1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15	"syscall"
16	"unsafe"
17)
18
19/*
20 * Wrapped
21 */
22
23func Access(path string, mode uint32) (err error) {
24	return Faccessat(AT_FDCWD, path, mode, 0)
25}
26
27func Chmod(path string, mode uint32) (err error) {
28	return Fchmodat(AT_FDCWD, path, mode, 0)
29}
30
31func Chown(path string, uid int, gid int) (err error) {
32	return Fchownat(AT_FDCWD, path, uid, gid, 0)
33}
34
35func Creat(path string, mode uint32) (fd int, err error) {
36	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
37}
38
39//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
40
41func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
42	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
43	// and check the flags. Otherwise the mode would be applied to the symlink
44	// destination which is not what the user expects.
45	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
46		return EINVAL
47	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
48		return EOPNOTSUPP
49	}
50	return fchmodat(dirfd, path, mode)
51}
52
53//sys	ioctl(fd int, req uint, arg uintptr) (err error)
54
55// ioctl itself should not be exposed directly, but additional get/set
56// functions for specific types are permissible.
57
58// IoctlSetInt performs an ioctl operation which sets an integer value
59// on fd, using the specified request number.
60func IoctlSetInt(fd int, req uint, value int) error {
61	return ioctl(fd, req, uintptr(value))
62}
63
64func IoctlSetWinsize(fd int, req uint, value *Winsize) error {
65	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
66}
67
68func IoctlSetTermios(fd int, req uint, value *Termios) error {
69	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
70}
71
72// IoctlGetInt performs an ioctl operation which gets an integer value
73// from fd, using the specified request number.
74func IoctlGetInt(fd int, req uint) (int, error) {
75	var value int
76	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
77	return value, err
78}
79
80func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
81	var value Winsize
82	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
83	return &value, err
84}
85
86func IoctlGetTermios(fd int, req uint) (*Termios, error) {
87	var value Termios
88	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
89	return &value, err
90}
91
92//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
93
94func Link(oldpath string, newpath string) (err error) {
95	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
96}
97
98func Mkdir(path string, mode uint32) (err error) {
99	return Mkdirat(AT_FDCWD, path, mode)
100}
101
102func Mknod(path string, mode uint32, dev int) (err error) {
103	return Mknodat(AT_FDCWD, path, mode, dev)
104}
105
106func Open(path string, mode int, perm uint32) (fd int, err error) {
107	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
108}
109
110//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
111
112func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
113	return openat(dirfd, path, flags|O_LARGEFILE, mode)
114}
115
116//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
117
118func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
119	if len(fds) == 0 {
120		return ppoll(nil, 0, timeout, sigmask)
121	}
122	return ppoll(&fds[0], len(fds), timeout, sigmask)
123}
124
125//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
126
127func Readlink(path string, buf []byte) (n int, err error) {
128	return Readlinkat(AT_FDCWD, path, buf)
129}
130
131func Rename(oldpath string, newpath string) (err error) {
132	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
133}
134
135func Rmdir(path string) error {
136	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
137}
138
139//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
140
141func Symlink(oldpath string, newpath string) (err error) {
142	return Symlinkat(oldpath, AT_FDCWD, newpath)
143}
144
145func Unlink(path string) error {
146	return Unlinkat(AT_FDCWD, path, 0)
147}
148
149//sys	Unlinkat(dirfd int, path string, flags int) (err error)
150
151//sys	utimes(path string, times *[2]Timeval) (err error)
152
153func Utimes(path string, tv []Timeval) error {
154	if tv == nil {
155		err := utimensat(AT_FDCWD, path, nil, 0)
156		if err != ENOSYS {
157			return err
158		}
159		return utimes(path, nil)
160	}
161	if len(tv) != 2 {
162		return EINVAL
163	}
164	var ts [2]Timespec
165	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
166	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
167	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
168	if err != ENOSYS {
169		return err
170	}
171	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
172}
173
174//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
175
176func UtimesNano(path string, ts []Timespec) error {
177	if ts == nil {
178		err := utimensat(AT_FDCWD, path, nil, 0)
179		if err != ENOSYS {
180			return err
181		}
182		return utimes(path, nil)
183	}
184	if len(ts) != 2 {
185		return EINVAL
186	}
187	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
188	if err != ENOSYS {
189		return err
190	}
191	// If the utimensat syscall isn't available (utimensat was added to Linux
192	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
193	var tv [2]Timeval
194	for i := 0; i < 2; i++ {
195		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
196	}
197	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
198}
199
200func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
201	if ts == nil {
202		return utimensat(dirfd, path, nil, flags)
203	}
204	if len(ts) != 2 {
205		return EINVAL
206	}
207	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
208}
209
210//sys	futimesat(dirfd int, path *byte, times *[2]Timeval) (err error)
211
212func Futimesat(dirfd int, path string, tv []Timeval) error {
213	pathp, err := BytePtrFromString(path)
214	if err != nil {
215		return err
216	}
217	if tv == nil {
218		return futimesat(dirfd, pathp, nil)
219	}
220	if len(tv) != 2 {
221		return EINVAL
222	}
223	return futimesat(dirfd, pathp, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
224}
225
226func Futimes(fd int, tv []Timeval) (err error) {
227	// Believe it or not, this is the best we can do on Linux
228	// (and is what glibc does).
229	return Utimes("/proc/self/fd/"+itoa(fd), tv)
230}
231
232const ImplementsGetwd = true
233
234//sys	Getcwd(buf []byte) (n int, err error)
235
236func Getwd() (wd string, err error) {
237	var buf [PathMax]byte
238	n, err := Getcwd(buf[0:])
239	if err != nil {
240		return "", err
241	}
242	// Getcwd returns the number of bytes written to buf, including the NUL.
243	if n < 1 || n > len(buf) || buf[n-1] != 0 {
244		return "", EINVAL
245	}
246	return string(buf[0 : n-1]), nil
247}
248
249func Getgroups() (gids []int, err error) {
250	n, err := getgroups(0, nil)
251	if err != nil {
252		return nil, err
253	}
254	if n == 0 {
255		return nil, nil
256	}
257
258	// Sanity check group count. Max is 1<<16 on Linux.
259	if n < 0 || n > 1<<20 {
260		return nil, EINVAL
261	}
262
263	a := make([]_Gid_t, n)
264	n, err = getgroups(n, &a[0])
265	if err != nil {
266		return nil, err
267	}
268	gids = make([]int, n)
269	for i, v := range a[0:n] {
270		gids[i] = int(v)
271	}
272	return
273}
274
275func Setgroups(gids []int) (err error) {
276	if len(gids) == 0 {
277		return setgroups(0, nil)
278	}
279
280	a := make([]_Gid_t, len(gids))
281	for i, v := range gids {
282		a[i] = _Gid_t(v)
283	}
284	return setgroups(len(a), &a[0])
285}
286
287type WaitStatus uint32
288
289// Wait status is 7 bits at bottom, either 0 (exited),
290// 0x7F (stopped), or a signal number that caused an exit.
291// The 0x80 bit is whether there was a core dump.
292// An extra number (exit code, signal causing a stop)
293// is in the high bits. At least that's the idea.
294// There are various irregularities. For example, the
295// "continued" status is 0xFFFF, distinguishing itself
296// from stopped via the core dump bit.
297
298const (
299	mask    = 0x7F
300	core    = 0x80
301	exited  = 0x00
302	stopped = 0x7F
303	shift   = 8
304)
305
306func (w WaitStatus) Exited() bool { return w&mask == exited }
307
308func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
309
310func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
311
312func (w WaitStatus) Continued() bool { return w == 0xFFFF }
313
314func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
315
316func (w WaitStatus) ExitStatus() int {
317	if !w.Exited() {
318		return -1
319	}
320	return int(w>>shift) & 0xFF
321}
322
323func (w WaitStatus) Signal() syscall.Signal {
324	if !w.Signaled() {
325		return -1
326	}
327	return syscall.Signal(w & mask)
328}
329
330func (w WaitStatus) StopSignal() syscall.Signal {
331	if !w.Stopped() {
332		return -1
333	}
334	return syscall.Signal(w>>shift) & 0xFF
335}
336
337func (w WaitStatus) TrapCause() int {
338	if w.StopSignal() != SIGTRAP {
339		return -1
340	}
341	return int(w>>shift) >> 8
342}
343
344//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
345
346func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
347	var status _C_int
348	wpid, err = wait4(pid, &status, options, rusage)
349	if wstatus != nil {
350		*wstatus = WaitStatus(status)
351	}
352	return
353}
354
355func Mkfifo(path string, mode uint32) error {
356	return Mknod(path, mode|S_IFIFO, 0)
357}
358
359func Mkfifoat(dirfd int, path string, mode uint32) error {
360	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
361}
362
363func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
364	if sa.Port < 0 || sa.Port > 0xFFFF {
365		return nil, 0, EINVAL
366	}
367	sa.raw.Family = AF_INET
368	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
369	p[0] = byte(sa.Port >> 8)
370	p[1] = byte(sa.Port)
371	for i := 0; i < len(sa.Addr); i++ {
372		sa.raw.Addr[i] = sa.Addr[i]
373	}
374	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
375}
376
377func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
378	if sa.Port < 0 || sa.Port > 0xFFFF {
379		return nil, 0, EINVAL
380	}
381	sa.raw.Family = AF_INET6
382	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
383	p[0] = byte(sa.Port >> 8)
384	p[1] = byte(sa.Port)
385	sa.raw.Scope_id = sa.ZoneId
386	for i := 0; i < len(sa.Addr); i++ {
387		sa.raw.Addr[i] = sa.Addr[i]
388	}
389	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
390}
391
392func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
393	name := sa.Name
394	n := len(name)
395	if n >= len(sa.raw.Path) {
396		return nil, 0, EINVAL
397	}
398	sa.raw.Family = AF_UNIX
399	for i := 0; i < n; i++ {
400		sa.raw.Path[i] = int8(name[i])
401	}
402	// length is family (uint16), name, NUL.
403	sl := _Socklen(2)
404	if n > 0 {
405		sl += _Socklen(n) + 1
406	}
407	if sa.raw.Path[0] == '@' {
408		sa.raw.Path[0] = 0
409		// Don't count trailing NUL for abstract address.
410		sl--
411	}
412
413	return unsafe.Pointer(&sa.raw), sl, nil
414}
415
416// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
417type SockaddrLinklayer struct {
418	Protocol uint16
419	Ifindex  int
420	Hatype   uint16
421	Pkttype  uint8
422	Halen    uint8
423	Addr     [8]byte
424	raw      RawSockaddrLinklayer
425}
426
427func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
428	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
429		return nil, 0, EINVAL
430	}
431	sa.raw.Family = AF_PACKET
432	sa.raw.Protocol = sa.Protocol
433	sa.raw.Ifindex = int32(sa.Ifindex)
434	sa.raw.Hatype = sa.Hatype
435	sa.raw.Pkttype = sa.Pkttype
436	sa.raw.Halen = sa.Halen
437	for i := 0; i < len(sa.Addr); i++ {
438		sa.raw.Addr[i] = sa.Addr[i]
439	}
440	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
441}
442
443// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
444type SockaddrNetlink struct {
445	Family uint16
446	Pad    uint16
447	Pid    uint32
448	Groups uint32
449	raw    RawSockaddrNetlink
450}
451
452func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
453	sa.raw.Family = AF_NETLINK
454	sa.raw.Pad = sa.Pad
455	sa.raw.Pid = sa.Pid
456	sa.raw.Groups = sa.Groups
457	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
458}
459
460// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
461// using the HCI protocol.
462type SockaddrHCI struct {
463	Dev     uint16
464	Channel uint16
465	raw     RawSockaddrHCI
466}
467
468func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
469	sa.raw.Family = AF_BLUETOOTH
470	sa.raw.Dev = sa.Dev
471	sa.raw.Channel = sa.Channel
472	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
473}
474
475// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
476// using the L2CAP protocol.
477type SockaddrL2 struct {
478	PSM      uint16
479	CID      uint16
480	Addr     [6]uint8
481	AddrType uint8
482	raw      RawSockaddrL2
483}
484
485func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
486	sa.raw.Family = AF_BLUETOOTH
487	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
488	psm[0] = byte(sa.PSM)
489	psm[1] = byte(sa.PSM >> 8)
490	for i := 0; i < len(sa.Addr); i++ {
491		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
492	}
493	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
494	cid[0] = byte(sa.CID)
495	cid[1] = byte(sa.CID >> 8)
496	sa.raw.Bdaddr_type = sa.AddrType
497	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
498}
499
500// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
501// The RxID and TxID fields are used for transport protocol addressing in
502// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
503// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
504//
505// The SockaddrCAN struct must be bound to the socket file descriptor
506// using Bind before the CAN socket can be used.
507//
508//      // Read one raw CAN frame
509//      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
510//      addr := &SockaddrCAN{Ifindex: index}
511//      Bind(fd, addr)
512//      frame := make([]byte, 16)
513//      Read(fd, frame)
514//
515// The full SocketCAN documentation can be found in the linux kernel
516// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
517type SockaddrCAN struct {
518	Ifindex int
519	RxID    uint32
520	TxID    uint32
521	raw     RawSockaddrCAN
522}
523
524func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
525	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
526		return nil, 0, EINVAL
527	}
528	sa.raw.Family = AF_CAN
529	sa.raw.Ifindex = int32(sa.Ifindex)
530	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
531	for i := 0; i < 4; i++ {
532		sa.raw.Addr[i] = rx[i]
533	}
534	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
535	for i := 0; i < 4; i++ {
536		sa.raw.Addr[i+4] = tx[i]
537	}
538	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
539}
540
541// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
542// SockaddrALG enables userspace access to the Linux kernel's cryptography
543// subsystem. The Type and Name fields specify which type of hash or cipher
544// should be used with a given socket.
545//
546// To create a file descriptor that provides access to a hash or cipher, both
547// Bind and Accept must be used. Once the setup process is complete, input
548// data can be written to the socket, processed by the kernel, and then read
549// back as hash output or ciphertext.
550//
551// Here is an example of using an AF_ALG socket with SHA1 hashing.
552// The initial socket setup process is as follows:
553//
554//      // Open a socket to perform SHA1 hashing.
555//      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
556//      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
557//      unix.Bind(fd, addr)
558//      // Note: unix.Accept does not work at this time; must invoke accept()
559//      // manually using unix.Syscall.
560//      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
561//
562// Once a file descriptor has been returned from Accept, it may be used to
563// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
564// may be re-used repeatedly with subsequent Write and Read operations.
565//
566// When hashing a small byte slice or string, a single Write and Read may
567// be used:
568//
569//      // Assume hashfd is already configured using the setup process.
570//      hash := os.NewFile(hashfd, "sha1")
571//      // Hash an input string and read the results. Each Write discards
572//      // previous hash state. Read always reads the current state.
573//      b := make([]byte, 20)
574//      for i := 0; i < 2; i++ {
575//          io.WriteString(hash, "Hello, world.")
576//          hash.Read(b)
577//          fmt.Println(hex.EncodeToString(b))
578//      }
579//      // Output:
580//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
581//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
582//
583// For hashing larger byte slices, or byte streams such as those read from
584// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
585// the hash digest instead of creating a new one for a given chunk and finalizing it.
586//
587//      // Assume hashfd and addr are already configured using the setup process.
588//      hash := os.NewFile(hashfd, "sha1")
589//      // Hash the contents of a file.
590//      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
591//      b := make([]byte, 4096)
592//      for {
593//          n, err := f.Read(b)
594//          if err == io.EOF {
595//              break
596//          }
597//          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
598//      }
599//      hash.Read(b)
600//      fmt.Println(hex.EncodeToString(b))
601//      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
602//
603// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
604type SockaddrALG struct {
605	Type    string
606	Name    string
607	Feature uint32
608	Mask    uint32
609	raw     RawSockaddrALG
610}
611
612func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
613	// Leave room for NUL byte terminator.
614	if len(sa.Type) > 13 {
615		return nil, 0, EINVAL
616	}
617	if len(sa.Name) > 63 {
618		return nil, 0, EINVAL
619	}
620
621	sa.raw.Family = AF_ALG
622	sa.raw.Feat = sa.Feature
623	sa.raw.Mask = sa.Mask
624
625	typ, err := ByteSliceFromString(sa.Type)
626	if err != nil {
627		return nil, 0, err
628	}
629	name, err := ByteSliceFromString(sa.Name)
630	if err != nil {
631		return nil, 0, err
632	}
633
634	copy(sa.raw.Type[:], typ)
635	copy(sa.raw.Name[:], name)
636
637	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
638}
639
640// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
641// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
642// bidirectional communication between a hypervisor and its guest virtual
643// machines.
644type SockaddrVM struct {
645	// CID and Port specify a context ID and port address for a VM socket.
646	// Guests have a unique CID, and hosts may have a well-known CID of:
647	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
648	//  - VMADDR_CID_HOST: refers to other processes on the host.
649	CID  uint32
650	Port uint32
651	raw  RawSockaddrVM
652}
653
654func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
655	sa.raw.Family = AF_VSOCK
656	sa.raw.Port = sa.Port
657	sa.raw.Cid = sa.CID
658
659	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
660}
661
662func anyToSockaddr(rsa *RawSockaddrAny) (Sockaddr, error) {
663	switch rsa.Addr.Family {
664	case AF_NETLINK:
665		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
666		sa := new(SockaddrNetlink)
667		sa.Family = pp.Family
668		sa.Pad = pp.Pad
669		sa.Pid = pp.Pid
670		sa.Groups = pp.Groups
671		return sa, nil
672
673	case AF_PACKET:
674		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
675		sa := new(SockaddrLinklayer)
676		sa.Protocol = pp.Protocol
677		sa.Ifindex = int(pp.Ifindex)
678		sa.Hatype = pp.Hatype
679		sa.Pkttype = pp.Pkttype
680		sa.Halen = pp.Halen
681		for i := 0; i < len(sa.Addr); i++ {
682			sa.Addr[i] = pp.Addr[i]
683		}
684		return sa, nil
685
686	case AF_UNIX:
687		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
688		sa := new(SockaddrUnix)
689		if pp.Path[0] == 0 {
690			// "Abstract" Unix domain socket.
691			// Rewrite leading NUL as @ for textual display.
692			// (This is the standard convention.)
693			// Not friendly to overwrite in place,
694			// but the callers below don't care.
695			pp.Path[0] = '@'
696		}
697
698		// Assume path ends at NUL.
699		// This is not technically the Linux semantics for
700		// abstract Unix domain sockets--they are supposed
701		// to be uninterpreted fixed-size binary blobs--but
702		// everyone uses this convention.
703		n := 0
704		for n < len(pp.Path) && pp.Path[n] != 0 {
705			n++
706		}
707		bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
708		sa.Name = string(bytes)
709		return sa, nil
710
711	case AF_INET:
712		pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
713		sa := new(SockaddrInet4)
714		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
715		sa.Port = int(p[0])<<8 + int(p[1])
716		for i := 0; i < len(sa.Addr); i++ {
717			sa.Addr[i] = pp.Addr[i]
718		}
719		return sa, nil
720
721	case AF_INET6:
722		pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
723		sa := new(SockaddrInet6)
724		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
725		sa.Port = int(p[0])<<8 + int(p[1])
726		sa.ZoneId = pp.Scope_id
727		for i := 0; i < len(sa.Addr); i++ {
728			sa.Addr[i] = pp.Addr[i]
729		}
730		return sa, nil
731
732	case AF_VSOCK:
733		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
734		sa := &SockaddrVM{
735			CID:  pp.Cid,
736			Port: pp.Port,
737		}
738		return sa, nil
739	}
740	return nil, EAFNOSUPPORT
741}
742
743func Accept(fd int) (nfd int, sa Sockaddr, err error) {
744	var rsa RawSockaddrAny
745	var len _Socklen = SizeofSockaddrAny
746	nfd, err = accept(fd, &rsa, &len)
747	if err != nil {
748		return
749	}
750	sa, err = anyToSockaddr(&rsa)
751	if err != nil {
752		Close(nfd)
753		nfd = 0
754	}
755	return
756}
757
758func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
759	var rsa RawSockaddrAny
760	var len _Socklen = SizeofSockaddrAny
761	nfd, err = accept4(fd, &rsa, &len, flags)
762	if err != nil {
763		return
764	}
765	if len > SizeofSockaddrAny {
766		panic("RawSockaddrAny too small")
767	}
768	sa, err = anyToSockaddr(&rsa)
769	if err != nil {
770		Close(nfd)
771		nfd = 0
772	}
773	return
774}
775
776func Getsockname(fd int) (sa Sockaddr, err error) {
777	var rsa RawSockaddrAny
778	var len _Socklen = SizeofSockaddrAny
779	if err = getsockname(fd, &rsa, &len); err != nil {
780		return
781	}
782	return anyToSockaddr(&rsa)
783}
784
785func GetsockoptInet4Addr(fd, level, opt int) (value [4]byte, err error) {
786	vallen := _Socklen(4)
787	err = getsockopt(fd, level, opt, unsafe.Pointer(&value[0]), &vallen)
788	return value, err
789}
790
791func GetsockoptIPMreq(fd, level, opt int) (*IPMreq, error) {
792	var value IPMreq
793	vallen := _Socklen(SizeofIPMreq)
794	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
795	return &value, err
796}
797
798func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
799	var value IPMreqn
800	vallen := _Socklen(SizeofIPMreqn)
801	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
802	return &value, err
803}
804
805func GetsockoptIPv6Mreq(fd, level, opt int) (*IPv6Mreq, error) {
806	var value IPv6Mreq
807	vallen := _Socklen(SizeofIPv6Mreq)
808	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
809	return &value, err
810}
811
812func GetsockoptIPv6MTUInfo(fd, level, opt int) (*IPv6MTUInfo, error) {
813	var value IPv6MTUInfo
814	vallen := _Socklen(SizeofIPv6MTUInfo)
815	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
816	return &value, err
817}
818
819func GetsockoptICMPv6Filter(fd, level, opt int) (*ICMPv6Filter, error) {
820	var value ICMPv6Filter
821	vallen := _Socklen(SizeofICMPv6Filter)
822	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
823	return &value, err
824}
825
826func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
827	var value Ucred
828	vallen := _Socklen(SizeofUcred)
829	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
830	return &value, err
831}
832
833func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
834	var value TCPInfo
835	vallen := _Socklen(SizeofTCPInfo)
836	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
837	return &value, err
838}
839
840// GetsockoptString returns the string value of the socket option opt for the
841// socket associated with fd at the given socket level.
842func GetsockoptString(fd, level, opt int) (string, error) {
843	buf := make([]byte, 256)
844	vallen := _Socklen(len(buf))
845	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
846	if err != nil {
847		if err == ERANGE {
848			buf = make([]byte, vallen)
849			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
850		}
851		if err != nil {
852			return "", err
853		}
854	}
855	return string(buf[:vallen-1]), nil
856}
857
858func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
859	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
860}
861
862// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
863
864// KeyctlInt calls keyctl commands in which each argument is an int.
865// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
866// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
867// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
868// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
869//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
870
871// KeyctlBuffer calls keyctl commands in which the third and fourth
872// arguments are a buffer and its length, respectively.
873// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
874//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
875
876// KeyctlString calls keyctl commands which return a string.
877// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
878func KeyctlString(cmd int, id int) (string, error) {
879	// We must loop as the string data may change in between the syscalls.
880	// We could allocate a large buffer here to reduce the chance that the
881	// syscall needs to be called twice; however, this is unnecessary as
882	// the performance loss is negligible.
883	var buffer []byte
884	for {
885		// Try to fill the buffer with data
886		length, err := KeyctlBuffer(cmd, id, buffer, 0)
887		if err != nil {
888			return "", err
889		}
890
891		// Check if the data was written
892		if length <= len(buffer) {
893			// Exclude the null terminator
894			return string(buffer[:length-1]), nil
895		}
896
897		// Make a bigger buffer if needed
898		buffer = make([]byte, length)
899	}
900}
901
902// Keyctl commands with special signatures.
903
904// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
905// See the full documentation at:
906// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
907func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
908	createInt := 0
909	if create {
910		createInt = 1
911	}
912	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
913}
914
915// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
916// key handle permission mask as described in the "keyctl setperm" section of
917// http://man7.org/linux/man-pages/man1/keyctl.1.html.
918// See the full documentation at:
919// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
920func KeyctlSetperm(id int, perm uint32) error {
921	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
922	return err
923}
924
925//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
926
927// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
928// See the full documentation at:
929// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
930func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
931	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
932}
933
934//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
935
936// KeyctlSearch implements the KEYCTL_SEARCH command.
937// See the full documentation at:
938// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
939func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
940	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
941}
942
943//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
944
945// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
946// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
947// of Iovec (each of which represents a buffer) instead of a single buffer.
948// See the full documentation at:
949// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
950func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
951	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
952}
953
954//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
955
956// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
957// computes a Diffie-Hellman shared secret based on the provide params. The
958// secret is written to the provided buffer and the returned size is the number
959// of bytes written (returning an error if there is insufficient space in the
960// buffer). If a nil buffer is passed in, this function returns the minimum
961// buffer length needed to store the appropriate data. Note that this differs
962// from KEYCTL_READ's behavior which always returns the requested payload size.
963// See the full documentation at:
964// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
965func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
966	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
967}
968
969func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
970	var msg Msghdr
971	var rsa RawSockaddrAny
972	msg.Name = (*byte)(unsafe.Pointer(&rsa))
973	msg.Namelen = uint32(SizeofSockaddrAny)
974	var iov Iovec
975	if len(p) > 0 {
976		iov.Base = &p[0]
977		iov.SetLen(len(p))
978	}
979	var dummy byte
980	if len(oob) > 0 {
981		var sockType int
982		sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
983		if err != nil {
984			return
985		}
986		// receive at least one normal byte
987		if sockType != SOCK_DGRAM && len(p) == 0 {
988			iov.Base = &dummy
989			iov.SetLen(1)
990		}
991		msg.Control = &oob[0]
992		msg.SetControllen(len(oob))
993	}
994	msg.Iov = &iov
995	msg.Iovlen = 1
996	if n, err = recvmsg(fd, &msg, flags); err != nil {
997		return
998	}
999	oobn = int(msg.Controllen)
1000	recvflags = int(msg.Flags)
1001	// source address is only specified if the socket is unconnected
1002	if rsa.Addr.Family != AF_UNSPEC {
1003		from, err = anyToSockaddr(&rsa)
1004	}
1005	return
1006}
1007
1008func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1009	_, err = SendmsgN(fd, p, oob, to, flags)
1010	return
1011}
1012
1013func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1014	var ptr unsafe.Pointer
1015	var salen _Socklen
1016	if to != nil {
1017		var err error
1018		ptr, salen, err = to.sockaddr()
1019		if err != nil {
1020			return 0, err
1021		}
1022	}
1023	var msg Msghdr
1024	msg.Name = (*byte)(ptr)
1025	msg.Namelen = uint32(salen)
1026	var iov Iovec
1027	if len(p) > 0 {
1028		iov.Base = &p[0]
1029		iov.SetLen(len(p))
1030	}
1031	var dummy byte
1032	if len(oob) > 0 {
1033		var sockType int
1034		sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1035		if err != nil {
1036			return 0, err
1037		}
1038		// send at least one normal byte
1039		if sockType != SOCK_DGRAM && len(p) == 0 {
1040			iov.Base = &dummy
1041			iov.SetLen(1)
1042		}
1043		msg.Control = &oob[0]
1044		msg.SetControllen(len(oob))
1045	}
1046	msg.Iov = &iov
1047	msg.Iovlen = 1
1048	if n, err = sendmsg(fd, &msg, flags); err != nil {
1049		return 0, err
1050	}
1051	if len(oob) > 0 && len(p) == 0 {
1052		n = 0
1053	}
1054	return n, nil
1055}
1056
1057// BindToDevice binds the socket associated with fd to device.
1058func BindToDevice(fd int, device string) (err error) {
1059	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1060}
1061
1062//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1063
1064func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1065	// The peek requests are machine-size oriented, so we wrap it
1066	// to retrieve arbitrary-length data.
1067
1068	// The ptrace syscall differs from glibc's ptrace.
1069	// Peeks returns the word in *data, not as the return value.
1070
1071	var buf [sizeofPtr]byte
1072
1073	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1074	// access (PEEKUSER warns that it might), but if we don't
1075	// align our reads, we might straddle an unmapped page
1076	// boundary and not get the bytes leading up to the page
1077	// boundary.
1078	n := 0
1079	if addr%sizeofPtr != 0 {
1080		err = ptrace(req, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1081		if err != nil {
1082			return 0, err
1083		}
1084		n += copy(out, buf[addr%sizeofPtr:])
1085		out = out[n:]
1086	}
1087
1088	// Remainder.
1089	for len(out) > 0 {
1090		// We use an internal buffer to guarantee alignment.
1091		// It's not documented if this is necessary, but we're paranoid.
1092		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1093		if err != nil {
1094			return n, err
1095		}
1096		copied := copy(out, buf[0:])
1097		n += copied
1098		out = out[copied:]
1099	}
1100
1101	return n, nil
1102}
1103
1104func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1105	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1106}
1107
1108func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1109	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1110}
1111
1112func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1113	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1114}
1115
1116func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1117	// As for ptracePeek, we need to align our accesses to deal
1118	// with the possibility of straddling an invalid page.
1119
1120	// Leading edge.
1121	n := 0
1122	if addr%sizeofPtr != 0 {
1123		var buf [sizeofPtr]byte
1124		err = ptrace(peekReq, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1125		if err != nil {
1126			return 0, err
1127		}
1128		n += copy(buf[addr%sizeofPtr:], data)
1129		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1130		err = ptrace(pokeReq, pid, addr-addr%sizeofPtr, word)
1131		if err != nil {
1132			return 0, err
1133		}
1134		data = data[n:]
1135	}
1136
1137	// Interior.
1138	for len(data) > sizeofPtr {
1139		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1140		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1141		if err != nil {
1142			return n, err
1143		}
1144		n += sizeofPtr
1145		data = data[sizeofPtr:]
1146	}
1147
1148	// Trailing edge.
1149	if len(data) > 0 {
1150		var buf [sizeofPtr]byte
1151		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1152		if err != nil {
1153			return n, err
1154		}
1155		copy(buf[0:], data)
1156		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1157		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1158		if err != nil {
1159			return n, err
1160		}
1161		n += len(data)
1162	}
1163
1164	return n, nil
1165}
1166
1167func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1168	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1169}
1170
1171func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1172	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1173}
1174
1175func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1176	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1177}
1178
1179func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1180	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1181}
1182
1183func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1184	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1185}
1186
1187func PtraceSetOptions(pid int, options int) (err error) {
1188	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1189}
1190
1191func PtraceGetEventMsg(pid int) (msg uint, err error) {
1192	var data _C_long
1193	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1194	msg = uint(data)
1195	return
1196}
1197
1198func PtraceCont(pid int, signal int) (err error) {
1199	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1200}
1201
1202func PtraceSyscall(pid int, signal int) (err error) {
1203	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1204}
1205
1206func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1207
1208func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1209
1210func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1211
1212//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1213
1214func Reboot(cmd int) (err error) {
1215	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1216}
1217
1218func ReadDirent(fd int, buf []byte) (n int, err error) {
1219	return Getdents(fd, buf)
1220}
1221
1222//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1223
1224func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1225	// Certain file systems get rather angry and EINVAL if you give
1226	// them an empty string of data, rather than NULL.
1227	if data == "" {
1228		return mount(source, target, fstype, flags, nil)
1229	}
1230	datap, err := BytePtrFromString(data)
1231	if err != nil {
1232		return err
1233	}
1234	return mount(source, target, fstype, flags, datap)
1235}
1236
1237// Sendto
1238// Recvfrom
1239// Socketpair
1240
1241/*
1242 * Direct access
1243 */
1244//sys	Acct(path string) (err error)
1245//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1246//sys	Adjtimex(buf *Timex) (state int, err error)
1247//sys	Chdir(path string) (err error)
1248//sys	Chroot(path string) (err error)
1249//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1250//sys	Close(fd int) (err error)
1251//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1252//sys	Dup(oldfd int) (fd int, err error)
1253//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1254//sysnb	EpollCreate(size int) (fd int, err error)
1255//sysnb	EpollCreate1(flag int) (fd int, err error)
1256//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1257//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1258//sys	Exit(code int) = SYS_EXIT_GROUP
1259//sys	Faccessat(dirfd int, path string, mode uint32, flags int) (err error)
1260//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1261//sys	Fchdir(fd int) (err error)
1262//sys	Fchmod(fd int, mode uint32) (err error)
1263//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1264//sys	fcntl(fd int, cmd int, arg int) (val int, err error)
1265//sys	Fdatasync(fd int) (err error)
1266//sys	Flock(fd int, how int) (err error)
1267//sys	Fsync(fd int) (err error)
1268//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1269//sysnb	Getpgid(pid int) (pgid int, err error)
1270
1271func Getpgrp() (pid int) {
1272	pid, _ = Getpgid(0)
1273	return
1274}
1275
1276//sysnb	Getpid() (pid int)
1277//sysnb	Getppid() (ppid int)
1278//sys	Getpriority(which int, who int) (prio int, err error)
1279//sys	Getrandom(buf []byte, flags int) (n int, err error)
1280//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1281//sysnb	Getsid(pid int) (sid int, err error)
1282//sysnb	Gettid() (tid int)
1283//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1284//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1285//sysnb	InotifyInit1(flags int) (fd int, err error)
1286//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1287//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1288//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1289//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1290//sys	Listxattr(path string, dest []byte) (sz int, err error)
1291//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1292//sys	Lremovexattr(path string, attr string) (err error)
1293//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1294//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1295//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1296//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1297//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1298//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1299//sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1300//sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1301//sys	read(fd int, p []byte) (n int, err error)
1302//sys	Removexattr(path string, attr string) (err error)
1303//sys	Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error)
1304//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1305//sys	Setdomainname(p []byte) (err error)
1306//sys	Sethostname(p []byte) (err error)
1307//sysnb	Setpgid(pid int, pgid int) (err error)
1308//sysnb	Setsid() (pid int, err error)
1309//sysnb	Settimeofday(tv *Timeval) (err error)
1310//sys	Setns(fd int, nstype int) (err error)
1311
1312// issue 1435.
1313// On linux Setuid and Setgid only affects the current thread, not the process.
1314// This does not match what most callers expect so we must return an error
1315// here rather than letting the caller think that the call succeeded.
1316
1317func Setuid(uid int) (err error) {
1318	return EOPNOTSUPP
1319}
1320
1321func Setgid(uid int) (err error) {
1322	return EOPNOTSUPP
1323}
1324
1325//sys	Setpriority(which int, who int, prio int) (err error)
1326//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
1327//sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1328//sys	Sync()
1329//sys	Syncfs(fd int) (err error)
1330//sysnb	Sysinfo(info *Sysinfo_t) (err error)
1331//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1332//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1333//sysnb	Times(tms *Tms) (ticks uintptr, err error)
1334//sysnb	Umask(mask int) (oldmask int)
1335//sysnb	Uname(buf *Utsname) (err error)
1336//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1337//sys	Unshare(flags int) (err error)
1338//sys	Ustat(dev int, ubuf *Ustat_t) (err error)
1339//sys	write(fd int, p []byte) (n int, err error)
1340//sys	exitThread(code int) (err error) = SYS_EXIT
1341//sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1342//sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1343
1344// mmap varies by architecture; see syscall_linux_*.go.
1345//sys	munmap(addr uintptr, length uintptr) (err error)
1346
1347var mapper = &mmapper{
1348	active: make(map[*byte][]byte),
1349	mmap:   mmap,
1350	munmap: munmap,
1351}
1352
1353func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
1354	return mapper.Mmap(fd, offset, length, prot, flags)
1355}
1356
1357func Munmap(b []byte) (err error) {
1358	return mapper.Munmap(b)
1359}
1360
1361//sys	Madvise(b []byte, advice int) (err error)
1362//sys	Mprotect(b []byte, prot int) (err error)
1363//sys	Mlock(b []byte) (err error)
1364//sys	Mlockall(flags int) (err error)
1365//sys	Msync(b []byte, flags int) (err error)
1366//sys	Munlock(b []byte) (err error)
1367//sys	Munlockall() (err error)
1368
1369// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
1370// using the specified flags.
1371func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
1372	n, _, errno := Syscall6(
1373		SYS_VMSPLICE,
1374		uintptr(fd),
1375		uintptr(unsafe.Pointer(&iovs[0])),
1376		uintptr(len(iovs)),
1377		uintptr(flags),
1378		0,
1379		0,
1380	)
1381	if errno != 0 {
1382		return 0, syscall.Errno(errno)
1383	}
1384
1385	return int(n), nil
1386}
1387
1388/*
1389 * Unimplemented
1390 */
1391// AfsSyscall
1392// Alarm
1393// ArchPrctl
1394// Brk
1395// Capget
1396// Capset
1397// ClockGetres
1398// ClockNanosleep
1399// ClockSettime
1400// Clone
1401// CreateModule
1402// DeleteModule
1403// EpollCtlOld
1404// EpollPwait
1405// EpollWaitOld
1406// Execve
1407// Fgetxattr
1408// Flistxattr
1409// Fork
1410// Fremovexattr
1411// Fsetxattr
1412// Futex
1413// GetKernelSyms
1414// GetMempolicy
1415// GetRobustList
1416// GetThreadArea
1417// Getitimer
1418// Getpmsg
1419// IoCancel
1420// IoDestroy
1421// IoGetevents
1422// IoSetup
1423// IoSubmit
1424// IoprioGet
1425// IoprioSet
1426// KexecLoad
1427// LookupDcookie
1428// Mbind
1429// MigratePages
1430// Mincore
1431// ModifyLdt
1432// Mount
1433// MovePages
1434// MqGetsetattr
1435// MqNotify
1436// MqOpen
1437// MqTimedreceive
1438// MqTimedsend
1439// MqUnlink
1440// Mremap
1441// Msgctl
1442// Msgget
1443// Msgrcv
1444// Msgsnd
1445// Nfsservctl
1446// Personality
1447// Pselect6
1448// Ptrace
1449// Putpmsg
1450// QueryModule
1451// Quotactl
1452// Readahead
1453// Readv
1454// RemapFilePages
1455// RestartSyscall
1456// RtSigaction
1457// RtSigpending
1458// RtSigprocmask
1459// RtSigqueueinfo
1460// RtSigreturn
1461// RtSigsuspend
1462// RtSigtimedwait
1463// SchedGetPriorityMax
1464// SchedGetPriorityMin
1465// SchedGetparam
1466// SchedGetscheduler
1467// SchedRrGetInterval
1468// SchedSetparam
1469// SchedYield
1470// Security
1471// Semctl
1472// Semget
1473// Semop
1474// Semtimedop
1475// SetMempolicy
1476// SetRobustList
1477// SetThreadArea
1478// SetTidAddress
1479// Shmat
1480// Shmctl
1481// Shmdt
1482// Shmget
1483// Sigaltstack
1484// Signalfd
1485// Swapoff
1486// Swapon
1487// Sysfs
1488// TimerCreate
1489// TimerDelete
1490// TimerGetoverrun
1491// TimerGettime
1492// TimerSettime
1493// Timerfd
1494// Tkill (obsolete)
1495// Tuxcall
1496// Umount2
1497// Uselib
1498// Utimensat
1499// Vfork
1500// Vhangup
1501// Vserver
1502// Waitid
1503// _Sysctl
1504