1 /* Copyright 2008, Google Inc.
2  * All rights reserved.
3  *
4  * Code released into the public domain.
5  *
6  * curve25519-donna: Curve25519 elliptic curve, public key function
7  *
8  * http://code.google.com/p/curve25519-donna/
9  *
10  * Adam Langley <agl@imperialviolet.org>
11  * Parts optimised by floodyberry
12  * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
13  *
14  * More information about curve25519 can be found here
15  *   http://cr.yp.to/ecdh.html
16  *
17  * djb's sample implementation of curve25519 is written in a special assembly
18  * language called qhasm and uses the floating point registers.
19  *
20  * This is, almost, a clean room reimplementation from the curve25519 paper. It
21  * uses many of the tricks described therein. Only the crecip function is taken
22  * from the sample implementation.
23  */
24 
25 #include <string.h>
26 #include <stdint.h>
27 #include "crypto_scalarmult.h"
28 
29 typedef uint8_t u8;
30 typedef uint64_t limb;
31 typedef limb felem[5];
32 // This is a special gcc mode for 128-bit integers. It's implemented on 64-bit
33 // platforms only as far as I know.
34 typedef unsigned uint128_t __attribute__((mode(TI)));
35 
36 #undef force_inline
37 #define force_inline inline __attribute__((always_inline))
38 
39 /* Sum two numbers: output += in */
40 static void force_inline
fsum(limb * output,const limb * in)41 fsum(limb *output, const limb *in) {
42   output[0] += in[0];
43   output[1] += in[1];
44   output[2] += in[2];
45   output[3] += in[3];
46   output[4] += in[4];
47 }
48 
49 /* Find the difference of two numbers: output = in - output
50  * (note the order of the arguments!)
51  *
52  * Assumes that out[i] < 2**52
53  * On return, out[i] < 2**55
54  */
55 static void force_inline
fdifference_backwards(felem out,const felem in)56 fdifference_backwards(felem out, const felem in) {
57   /* 152 is 19 << 3 */
58   static const limb two54m152 = (((limb)1) << 54) - 152;
59   static const limb two54m8 = (((limb)1) << 54) - 8;
60 
61   out[0] = in[0] + two54m152 - out[0];
62   out[1] = in[1] + two54m8 - out[1];
63   out[2] = in[2] + two54m8 - out[2];
64   out[3] = in[3] + two54m8 - out[3];
65   out[4] = in[4] + two54m8 - out[4];
66 }
67 
68 /* Multiply a number by a scalar: output = in * scalar */
69 static void force_inline
fscalar_product(felem output,const felem in,const limb scalar)70 fscalar_product(felem output, const felem in, const limb scalar) {
71   uint128_t a;
72 
73   a = ((uint128_t) in[0]) * scalar;
74   output[0] = ((limb)a) & 0x7ffffffffffff;
75 
76   a = ((uint128_t) in[1]) * scalar + ((limb) (a >> 51));
77   output[1] = ((limb)a) & 0x7ffffffffffff;
78 
79   a = ((uint128_t) in[2]) * scalar + ((limb) (a >> 51));
80   output[2] = ((limb)a) & 0x7ffffffffffff;
81 
82   a = ((uint128_t) in[3]) * scalar + ((limb) (a >> 51));
83   output[3] = ((limb)a) & 0x7ffffffffffff;
84 
85   a = ((uint128_t) in[4]) * scalar + ((limb) (a >> 51));
86   output[4] = ((limb)a) & 0x7ffffffffffff;
87 
88   output[0] += (a >> 51) * 19;
89 }
90 
91 /* Multiply two numbers: output = in2 * in
92  *
93  * output must be distinct to both inputs. The inputs are reduced coefficient
94  * form, the output is not.
95  *
96  * Assumes that in[i] < 2**55 and likewise for in2.
97  * On return, output[i] < 2**52
98  */
99 static void force_inline
fmul(felem output,const felem in2,const felem in)100 fmul(felem output, const felem in2, const felem in) {
101   uint128_t t[5];
102   limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
103 
104   r0 = in[0];
105   r1 = in[1];
106   r2 = in[2];
107   r3 = in[3];
108   r4 = in[4];
109 
110   s0 = in2[0];
111   s1 = in2[1];
112   s2 = in2[2];
113   s3 = in2[3];
114   s4 = in2[4];
115 
116   t[0]  =  ((uint128_t) r0) * s0;
117   t[1]  =  ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
118   t[2]  =  ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
119   t[3]  =  ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
120   t[4]  =  ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
121 
122   r4 *= 19;
123   r1 *= 19;
124   r2 *= 19;
125   r3 *= 19;
126 
127   t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
128   t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
129   t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
130   t[3] += ((uint128_t) r4) * s4;
131 
132                   r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
133   t[1] += c;      r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
134   t[2] += c;      r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
135   t[3] += c;      r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
136   t[4] += c;      r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
137   r0 +=   c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
138   r1 +=   c;      c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
139   r2 +=   c;
140 
141   output[0] = r0;
142   output[1] = r1;
143   output[2] = r2;
144   output[3] = r3;
145   output[4] = r4;
146 }
147 
148 static void force_inline
fsquare_times(felem output,const felem in,limb count)149 fsquare_times(felem output, const felem in, limb count) {
150   uint128_t t[5];
151   limb r0,r1,r2,r3,r4,c;
152   limb d0,d1,d2,d4,d419;
153 
154   r0 = in[0];
155   r1 = in[1];
156   r2 = in[2];
157   r3 = in[3];
158   r4 = in[4];
159 
160   do {
161     d0 = r0 * 2;
162     d1 = r1 * 2;
163     d2 = r2 * 2 * 19;
164     d419 = r4 * 19;
165     d4 = d419 * 2;
166 
167     t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1 + (((uint128_t) d2) * (r3     ));
168     t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2 + (((uint128_t) r3) * (r3 * 19));
169     t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1 + (((uint128_t) d4) * (r3     ));
170     t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2 + (((uint128_t) r4) * (d419   ));
171     t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3 + (((uint128_t) r2) * (r2     ));
172 
173                     r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
174     t[1] += c;      r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
175     t[2] += c;      r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
176     t[3] += c;      r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
177     t[4] += c;      r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
178     r0 +=   c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
179     r1 +=   c;      c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
180     r2 +=   c;
181   } while(--count);
182 
183   output[0] = r0;
184   output[1] = r1;
185   output[2] = r2;
186   output[3] = r3;
187   output[4] = r4;
188 }
189 
190 /* Take a little-endian, 32-byte number and expand it into polynomial form */
191 static void
fexpand(limb * output,const u8 * in)192 fexpand(limb *output, const u8 *in) {
193   output[0] = *((const uint64_t *)(in)) & 0x7ffffffffffff;
194   output[1] = (*((const uint64_t *)(in+6)) >> 3) & 0x7ffffffffffff;
195   output[2] = (*((const uint64_t *)(in+12)) >> 6) & 0x7ffffffffffff;
196   output[3] = (*((const uint64_t *)(in+19)) >> 1) & 0x7ffffffffffff;
197   output[4] = (*((const uint64_t *)(in+25)) >> 4) & 0x7ffffffffffff;
198 }
199 
200 /* Take a fully reduced polynomial form number and contract it into a
201  * little-endian, 32-byte array
202  */
203 static void
fcontract(u8 * output,const felem input)204 fcontract(u8 *output, const felem input) {
205   uint128_t t[5];
206 
207   t[0] = input[0];
208   t[1] = input[1];
209   t[2] = input[2];
210   t[3] = input[3];
211   t[4] = input[4];
212 
213   t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
214   t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
215   t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
216   t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
217   t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
218 
219   t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
220   t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
221   t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
222   t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
223   t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
224 
225   /* now t is between 0 and 2^255-1, properly carried. */
226   /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
227 
228   t[0] += 19;
229 
230   t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
231   t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
232   t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
233   t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
234   t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
235 
236   /* now between 19 and 2^255-1 in both cases, and offset by 19. */
237 
238   t[0] += 0x8000000000000 - 19;
239   t[1] += 0x8000000000000 - 1;
240   t[2] += 0x8000000000000 - 1;
241   t[3] += 0x8000000000000 - 1;
242   t[4] += 0x8000000000000 - 1;
243 
244   /* now between 2^255 and 2^256-20, and offset by 2^255. */
245 
246   t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
247   t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
248   t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
249   t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
250   t[4] &= 0x7ffffffffffff;
251 
252   *((uint64_t *)(output)) = t[0] | (t[1] << 51);
253   *((uint64_t *)(output+8)) = (t[1] >> 13) | (t[2] << 38);
254   *((uint64_t *)(output+16)) = (t[2] >> 26) | (t[3] << 25);
255   *((uint64_t *)(output+24)) = (t[3] >> 39) | (t[4] << 12);
256 }
257 
258 /* Input: Q, Q', Q-Q'
259  * Output: 2Q, Q+Q'
260  *
261  *   x2 z3: long form
262  *   x3 z3: long form
263  *   x z: short form, destroyed
264  *   xprime zprime: short form, destroyed
265  *   qmqp: short form, preserved
266  */
267 static void
fmonty(limb * x2,limb * z2,limb * x3,limb * z3,limb * x,limb * z,limb * xprime,limb * zprime,const limb * qmqp)268 fmonty(limb *x2, limb *z2, /* output 2Q */
269        limb *x3, limb *z3, /* output Q + Q' */
270        limb *x, limb *z,   /* input Q */
271        limb *xprime, limb *zprime, /* input Q' */
272        const limb *qmqp /* input Q - Q' */) {
273   limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5],
274         zzprime[5], zzzprime[5];
275 
276   memcpy(origx, x, 5 * sizeof(limb));
277   fsum(x, z);
278   fdifference_backwards(z, origx);  // does x - z
279 
280   memcpy(origxprime, xprime, sizeof(limb) * 5);
281   fsum(xprime, zprime);
282   fdifference_backwards(zprime, origxprime);
283   fmul(xxprime, xprime, z);
284   fmul(zzprime, x, zprime);
285   memcpy(origxprime, xxprime, sizeof(limb) * 5);
286   fsum(xxprime, zzprime);
287   fdifference_backwards(zzprime, origxprime);
288   fsquare_times(x3, xxprime, 1);
289   fsquare_times(zzzprime, zzprime, 1);
290   fmul(z3, zzzprime, qmqp);
291 
292   fsquare_times(xx, x, 1);
293   fsquare_times(zz, z, 1);
294   fmul(x2, xx, zz);
295   fdifference_backwards(zz, xx);  // does zz = xx - zz
296   fscalar_product(zzz, zz, 121665);
297   fsum(zzz, xx);
298   fmul(z2, zz, zzz);
299 }
300 
301 // -----------------------------------------------------------------------------
302 // Maybe swap the contents of two limb arrays (@a and @b), each @len elements
303 // long. Perform the swap iff @swap is non-zero.
304 //
305 // This function performs the swap without leaking any side-channel
306 // information.
307 // -----------------------------------------------------------------------------
308 static void
swap_conditional(limb a[5],limb b[5],limb iswap)309 swap_conditional(limb a[5], limb b[5], limb iswap) {
310   unsigned i;
311   const limb swap = -iswap;
312 
313   for (i = 0; i < 5; ++i) {
314     const limb x = swap & (a[i] ^ b[i]);
315     a[i] ^= x;
316     b[i] ^= x;
317   }
318 }
319 
320 /* Calculates nQ where Q is the x-coordinate of a point on the curve
321  *
322  *   resultx/resultz: the x coordinate of the resulting curve point (short form)
323  *   n: a little endian, 32-byte number
324  *   q: a point of the curve (short form)
325  */
326 static void
cmult(limb * resultx,limb * resultz,const u8 * n,const limb * q)327 cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
328   limb a[5] = {0}, b[5] = {1}, c[5] = {1}, d[5] = {0};
329   limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
330   limb e[5] = {0}, f[5] = {1}, g[5] = {0}, h[5] = {1};
331   limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
332 
333   unsigned i, j;
334 
335   memcpy(nqpqx, q, sizeof(limb) * 5);
336 
337   for (i = 0; i < 32; ++i) {
338     u8 byte = n[31 - i];
339     for (j = 0; j < 8; ++j) {
340       const limb bit = byte >> 7;
341 
342       swap_conditional(nqx, nqpqx, bit);
343       swap_conditional(nqz, nqpqz, bit);
344       fmonty(nqx2, nqz2,
345              nqpqx2, nqpqz2,
346              nqx, nqz,
347              nqpqx, nqpqz,
348              q);
349       swap_conditional(nqx2, nqpqx2, bit);
350       swap_conditional(nqz2, nqpqz2, bit);
351 
352       t = nqx;
353       nqx = nqx2;
354       nqx2 = t;
355       t = nqz;
356       nqz = nqz2;
357       nqz2 = t;
358       t = nqpqx;
359       nqpqx = nqpqx2;
360       nqpqx2 = t;
361       t = nqpqz;
362       nqpqz = nqpqz2;
363       nqpqz2 = t;
364 
365       byte <<= 1;
366     }
367   }
368 
369   memcpy(resultx, nqx, sizeof(limb) * 5);
370   memcpy(resultz, nqz, sizeof(limb) * 5);
371 }
372 
373 
374 // -----------------------------------------------------------------------------
375 // Shamelessly copied from djb's code, tightened a little
376 // -----------------------------------------------------------------------------
377 static void
crecip(felem out,const felem z)378 crecip(felem out, const felem z) {
379   felem a,t0,b,c;
380 
381   /* 2 */ fsquare_times(a, z, 1); // a = 2
382   /* 8 */ fsquare_times(t0, a, 2);
383   /* 9 */ fmul(b, t0, z); // b = 9
384   /* 11 */ fmul(a, b, a); // a = 11
385   /* 22 */ fsquare_times(t0, a, 1);
386   /* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
387   /* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
388   /* 2^10 - 2^0 */ fmul(b, t0, b);
389   /* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
390   /* 2^20 - 2^0 */ fmul(c, t0, b);
391   /* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
392   /* 2^40 - 2^0 */ fmul(t0, t0, c);
393   /* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
394   /* 2^50 - 2^0 */ fmul(b, t0, b);
395   /* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
396   /* 2^100 - 2^0 */ fmul(c, t0, b);
397   /* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
398   /* 2^200 - 2^0 */ fmul(t0, t0, c);
399   /* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
400   /* 2^250 - 2^0 */ fmul(t0, t0, b);
401   /* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
402   /* 2^255 - 21 */ fmul(out, t0, a);
403 }
404 
405 int
crypto_scalarmult(u8 * mypublic,const u8 * secret,const u8 * basepoint)406 crypto_scalarmult(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
407   limb bp[5], x[5], z[5], zmone[5];
408   uint8_t e[32];
409   int i;
410 
411   for (i = 0;i < 32;++i) e[i] = secret[i];
412   e[0] &= 248;
413   e[31] &= 127;
414   e[31] |= 64;
415 
416   fexpand(bp, basepoint);
417   cmult(x, z, e, bp);
418   crecip(zmone, z);
419   fmul(z, x, zmone);
420   fcontract(mypublic, z);
421   return 0;
422 }
423