1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package math
6
7// The original C code, the long comment, and the constants
8// below are from FreeBSD's /usr/src/lib/msun/src/s_expm1.c
9// and came with this notice. The go code is a simplified
10// version of the original C.
11//
12// ====================================================
13// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
14//
15// Developed at SunPro, a Sun Microsystems, Inc. business.
16// Permission to use, copy, modify, and distribute this
17// software is freely granted, provided that this notice
18// is preserved.
19// ====================================================
20//
21// expm1(x)
22// Returns exp(x)-1, the exponential of x minus 1.
23//
24// Method
25//   1. Argument reduction:
26//      Given x, find r and integer k such that
27//
28//               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
29//
30//      Here a correction term c will be computed to compensate
31//      the error in r when rounded to a floating-point number.
32//
33//   2. Approximating expm1(r) by a special rational function on
34//      the interval [0,0.34658]:
35//      Since
36//          r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 - r**4/360 + ...
37//      we define R1(r*r) by
38//          r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 * R1(r*r)
39//      That is,
40//          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
41//                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
42//                   = 1 - r**2/60 + r**4/2520 - r**6/100800 + ...
43//      We use a special Reme algorithm on [0,0.347] to generate
44//      a polynomial of degree 5 in r*r to approximate R1. The
45//      maximum error of this polynomial approximation is bounded
46//      by 2**-61. In other words,
47//          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
48//      where   Q1  =  -1.6666666666666567384E-2,
49//              Q2  =   3.9682539681370365873E-4,
50//              Q3  =  -9.9206344733435987357E-6,
51//              Q4  =   2.5051361420808517002E-7,
52//              Q5  =  -6.2843505682382617102E-9;
53//      (where z=r*r, and the values of Q1 to Q5 are listed below)
54//      with error bounded by
55//          |                  5           |     -61
56//          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
57//          |                              |
58//
59//      expm1(r) = exp(r)-1 is then computed by the following
60//      specific way which minimize the accumulation rounding error:
61//                             2     3
62//                            r     r    [ 3 - (R1 + R1*r/2)  ]
63//            expm1(r) = r + --- + --- * [--------------------]
64//                            2     2    [ 6 - r*(3 - R1*r/2) ]
65//
66//      To compensate the error in the argument reduction, we use
67//              expm1(r+c) = expm1(r) + c + expm1(r)*c
68//                         ~ expm1(r) + c + r*c
69//      Thus c+r*c will be added in as the correction terms for
70//      expm1(r+c). Now rearrange the term to avoid optimization
71//      screw up:
72//                      (      2                                    2 )
73//                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
74//       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
75//                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
76//                      (                                             )
77//
78//                 = r - E
79//   3. Scale back to obtain expm1(x):
80//      From step 1, we have
81//         expm1(x) = either 2**k*[expm1(r)+1] - 1
82//                  = or     2**k*[expm1(r) + (1-2**-k)]
83//   4. Implementation notes:
84//      (A). To save one multiplication, we scale the coefficient Qi
85//           to Qi*2**i, and replace z by (x**2)/2.
86//      (B). To achieve maximum accuracy, we compute expm1(x) by
87//        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
88//        (ii)  if k=0, return r-E
89//        (iii) if k=-1, return 0.5*(r-E)-0.5
90//        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
91//                     else          return  1.0+2.0*(r-E);
92//        (v)   if (k<-2||k>56) return 2**k(1-(E-r)) - 1 (or exp(x)-1)
93//        (vi)  if k <= 20, return 2**k((1-2**-k)-(E-r)), else
94//        (vii) return 2**k(1-((E+2**-k)-r))
95//
96// Special cases:
97//      expm1(INF) is INF, expm1(NaN) is NaN;
98//      expm1(-INF) is -1, and
99//      for finite argument, only expm1(0)=0 is exact.
100//
101// Accuracy:
102//      according to an error analysis, the error is always less than
103//      1 ulp (unit in the last place).
104//
105// Misc. info.
106//      For IEEE double
107//          if x >  7.09782712893383973096e+02 then expm1(x) overflow
108//
109// Constants:
110// The hexadecimal values are the intended ones for the following
111// constants. The decimal values may be used, provided that the
112// compiler will convert from decimal to binary accurately enough
113// to produce the hexadecimal values shown.
114//
115
116// Expm1 returns e**x - 1, the base-e exponential of x minus 1.
117// It is more accurate than Exp(x) - 1 when x is near zero.
118//
119// Special cases are:
120//	Expm1(+Inf) = +Inf
121//	Expm1(-Inf) = -1
122//	Expm1(NaN) = NaN
123// Very large values overflow to -1 or +Inf.
124func Expm1(x float64) float64
125
126func expm1(x float64) float64 {
127	const (
128		Othreshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
129		Ln2X56     = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
130		Ln2HalfX3  = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
131		Ln2Half    = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
132		Ln2Hi      = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
133		Ln2Lo      = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
134		InvLn2     = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
135		Tiny       = 1.0 / (1 << 54)            // 2**-54 = 0x3c90000000000000
136		// scaled coefficients related to expm1
137		Q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
138		Q2 = 1.58730158725481460165e-03  // 0x3F5A01A019FE5585
139		Q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
140		Q4 = 4.00821782732936239552e-06  // 0x3ED0CFCA86E65239
141		Q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
142	)
143
144	// special cases
145	switch {
146	case IsInf(x, 1) || IsNaN(x):
147		return x
148	case IsInf(x, -1):
149		return -1
150	}
151
152	absx := x
153	sign := false
154	if x < 0 {
155		absx = -absx
156		sign = true
157	}
158
159	// filter out huge argument
160	if absx >= Ln2X56 { // if |x| >= 56 * ln2
161		if sign {
162			return -1 // x < -56*ln2, return -1
163		}
164		if absx >= Othreshold { // if |x| >= 709.78...
165			return Inf(1)
166		}
167	}
168
169	// argument reduction
170	var c float64
171	var k int
172	if absx > Ln2Half { // if  |x| > 0.5 * ln2
173		var hi, lo float64
174		if absx < Ln2HalfX3 { // and |x| < 1.5 * ln2
175			if !sign {
176				hi = x - Ln2Hi
177				lo = Ln2Lo
178				k = 1
179			} else {
180				hi = x + Ln2Hi
181				lo = -Ln2Lo
182				k = -1
183			}
184		} else {
185			if !sign {
186				k = int(InvLn2*x + 0.5)
187			} else {
188				k = int(InvLn2*x - 0.5)
189			}
190			t := float64(k)
191			hi = x - t*Ln2Hi // t * Ln2Hi is exact here
192			lo = t * Ln2Lo
193		}
194		x = hi - lo
195		c = (hi - x) - lo
196	} else if absx < Tiny { // when |x| < 2**-54, return x
197		return x
198	} else {
199		k = 0
200	}
201
202	// x is now in primary range
203	hfx := 0.5 * x
204	hxs := x * hfx
205	r1 := 1 + hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))))
206	t := 3 - r1*hfx
207	e := hxs * ((r1 - t) / (6.0 - x*t))
208	if k != 0 {
209		e = (x*(e-c) - c)
210		e -= hxs
211		switch {
212		case k == -1:
213			return 0.5*(x-e) - 0.5
214		case k == 1:
215			if x < -0.25 {
216				return -2 * (e - (x + 0.5))
217			}
218			return 1 + 2*(x-e)
219		case k <= -2 || k > 56: // suffice to return exp(x)-1
220			y := 1 - (e - x)
221			y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
222			return y - 1
223		}
224		if k < 20 {
225			t := Float64frombits(0x3ff0000000000000 - (0x20000000000000 >> uint(k))) // t=1-2**-k
226			y := t - (e - x)
227			y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
228			return y
229		}
230		t := Float64frombits(uint64(0x3ff-k) << 52) // 2**-k
231		y := x - (e + t)
232		y++
233		y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
234		return y
235	}
236	return x - (x*e - hxs) // c is 0
237}
238