1 // Copyright (c) 2018-2020 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #ifndef BITCOIN_SPAN_H
6 #define BITCOIN_SPAN_H
7 
8 #include <type_traits>
9 #include <cstddef>
10 #include <algorithm>
11 #include <assert.h>
12 
13 #ifdef DEBUG
14 #define CONSTEXPR_IF_NOT_DEBUG
15 #define ASSERT_IF_DEBUG(x) assert((x))
16 #else
17 #define CONSTEXPR_IF_NOT_DEBUG constexpr
18 #define ASSERT_IF_DEBUG(x)
19 #endif
20 
21 /** A Span is an object that can refer to a contiguous sequence of objects.
22  *
23  * It implements a subset of C++20's std::span.
24  *
25  * Things to be aware of when writing code that deals with Spans:
26  *
27  * - Similar to references themselves, Spans are subject to reference lifetime
28  *   issues. The user is responsible for making sure the objects pointed to by
29  *   a Span live as long as the Span is used. For example:
30  *
31  *       std::vector<int> vec{1,2,3,4};
32  *       Span<int> sp(vec);
33  *       vec.push_back(5);
34  *       printf("%i\n", sp.front()); // UB!
35  *
36  *   may exhibit undefined behavior, as increasing the size of a vector may
37  *   invalidate references.
38  *
39  * - One particular pitfall is that Spans can be constructed from temporaries,
40  *   but this is unsafe when the Span is stored in a variable, outliving the
41  *   temporary. For example, this will compile, but exhibits undefined behavior:
42  *
43  *       Span<const int> sp(std::vector<int>{1, 2, 3});
44  *       printf("%i\n", sp.front()); // UB!
45  *
46  *   The lifetime of the vector ends when the statement it is created in ends.
47  *   Thus the Span is left with a dangling reference, and using it is undefined.
48  *
49  * - Due to Span's automatic creation from range-like objects (arrays, and data
50  *   types that expose a data() and size() member function), functions that
51  *   accept a Span as input parameter can be called with any compatible
52  *   range-like object. For example, this works:
53 *
54  *       void Foo(Span<const int> arg);
55  *
56  *       Foo(std::vector<int>{1, 2, 3}); // Works
57  *
58  *   This is very useful in cases where a function truly does not care about the
59  *   container, and only about having exactly a range of elements. However it
60  *   may also be surprising to see automatic conversions in this case.
61  *
62  *   When a function accepts a Span with a mutable element type, it will not
63  *   accept temporaries; only variables or other references. For example:
64  *
65  *       void FooMut(Span<int> arg);
66  *
67  *       FooMut(std::vector<int>{1, 2, 3}); // Does not compile
68  *       std::vector<int> baz{1, 2, 3};
69  *       FooMut(baz); // Works
70  *
71  *   This is similar to how functions that take (non-const) lvalue references
72  *   as input cannot accept temporaries. This does not work either:
73  *
74  *       void FooVec(std::vector<int>& arg);
75  *       FooVec(std::vector<int>{1, 2, 3}); // Does not compile
76  *
77  *   The idea is that if a function accepts a mutable reference, a meaningful
78  *   result will be present in that variable after the call. Passing a temporary
79  *   is useless in that context.
80  */
81 template<typename C>
82 class Span
83 {
84     C* m_data;
85     std::size_t m_size;
86 
87 public:
Span()88     constexpr Span() noexcept : m_data(nullptr), m_size(0) {}
89 
90     /** Construct a span from a begin pointer and a size.
91      *
92      * This implements a subset of the iterator-based std::span constructor in C++20,
93      * which is hard to implement without std::address_of.
94      */
95     template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
Span(T * begin,std::size_t size)96     constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {}
97 
98     /** Construct a span from a begin and end pointer.
99      *
100      * This implements a subset of the iterator-based std::span constructor in C++20,
101      * which is hard to implement without std::address_of.
102      */
103     template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
Span(T * begin,T * end)104     CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin)
105     {
106         ASSERT_IF_DEBUG(end >= begin);
107     }
108 
109     /** Implicit conversion of spans between compatible types.
110      *
111      *  Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type
112      *  C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding
113      *  C++20 std::span constructor.
114      *
115      *  For example this means that a Span<T> can be converted into a Span<const T>.
116      */
117     template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0>
Span(const Span<O> & other)118     constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {}
119 
120     /** Default copy constructor. */
121     constexpr Span(const Span&) noexcept = default;
122 
123     /** Default assignment operator. */
124     Span& operator=(const Span& other) noexcept = default;
125 
126     /** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */
127     template <int N>
Span(C (& a)[N])128     constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
129 
130     /** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...).
131      *
132      * This implements a subset of the functionality provided by the C++20 std::span range-based constructor.
133      *
134      * To prevent surprises, only Spans for constant value types are supported when passing in temporaries.
135      * Note that this restriction does not exist when converting arrays or other Spans (see above).
136      */
137     template <typename V, typename std::enable_if<(std::is_const<C>::value || std::is_lvalue_reference<V>::value) && std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value && std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, int>::type = 0>
Span(V && v)138     constexpr Span(V&& v) noexcept : m_data(v.data()), m_size(v.size()) {}
139 
data()140     constexpr C* data() const noexcept { return m_data; }
begin()141     constexpr C* begin() const noexcept { return m_data; }
end()142     constexpr C* end() const noexcept { return m_data + m_size; }
front()143     CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept
144     {
145         ASSERT_IF_DEBUG(size() > 0);
146         return m_data[0];
147     }
back()148     CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept
149     {
150         ASSERT_IF_DEBUG(size() > 0);
151         return m_data[m_size - 1];
152     }
size()153     constexpr std::size_t size() const noexcept { return m_size; }
empty()154     constexpr bool empty() const noexcept { return size() == 0; }
155     CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept
156     {
157         ASSERT_IF_DEBUG(size() > pos);
158         return m_data[pos];
159     }
subspan(std::size_t offset)160     CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept
161     {
162         ASSERT_IF_DEBUG(size() >= offset);
163         return Span<C>(m_data + offset, m_size - offset);
164     }
subspan(std::size_t offset,std::size_t count)165     CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept
166     {
167         ASSERT_IF_DEBUG(size() >= offset + count);
168         return Span<C>(m_data + offset, count);
169     }
first(std::size_t count)170     CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept
171     {
172         ASSERT_IF_DEBUG(size() >= count);
173         return Span<C>(m_data, count);
174     }
last(std::size_t count)175     CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept
176     {
177          ASSERT_IF_DEBUG(size() >= count);
178          return Span<C>(m_data + m_size - count, count);
179     }
180 
181     friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); }
182     friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); }
183     friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); }
184     friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); }
185     friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); }
186     friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); }
187 
188     template <typename O> friend class Span;
189 };
190 
191 // MakeSpan helps constructing a Span of the right type automatically.
192 /** MakeSpan for arrays: */
MakeSpan(A (& a)[N])193 template <typename A, int N> Span<A> constexpr MakeSpan(A (&a)[N]) { return Span<A>(a, N); }
194 /** MakeSpan for temporaries / rvalue references, only supporting const output. */
195 template <typename V> constexpr auto MakeSpan(V&& v) -> typename std::enable_if<!std::is_lvalue_reference<V>::value, Span<const typename std::remove_pointer<decltype(v.data())>::type>>::type { return std::forward<V>(v); }
196 /** MakeSpan for (lvalue) references, supporting mutable output. */
197 template <typename V> constexpr auto MakeSpan(V& v) -> Span<typename std::remove_pointer<decltype(v.data())>::type> { return v; }
198 
199 /** Pop the last element off a span, and return a reference to that element. */
200 template <typename T>
SpanPopBack(Span<T> & span)201 T& SpanPopBack(Span<T>& span)
202 {
203     size_t size = span.size();
204     ASSERT_IF_DEBUG(size > 0);
205     T& back = span[size - 1];
206     span = Span<T>(span.data(), size - 1);
207     return back;
208 }
209 
210 // Helper functions to safely cast to unsigned char pointers.
UCharCast(char * c)211 inline unsigned char* UCharCast(char* c) { return (unsigned char*)c; }
UCharCast(unsigned char * c)212 inline unsigned char* UCharCast(unsigned char* c) { return c; }
UCharCast(const char * c)213 inline const unsigned char* UCharCast(const char* c) { return (unsigned char*)c; }
UCharCast(const unsigned char * c)214 inline const unsigned char* UCharCast(const unsigned char* c) { return c; }
215 
216 // Helper function to safely convert a Span to a Span<[const] unsigned char>.
217 template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; }
218 
219 /** Like MakeSpan, but for (const) unsigned char member types only. Only works for (un)signed char containers. */
220 template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(MakeSpan(std::forward<V>(v)))) { return UCharSpanCast(MakeSpan(std::forward<V>(v))); }
221 
222 #endif
223