1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package flate
6
7import (
8	"math"
9	"math/bits"
10	"sort"
11)
12
13// hcode is a huffman code with a bit code and bit length.
14type hcode struct {
15	code, len uint16
16}
17
18type huffmanEncoder struct {
19	codes     []hcode
20	freqcache []literalNode
21	bitCount  [17]int32
22	lns       byLiteral // stored to avoid repeated allocation in generate
23	lfs       byFreq    // stored to avoid repeated allocation in generate
24}
25
26type literalNode struct {
27	literal uint16
28	freq    int32
29}
30
31// A levelInfo describes the state of the constructed tree for a given depth.
32type levelInfo struct {
33	// Our level.  for better printing
34	level int32
35
36	// The frequency of the last node at this level
37	lastFreq int32
38
39	// The frequency of the next character to add to this level
40	nextCharFreq int32
41
42	// The frequency of the next pair (from level below) to add to this level.
43	// Only valid if the "needed" value of the next lower level is 0.
44	nextPairFreq int32
45
46	// The number of chains remaining to generate for this level before moving
47	// up to the next level
48	needed int32
49}
50
51// set sets the code and length of an hcode.
52func (h *hcode) set(code uint16, length uint16) {
53	h.len = length
54	h.code = code
55}
56
57func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
58
59func newHuffmanEncoder(size int) *huffmanEncoder {
60	return &huffmanEncoder{codes: make([]hcode, size)}
61}
62
63// Generates a HuffmanCode corresponding to the fixed literal table
64func generateFixedLiteralEncoding() *huffmanEncoder {
65	h := newHuffmanEncoder(maxNumLit)
66	codes := h.codes
67	var ch uint16
68	for ch = 0; ch < maxNumLit; ch++ {
69		var bits uint16
70		var size uint16
71		switch {
72		case ch < 144:
73			// size 8, 000110000  .. 10111111
74			bits = ch + 48
75			size = 8
76			break
77		case ch < 256:
78			// size 9, 110010000 .. 111111111
79			bits = ch + 400 - 144
80			size = 9
81			break
82		case ch < 280:
83			// size 7, 0000000 .. 0010111
84			bits = ch - 256
85			size = 7
86			break
87		default:
88			// size 8, 11000000 .. 11000111
89			bits = ch + 192 - 280
90			size = 8
91		}
92		codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
93	}
94	return h
95}
96
97func generateFixedOffsetEncoding() *huffmanEncoder {
98	h := newHuffmanEncoder(30)
99	codes := h.codes
100	for ch := range codes {
101		codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
102	}
103	return h
104}
105
106var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
107var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
108
109func (h *huffmanEncoder) bitLength(freq []int32) int {
110	var total int
111	for i, f := range freq {
112		if f != 0 {
113			total += int(f) * int(h.codes[i].len)
114		}
115	}
116	return total
117}
118
119const maxBitsLimit = 16
120
121// Return the number of literals assigned to each bit size in the Huffman encoding
122//
123// This method is only called when list.length >= 3
124// The cases of 0, 1, and 2 literals are handled by special case code.
125//
126// list  An array of the literals with non-zero frequencies
127//             and their associated frequencies. The array is in order of increasing
128//             frequency, and has as its last element a special element with frequency
129//             MaxInt32
130// maxBits     The maximum number of bits that should be used to encode any literal.
131//             Must be less than 16.
132// return      An integer array in which array[i] indicates the number of literals
133//             that should be encoded in i bits.
134func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
135	if maxBits >= maxBitsLimit {
136		panic("flate: maxBits too large")
137	}
138	n := int32(len(list))
139	list = list[0 : n+1]
140	list[n] = maxNode()
141
142	// The tree can't have greater depth than n - 1, no matter what. This
143	// saves a little bit of work in some small cases
144	if maxBits > n-1 {
145		maxBits = n - 1
146	}
147
148	// Create information about each of the levels.
149	// A bogus "Level 0" whose sole purpose is so that
150	// level1.prev.needed==0.  This makes level1.nextPairFreq
151	// be a legitimate value that never gets chosen.
152	var levels [maxBitsLimit]levelInfo
153	// leafCounts[i] counts the number of literals at the left
154	// of ancestors of the rightmost node at level i.
155	// leafCounts[i][j] is the number of literals at the left
156	// of the level j ancestor.
157	var leafCounts [maxBitsLimit][maxBitsLimit]int32
158
159	for level := int32(1); level <= maxBits; level++ {
160		// For every level, the first two items are the first two characters.
161		// We initialize the levels as if we had already figured this out.
162		levels[level] = levelInfo{
163			level:        level,
164			lastFreq:     list[1].freq,
165			nextCharFreq: list[2].freq,
166			nextPairFreq: list[0].freq + list[1].freq,
167		}
168		leafCounts[level][level] = 2
169		if level == 1 {
170			levels[level].nextPairFreq = math.MaxInt32
171		}
172	}
173
174	// We need a total of 2*n - 2 items at top level and have already generated 2.
175	levels[maxBits].needed = 2*n - 4
176
177	level := maxBits
178	for {
179		l := &levels[level]
180		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
181			// We've run out of both leafs and pairs.
182			// End all calculations for this level.
183			// To make sure we never come back to this level or any lower level,
184			// set nextPairFreq impossibly large.
185			l.needed = 0
186			levels[level+1].nextPairFreq = math.MaxInt32
187			level++
188			continue
189		}
190
191		prevFreq := l.lastFreq
192		if l.nextCharFreq < l.nextPairFreq {
193			// The next item on this row is a leaf node.
194			n := leafCounts[level][level] + 1
195			l.lastFreq = l.nextCharFreq
196			// Lower leafCounts are the same of the previous node.
197			leafCounts[level][level] = n
198			l.nextCharFreq = list[n].freq
199		} else {
200			// The next item on this row is a pair from the previous row.
201			// nextPairFreq isn't valid until we generate two
202			// more values in the level below
203			l.lastFreq = l.nextPairFreq
204			// Take leaf counts from the lower level, except counts[level] remains the same.
205			copy(leafCounts[level][:level], leafCounts[level-1][:level])
206			levels[l.level-1].needed = 2
207		}
208
209		if l.needed--; l.needed == 0 {
210			// We've done everything we need to do for this level.
211			// Continue calculating one level up. Fill in nextPairFreq
212			// of that level with the sum of the two nodes we've just calculated on
213			// this level.
214			if l.level == maxBits {
215				// All done!
216				break
217			}
218			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
219			level++
220		} else {
221			// If we stole from below, move down temporarily to replenish it.
222			for levels[level-1].needed > 0 {
223				level--
224			}
225		}
226	}
227
228	// Somethings is wrong if at the end, the top level is null or hasn't used
229	// all of the leaves.
230	if leafCounts[maxBits][maxBits] != n {
231		panic("leafCounts[maxBits][maxBits] != n")
232	}
233
234	bitCount := h.bitCount[:maxBits+1]
235	bits := 1
236	counts := &leafCounts[maxBits]
237	for level := maxBits; level > 0; level-- {
238		// chain.leafCount gives the number of literals requiring at least "bits"
239		// bits to encode.
240		bitCount[bits] = counts[level] - counts[level-1]
241		bits++
242	}
243	return bitCount
244}
245
246// Look at the leaves and assign them a bit count and an encoding as specified
247// in RFC 1951 3.2.2
248func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
249	code := uint16(0)
250	for n, bits := range bitCount {
251		code <<= 1
252		if n == 0 || bits == 0 {
253			continue
254		}
255		// The literals list[len(list)-bits] .. list[len(list)-bits]
256		// are encoded using "bits" bits, and get the values
257		// code, code + 1, ....  The code values are
258		// assigned in literal order (not frequency order).
259		chunk := list[len(list)-int(bits):]
260
261		h.lns.sort(chunk)
262		for _, node := range chunk {
263			h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
264			code++
265		}
266		list = list[0 : len(list)-int(bits)]
267	}
268}
269
270// Update this Huffman Code object to be the minimum code for the specified frequency count.
271//
272// freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
273// maxBits  The maximum number of bits to use for any literal.
274func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
275	if h.freqcache == nil {
276		// Allocate a reusable buffer with the longest possible frequency table.
277		// Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
278		// The largest of these is maxNumLit, so we allocate for that case.
279		h.freqcache = make([]literalNode, maxNumLit+1)
280	}
281	list := h.freqcache[:len(freq)+1]
282	// Number of non-zero literals
283	count := 0
284	// Set list to be the set of all non-zero literals and their frequencies
285	for i, f := range freq {
286		if f != 0 {
287			list[count] = literalNode{uint16(i), f}
288			count++
289		} else {
290			list[count] = literalNode{}
291			h.codes[i].len = 0
292		}
293	}
294	list[len(freq)] = literalNode{}
295
296	list = list[:count]
297	if count <= 2 {
298		// Handle the small cases here, because they are awkward for the general case code. With
299		// two or fewer literals, everything has bit length 1.
300		for i, node := range list {
301			// "list" is in order of increasing literal value.
302			h.codes[node.literal].set(uint16(i), 1)
303		}
304		return
305	}
306	h.lfs.sort(list)
307
308	// Get the number of literals for each bit count
309	bitCount := h.bitCounts(list, maxBits)
310	// And do the assignment
311	h.assignEncodingAndSize(bitCount, list)
312}
313
314type byLiteral []literalNode
315
316func (s *byLiteral) sort(a []literalNode) {
317	*s = byLiteral(a)
318	sort.Sort(s)
319}
320
321func (s byLiteral) Len() int { return len(s) }
322
323func (s byLiteral) Less(i, j int) bool {
324	return s[i].literal < s[j].literal
325}
326
327func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
328
329type byFreq []literalNode
330
331func (s *byFreq) sort(a []literalNode) {
332	*s = byFreq(a)
333	sort.Sort(s)
334}
335
336func (s byFreq) Len() int { return len(s) }
337
338func (s byFreq) Less(i, j int) bool {
339	if s[i].freq == s[j].freq {
340		return s[i].literal < s[j].literal
341	}
342	return s[i].freq < s[j].freq
343}
344
345func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
346
347func reverseBits(number uint16, bitLength byte) uint16 {
348	return bits.Reverse16(number << (16 - bitLength))
349}
350