// enclosingObj returns the first node of the addressable memory
145// object that encloses node id.  Panic ensues if that node does not
146// belong to any object.
147func (a *analysis) enclosingObj(id nodeid) nodeid {
148	// Find previous node with obj != nil.
149	for i := id; i >= 0; i-- {
150		n := a.nodes[i]
151		if obj := n.obj; obj != nil {
152			if i+nodeid(obj.size) <= id {
153				break // out of bounds
154			}
155			return i
156		}
157	}
158	panic("node has no enclosing object")
159}
160
161// labelFor returns the Label for node id.
162// Panic ensues if that node is not addressable.
163func (a *analysis) labelFor(id nodeid) *Label {
164	return &Label{
165		obj:        a.nodes[a.enclosingObj(id)].obj,
166		subelement: a.nodes[id].subelement,
167	}
168}
169
170func (a *analysis) warnf(pos token.Pos, format string, args ...interface{}) {
171	msg := fmt.Sprintf(format, args...)
172	if a.log != nil {
173		fmt.Fprintf(a.log, "%s: warning: %s\n", a.prog.Fset.Position(pos), msg)
174	}
175	a.result.Warnings = append(a.result.Warnings, Warning{pos, msg})
176}
177
178// computeTrackBits sets a.track to the necessary 'track' bits for the pointer queries.
179func (a *analysis) computeTrackBits() {
180	if len(a.config.extendedQueries) != 0 {
181		// TODO(dh): only track the types necessary for the query.
182		a.track = trackAll
183		return
184	}
185	var queryTypes []types.Type
186	for v := range a.config.Queries {
187		queryTypes = append(queryTypes, v.Type())
188	}
189	for v := range a.config.IndirectQueries {
190		queryTypes = append(queryTypes, mustDeref(v.Type()))
191	}
192	for _, t := range queryTypes {
193		switch t.Underlying().(type) {
194		case *types.Chan:
195			a.track |= trackChan
196		case *types.Map:
197			a.track |= trackMap
198		case *types.Pointer:
199			a.track |= trackPtr
200		case *types.Slice:
201			a.track |= trackSlice
202		case *types.Interface:
203			a.track = trackAll
204			return
205		}
206		if rVObj := a.reflectValueObj; rVObj != nil && types.Identical(t, rVObj.Type()) {
207			a.track = trackAll
208			return
209		}
210	}
211}
212
213// Analyze runs the pointer analysis with the scope and options
214// specified by config, and returns the (synthetic) root of the callgraph.
215//
216// Pointer analysis of a transitively closed well-typed program should
217// always succeed.  An error can occur only due to an internal bug.
218//
219func Analyze(config *Config) (result *Result, err error) {
220	if config.Mains == nil {
221		return nil, fmt.Errorf("no main/test packages to analyze (check $GOROOT/$GOPATH)")
222	}
223	defer func() {
224		if p := recover(); p != nil {
225			err = fmt.Errorf("internal error in pointer analysis: %v (please report this bug)", p)
226			fmt.Fprintln(os.Stderr, "Internal panic in pointer analysis:")
227			debug.PrintStack()
228		}
229	}()
230
231	a := &analysis{
232		config:      config,
233		log:         config.Log,
234		prog:        config.prog(),
235		globalval:   make(map[ssa.Value]nodeid),
236		globalobj:   make(map[ssa.Value]nodeid),
237		flattenMemo: make(map[types.Type][]*fieldInfo),
238		trackTypes:  make(map[types.Type]bool),
239		atFuncs:     make(map[*ssa.Function]bool),
240		hasher:      typeutil.MakeHasher(),
241		intrinsics:  make(map[*ssa.Function]intrinsic),
242		result: &Result{
243			Queries:         make(map[ssa.Value]Pointer),
244			IndirectQueries: make(map[ssa.Value]Pointer),
245		},
246		deltaSpace: make([]int, 0, 100),
247	}
248
249	if false {
250		a.log = os.Stderr // for debugging crashes; extremely verbose
251	}
252
253	if a.log != nil {
254		fmt.Fprintln(a.log, "==== Starting analysis")
255	}
256
257	// Pointer analysis requires a complete program for soundness.
258	// Check to prevent accidental misconfiguration.
259	for _, pkg := range a.prog.AllPackages() {
260		// (This only checks that the package scope is complete,
261		// not that func bodies exist, but it's a good signal.)
262		if !pkg.Pkg.Complete() {
263			return nil, fmt.Errorf(`pointer analysis requires a complete program yet package %q was incomplete`, pkg.Pkg.Path())
264		}
265	}
266
267	if reflect := a.prog.ImportedPackage("reflect"); reflect != nil {
268		rV := reflect.Pkg.Scope().Lookup("Value")
269		a.reflectValueObj = rV
270		a.reflectValueCall = a.prog.LookupMethod(rV.Type(), nil, "Call")
271		a.reflectType = reflect.Pkg.Scope().Lookup("Type").Type().(*types.Named)
272		a.reflectRtypeObj = reflect.Pkg.Scope().Lookup("rtype")
273		a.reflectRtypePtr = types.NewPointer(a.reflectRtypeObj.Type())
274
275		// Override flattening of reflect.Value, treating it like a basic type.
276		tReflectValue := a.reflectValueObj.Type()
277		a.flattenMemo[tReflectValue] = []*fieldInfo{{typ: tReflectValue}}
278
279		// Override shouldTrack of reflect.Value and *reflect.rtype.
280		// Always track pointers of these types.
281		a.trackTypes[tReflectValue] = true
282		a.trackTypes[a.reflectRtypePtr] = true
283
284		a.rtypes.SetHasher(a.hasher)
285		a.reflectZeros.SetHasher(a.hasher)
286	}
287	if runtime := a.prog.ImportedPackage("runtime"); runtime != nil {
288		a.runtimeSetFinalizer = runtime.Func("SetFinalizer")
289	}
290	a.computeTrackBits()
291
292	a.generate()
293	a.showCounts()
294
295	if optRenumber {
296		a.renumber()
297	}
298
299	N := len(a.nodes) // excludes solver-created nodes
300
301	if optHVN {
302		if debugHVNCrossCheck {
303			// Cross-check: run the solver once without
304			// optimization, once with, and compare the
305			// solutions.
306			savedConstraints := a.constraints
307
308			a.solve()
309			a.dumpSolution("A.pts", N)
310
311			// Restore.
312			a.constraints = savedConstraints
313			for _, n := range a.nodes {
314				n.solve = new(solverState)
315			}
316			a.nodes = a.nodes[:N]
317
318			// rtypes is effectively part of the solver state.
319			a.rtypes = typeutil.Map{}
320			a.rtypes.SetHasher(a.hasher)
321		}
322
323		a.hvn()
324	}
325
326	if debugHVNCrossCheck {
327		runtime.GC()
328		runtime.GC()
329	}
330
331	a.solve()
332
333	// Compare solutions.
334	if optHVN && debugHVNCrossCheck {
335		a.dumpSolution("B.pts", N)
336
337		if !diff("A.pts", "B.pts") {
338			return nil, fmt.Errorf("internal error: optimization changed solution")
339		}
340	}
341
342	// Create callgraph.Nodes in deterministic order.
343	if cg := a.result.CallGraph; cg != nil {
344		for _, caller := range a.cgnodes {
345			cg.CreateNode(caller.fn)
346		}
347	}
348
349	// Add dynamic edges to call graph.
350	var space [100]int
351	for _, caller := range a.cgnodes {
352		for _, site := range caller.sites {
353			for _, callee := range a.nodes[site.targets].solve.pts.AppendTo(space[:0]) {
354				a.callEdge(caller, site, nodeid(callee))
355			}
356		}
357	}
358
359	return a.result, nil
360}
361
362// callEdge is called for each edge in the callgraph.
363// calleeid is the callee's object node (has otFunction flag).
364//
365func (a *analysis) callEdge(caller *cgnode, site *callsite, calleeid nodeid) {
366	obj := a.nodes[calleeid].obj
367	if obj.flags&otFunction == 0 {
368		panic(fmt.Sprintf("callEdge %s -> n%d: not a function object", site, calleeid))
369	}
370	callee := obj.cgn
371
372	if cg := a.result.CallGraph; cg != nil {
373		// TODO(adonovan): opt: I would expect duplicate edges
374		// (to wrappers) to arise due to the elimination of
375		// context information, but I haven't observed any.
376		// Understand this better.
377		callgraph.AddEdge(cg.CreateNode(caller.fn), site.instr, cg.CreateNode(callee.fn))
378	}
379
380	if a.log != nil {
381		fmt.Fprintf(a.log, "\tcall edge %s -> %s\n", site, callee)
382	}
383
384	// Warn about calls to non-intrinsic external functions.
385	// TODO(adonovan): de-dup these messages.
386	if fn := callee.fn; fn.Blocks == nil && a.findIntrinsic(fn) == nil {
387		a.warnf(site.pos(), "unsound call to unknown intrinsic: %s", fn)
388		a.warnf(fn.Pos(), " (declared here)")
389	}
390}
391
392// dumpSolution writes the PTS solution to the specified file.
393//
394// It only dumps the nodes that existed before solving.  The order in
395// which solver-created nodes are created depends on pre-solver
396// optimization, so we can't include them in the cross-check.
397//
398func (a *analysis) dumpSolution(filename string, N int) {
399	f, err := os.Create(filename)
400	if err != nil {
401		panic(err)
402	}
403	for id, n := range a.nodes[:N] {
404		if _, err := fmt.Fprintf(f, "pts(n%d) = {", id); err != nil {
405			panic(err)
406		}
407		var sep string
408		for _, l := range n.solve.pts.AppendTo(a.deltaSpace) {
409			if l >= N {
410				break
411			}
412			fmt.Fprintf(f, "%s%d", sep, l)
413			sep = " "
414		}
415		fmt.Fprintf(f, "} : %s\n", n.typ)
416	}
417	if err := f.Close(); err != nil {
418		panic(err)
419	}
420}
421
422// showCounts logs the size of the constraint system.  A typical
423// optimized distribution is 65% copy, 13% load, 11% addr, 5%
424// offsetAddr, 4% store, 2% others.
425//
426func (a *analysis) showCounts() {
427	if a.log != nil {
428		counts := make(map[reflect.Type]int)
429		for _, c := range a.constraints {
430			counts[reflect.TypeOf(c)]++
431		}
432		fmt.Fprintf(a.log, "# constraints:\t%d\n", len(a.constraints))
433		var lines []string
434		for t, n := range counts {
435			line := fmt.Sprintf("%7d  (%2d%%)\t%s", n, 100*n/len(a.constraints), t)
436			lines = append(lines, line)
437		}
438		sort.Sort(sort.Reverse(sort.StringSlice(lines)))
439		for _, line := range lines {
440			fmt.Fprintf(a.log, "\t%s\n", line)
441		}
442
443		fmt.Fprintf(a.log, "# nodes:\t%d\n", len(a.nodes))
444
445		// Show number of pointer equivalence classes.
446		m := make(map[*solverState]bool)
447		for _, n := range a.nodes {
448			m[n.solve] = true
449		}
450		fmt.Fprintf(a.log, "# ptsets:\t%d\n", len(m))
451	}
452}
453