1// Copyright 2012 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package jpeg
6
7import (
8	"image"
9)
10
11// makeImg allocates and initializes the destination image.
12func (d *decoder) makeImg(mxx, myy int) {
13	if d.nComp == 1 {
14		m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy))
15		d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray)
16		return
17	}
18
19	h0 := d.comp[0].h
20	v0 := d.comp[0].v
21	hRatio := h0 / d.comp[1].h
22	vRatio := v0 / d.comp[1].v
23	var subsampleRatio image.YCbCrSubsampleRatio
24	switch hRatio<<4 | vRatio {
25	case 0x11:
26		subsampleRatio = image.YCbCrSubsampleRatio444
27	case 0x12:
28		subsampleRatio = image.YCbCrSubsampleRatio440
29	case 0x21:
30		subsampleRatio = image.YCbCrSubsampleRatio422
31	case 0x22:
32		subsampleRatio = image.YCbCrSubsampleRatio420
33	case 0x41:
34		subsampleRatio = image.YCbCrSubsampleRatio411
35	case 0x42:
36		subsampleRatio = image.YCbCrSubsampleRatio410
37	default:
38		panic("unreachable")
39	}
40	m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio)
41	d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr)
42
43	if d.nComp == 4 {
44		h3, v3 := d.comp[3].h, d.comp[3].v
45		d.blackPix = make([]byte, 8*h3*mxx*8*v3*myy)
46		d.blackStride = 8 * h3 * mxx
47	}
48}
49
50// Specified in section B.2.3.
51func (d *decoder) processSOS(n int) error {
52	if d.nComp == 0 {
53		return FormatError("missing SOF marker")
54	}
55	if n < 6 || 4+2*d.nComp < n || n%2 != 0 {
56		return FormatError("SOS has wrong length")
57	}
58	if err := d.readFull(d.tmp[:n]); err != nil {
59		return err
60	}
61	nComp := int(d.tmp[0])
62	if n != 4+2*nComp {
63		return FormatError("SOS length inconsistent with number of components")
64	}
65	var scan [maxComponents]struct {
66		compIndex uint8
67		td        uint8 // DC table selector.
68		ta        uint8 // AC table selector.
69	}
70	totalHV := 0
71	for i := 0; i < nComp; i++ {
72		cs := d.tmp[1+2*i] // Component selector.
73		compIndex := -1
74		for j, comp := range d.comp[:d.nComp] {
75			if cs == comp.c {
76				compIndex = j
77			}
78		}
79		if compIndex < 0 {
80			return FormatError("unknown component selector")
81		}
82		scan[i].compIndex = uint8(compIndex)
83		// Section B.2.3 states that "the value of Cs_j shall be different from
84		// the values of Cs_1 through Cs_(j-1)". Since we have previously
85		// verified that a frame's component identifiers (C_i values in section
86		// B.2.2) are unique, it suffices to check that the implicit indexes
87		// into d.comp are unique.
88		for j := 0; j < i; j++ {
89			if scan[i].compIndex == scan[j].compIndex {
90				return FormatError("repeated component selector")
91			}
92		}
93		totalHV += d.comp[compIndex].h * d.comp[compIndex].v
94
95		// The baseline t <= 1 restriction is specified in table B.3.
96		scan[i].td = d.tmp[2+2*i] >> 4
97		if t := scan[i].td; t > maxTh || (d.baseline && t > 1) {
98			return FormatError("bad Td value")
99		}
100		scan[i].ta = d.tmp[2+2*i] & 0x0f
101		if t := scan[i].ta; t > maxTh || (d.baseline && t > 1) {
102			return FormatError("bad Ta value")
103		}
104	}
105	// Section B.2.3 states that if there is more than one component then the
106	// total H*V values in a scan must be <= 10.
107	if d.nComp > 1 && totalHV > 10 {
108		return FormatError("total sampling factors too large")
109	}
110
111	// zigStart and zigEnd are the spectral selection bounds.
112	// ah and al are the successive approximation high and low values.
113	// The spec calls these values Ss, Se, Ah and Al.
114	//
115	// For progressive JPEGs, these are the two more-or-less independent
116	// aspects of progression. Spectral selection progression is when not
117	// all of a block's 64 DCT coefficients are transmitted in one pass.
118	// For example, three passes could transmit coefficient 0 (the DC
119	// component), coefficients 1-5, and coefficients 6-63, in zig-zag
120	// order. Successive approximation is when not all of the bits of a
121	// band of coefficients are transmitted in one pass. For example,
122	// three passes could transmit the 6 most significant bits, followed
123	// by the second-least significant bit, followed by the least
124	// significant bit.
125	//
126	// For sequential JPEGs, these parameters are hard-coded to 0/63/0/0, as
127	// per table B.3.
128	zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0)
129	if d.progressive {
130		zigStart = int32(d.tmp[1+2*nComp])
131		zigEnd = int32(d.tmp[2+2*nComp])
132		ah = uint32(d.tmp[3+2*nComp] >> 4)
133		al = uint32(d.tmp[3+2*nComp] & 0x0f)
134		if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd {
135			return FormatError("bad spectral selection bounds")
136		}
137		if zigStart != 0 && nComp != 1 {
138			return FormatError("progressive AC coefficients for more than one component")
139		}
140		if ah != 0 && ah != al+1 {
141			return FormatError("bad successive approximation values")
142		}
143	}
144
145	// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
146	h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components.
147	mxx := (d.width + 8*h0 - 1) / (8 * h0)
148	myy := (d.height + 8*v0 - 1) / (8 * v0)
149	if d.img1 == nil && d.img3 == nil {
150		d.makeImg(mxx, myy)
151	}
152	if d.progressive {
153		for i := 0; i < nComp; i++ {
154			compIndex := scan[i].compIndex
155			if d.progCoeffs[compIndex] == nil {
156				d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v)
157			}
158		}
159	}
160
161	d.bits = bits{}
162	mcu, expectedRST := 0, uint8(rst0Marker)
163	var (
164		// b is the decoded coefficients, in natural (not zig-zag) order.
165		b  block
166		dc [maxComponents]int32
167		// bx and by are the location of the current block, in units of 8x8
168		// blocks: the third block in the first row has (bx, by) = (2, 0).
169		bx, by     int
170		blockCount int
171	)
172	for my := 0; my < myy; my++ {
173		for mx := 0; mx < mxx; mx++ {
174			for i := 0; i < nComp; i++ {
175				compIndex := scan[i].compIndex
176				hi := d.comp[compIndex].h
177				vi := d.comp[compIndex].v
178				for j := 0; j < hi*vi; j++ {
179					// The blocks are traversed one MCU at a time. For 4:2:0 chroma
180					// subsampling, there are four Y 8x8 blocks in every 16x16 MCU.
181					//
182					// For a sequential 32x16 pixel image, the Y blocks visiting order is:
183					//	0 1 4 5
184					//	2 3 6 7
185					//
186					// For progressive images, the interleaved scans (those with nComp > 1)
187					// are traversed as above, but non-interleaved scans are traversed left
188					// to right, top to bottom:
189					//	0 1 2 3
190					//	4 5 6 7
191					// Only DC scans (zigStart == 0) can be interleaved. AC scans must have
192					// only one component.
193					//
194					// To further complicate matters, for non-interleaved scans, there is no
195					// data for any blocks that are inside the image at the MCU level but
196					// outside the image at the pixel level. For example, a 24x16 pixel 4:2:0
197					// progressive image consists of two 16x16 MCUs. The interleaved scans
198					// will process 8 Y blocks:
199					//	0 1 4 5
200					//	2 3 6 7
201					// The non-interleaved scans will process only 6 Y blocks:
202					//	0 1 2
203					//	3 4 5
204					if nComp != 1 {
205						bx = hi*mx + j%hi
206						by = vi*my + j/hi
207					} else {
208						q := mxx * hi
209						bx = blockCount % q
210						by = blockCount / q
211						blockCount++
212						if bx*8 >= d.width || by*8 >= d.height {
213							continue
214						}
215					}
216
217					// Load the previous partially decoded coefficients, if applicable.
218					if d.progressive {
219						b = d.progCoeffs[compIndex][by*mxx*hi+bx]
220					} else {
221						b = block{}
222					}
223
224					if ah != 0 {
225						if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil {
226							return err
227						}
228					} else {
229						zig := zigStart
230						if zig == 0 {
231							zig++
232							// Decode the DC coefficient, as specified in section F.2.2.1.
233							value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td])
234							if err != nil {
235								return err
236							}
237							if value > 16 {
238								return UnsupportedError("excessive DC component")
239							}
240							dcDelta, err := d.receiveExtend(value)
241							if err != nil {
242								return err
243							}
244							dc[compIndex] += dcDelta
245							b[0] = dc[compIndex] << al
246						}
247
248						if zig <= zigEnd && d.eobRun > 0 {
249							d.eobRun--
250						} else {
251							// Decode the AC coefficients, as specified in section F.2.2.2.
252							huff := &d.huff[acTable][scan[i].ta]
253							for ; zig <= zigEnd; zig++ {
254								value, err := d.decodeHuffman(huff)
255								if err != nil {
256									return err
257								}
258								val0 := value >> 4
259								val1 := value & 0x0f
260								if val1 != 0 {
261									zig += int32(val0)
262									if zig > zigEnd {
263										break
264									}
265									ac, err := d.receiveExtend(val1)
266									if err != nil {
267										return err
268									}
269									b[unzig[zig]] = ac << al
270								} else {
271									if val0 != 0x0f {
272										d.eobRun = uint16(1 << val0)
273										if val0 != 0 {
274											bits, err := d.decodeBits(int32(val0))
275											if err != nil {
276												return err
277											}
278											d.eobRun |= uint16(bits)
279										}
280										d.eobRun--
281										break
282									}
283									zig += 0x0f
284								}
285							}
286						}
287					}
288
289					if d.progressive {
290						// Save the coefficients.
291						d.progCoeffs[compIndex][by*mxx*hi+bx] = b
292						// At this point, we could call reconstructBlock to dequantize and perform the
293						// inverse DCT, to save early stages of a progressive image to the *image.YCbCr
294						// buffers (the whole point of progressive encoding), but in Go, the jpeg.Decode
295						// function does not return until the entire image is decoded, so we "continue"
296						// here to avoid wasted computation. Instead, reconstructBlock is called on each
297						// accumulated block by the reconstructProgressiveImage method after all of the
298						// SOS markers are processed.
299						continue
300					}
301					if err := d.reconstructBlock(&b, bx, by, int(compIndex)); err != nil {
302						return err
303					}
304				} // for j
305			} // for i
306			mcu++
307			if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
308				// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
309				// but this one assumes well-formed input, and hence the restart marker follows immediately.
310				if err := d.readFull(d.tmp[:2]); err != nil {
311					return err
312				}
313				if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
314					return FormatError("bad RST marker")
315				}
316				expectedRST++
317				if expectedRST == rst7Marker+1 {
318					expectedRST = rst0Marker
319				}
320				// Reset the Huffman decoder.
321				d.bits = bits{}
322				// Reset the DC components, as per section F.2.1.3.1.
323				dc = [maxComponents]int32{}
324				// Reset the progressive decoder state, as per section G.1.2.2.
325				d.eobRun = 0
326			}
327		} // for mx
328	} // for my
329
330	return nil
331}
332
333// refine decodes a successive approximation refinement block, as specified in
334// section G.1.2.
335func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error {
336	// Refining a DC component is trivial.
337	if zigStart == 0 {
338		if zigEnd != 0 {
339			panic("unreachable")
340		}
341		bit, err := d.decodeBit()
342		if err != nil {
343			return err
344		}
345		if bit {
346			b[0] |= delta
347		}
348		return nil
349	}
350
351	// Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3.
352	zig := zigStart
353	if d.eobRun == 0 {
354	loop:
355		for ; zig <= zigEnd; zig++ {
356			z := int32(0)
357			value, err := d.decodeHuffman(h)
358			if err != nil {
359				return err
360			}
361			val0 := value >> 4
362			val1 := value & 0x0f
363
364			switch val1 {
365			case 0:
366				if val0 != 0x0f {
367					d.eobRun = uint16(1 << val0)
368					if val0 != 0 {
369						bits, err := d.decodeBits(int32(val0))
370						if err != nil {
371							return err
372						}
373						d.eobRun |= uint16(bits)
374					}
375					break loop
376				}
377			case 1:
378				z = delta
379				bit, err := d.decodeBit()
380				if err != nil {
381					return err
382				}
383				if !bit {
384					z = -z
385				}
386			default:
387				return FormatError("unexpected Huffman code")
388			}
389
390			zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta)
391			if err != nil {
392				return err
393			}
394			if zig > zigEnd {
395				return FormatError("too many coefficients")
396			}
397			if z != 0 {
398				b[unzig[zig]] = z
399			}
400		}
401	}
402	if d.eobRun > 0 {
403		d.eobRun--
404		if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil {
405			return err
406		}
407	}
408	return nil
409}
410
411// refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0,
412// the first nz zero entries are skipped over.
413func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) {
414	for ; zig <= zigEnd; zig++ {
415		u := unzig[zig]
416		if b[u] == 0 {
417			if nz == 0 {
418				break
419			}
420			nz--
421			continue
422		}
423		bit, err := d.decodeBit()
424		if err != nil {
425			return 0, err
426		}
427		if !bit {
428			continue
429		}
430		if b[u] >= 0 {
431			b[u] += delta
432		} else {
433			b[u] -= delta
434		}
435	}
436	return zig, nil
437}
438
439func (d *decoder) reconstructProgressiveImage() error {
440	// The h0, mxx, by and bx variables have the same meaning as in the
441	// processSOS method.
442	h0 := d.comp[0].h
443	mxx := (d.width + 8*h0 - 1) / (8 * h0)
444	for i := 0; i < d.nComp; i++ {
445		if d.progCoeffs[i] == nil {
446			continue
447		}
448		v := 8 * d.comp[0].v / d.comp[i].v
449		h := 8 * d.comp[0].h / d.comp[i].h
450		stride := mxx * d.comp[i].h
451		for by := 0; by*v < d.height; by++ {
452			for bx := 0; bx*h < d.width; bx++ {
453				if err := d.reconstructBlock(&d.progCoeffs[i][by*stride+bx], bx, by, i); err != nil {
454					return err
455				}
456			}
457		}
458	}
459	return nil
460}
461
462// reconstructBlock dequantizes, performs the inverse DCT and stores the block
463// to the image.
464func (d *decoder) reconstructBlock(b *block, bx, by, compIndex int) error {
465	qt := &d.quant[d.comp[compIndex].tq]
466	for zig := 0; zig < blockSize; zig++ {
467		b[unzig[zig]] *= qt[zig]
468	}
469	idct(b)
470	dst, stride := []byte(nil), 0
471	if d.nComp == 1 {
472		dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride
473	} else {
474		switch compIndex {
475		case 0:
476			dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride
477		case 1:
478			dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride
479		case 2:
480			dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride
481		case 3:
482			dst, stride = d.blackPix[8*(by*d.blackStride+bx):], d.blackStride
483		default:
484			return UnsupportedError("too many components")
485		}
486	}
487	// Level shift by +128, clip to [0, 255], and write to dst.
488	for y := 0; y < 8; y++ {
489		y8 := y * 8
490		yStride := y * stride
491		for x := 0; x < 8; x++ {
492			c := b[y8+x]
493			if c < -128 {
494				c = 0
495			} else if c > 127 {
496				c = 255
497			} else {
498				c += 128
499			}
500			dst[yStride+x] = uint8(c)
501		}
502	}
503	return nil
504}
505