1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package math
6
7/*
8	Floating-point sine and cosine.
9*/
10
11// The original C code, the long comment, and the constants
12// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
13// available from http://www.netlib.org/cephes/cmath.tgz.
14// The go code is a simplified version of the original C.
15//
16//      sin.c
17//
18//      Circular sine
19//
20// SYNOPSIS:
21//
22// double x, y, sin();
23// y = sin( x );
24//
25// DESCRIPTION:
26//
27// Range reduction is into intervals of pi/4.  The reduction error is nearly
28// eliminated by contriving an extended precision modular arithmetic.
29//
30// Two polynomial approximating functions are employed.
31// Between 0 and pi/4 the sine is approximated by
32//      x  +  x**3 P(x**2).
33// Between pi/4 and pi/2 the cosine is represented as
34//      1  -  x**2 Q(x**2).
35//
36// ACCURACY:
37//
38//                      Relative error:
39// arithmetic   domain      # trials      peak         rms
40//    DEC       0, 10       150000       3.0e-17     7.8e-18
41//    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
42//
43// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9.  The loss
44// is not gradual, but jumps suddenly to about 1 part in 10e7.  Results may
45// be meaningless for x > 2**49 = 5.6e14.
46//
47//      cos.c
48//
49//      Circular cosine
50//
51// SYNOPSIS:
52//
53// double x, y, cos();
54// y = cos( x );
55//
56// DESCRIPTION:
57//
58// Range reduction is into intervals of pi/4.  The reduction error is nearly
59// eliminated by contriving an extended precision modular arithmetic.
60//
61// Two polynomial approximating functions are employed.
62// Between 0 and pi/4 the cosine is approximated by
63//      1  -  x**2 Q(x**2).
64// Between pi/4 and pi/2 the sine is represented as
65//      x  +  x**3 P(x**2).
66//
67// ACCURACY:
68//
69//                      Relative error:
70// arithmetic   domain      # trials      peak         rms
71//    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
72//    DEC        0,+1.07e9   17000       3.0e-17     7.2e-18
73//
74// Cephes Math Library Release 2.8:  June, 2000
75// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
76//
77// The readme file at http://netlib.sandia.gov/cephes/ says:
78//    Some software in this archive may be from the book _Methods and
79// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
80// International, 1989) or from the Cephes Mathematical Library, a
81// commercial product. In either event, it is copyrighted by the author.
82// What you see here may be used freely but it comes with no support or
83// guarantee.
84//
85//   The two known misprints in the book are repaired here in the
86// source listings for the gamma function and the incomplete beta
87// integral.
88//
89//   Stephen L. Moshier
90//   moshier@na-net.ornl.gov
91
92// sin coefficients
93var _sin = [...]float64{
94	1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd
95	-2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d
96	2.75573136213857245213E-6,  // 0x3ec71de3567d48a1
97	-1.98412698295895385996E-4, // 0xbf2a01a019bfdf03
98	8.33333333332211858878E-3,  // 0x3f8111111110f7d0
99	-1.66666666666666307295E-1, // 0xbfc5555555555548
100}
101
102// cos coefficients
103var _cos = [...]float64{
104	-1.13585365213876817300E-11, // 0xbda8fa49a0861a9b
105	2.08757008419747316778E-9,   // 0x3e21ee9d7b4e3f05
106	-2.75573141792967388112E-7,  // 0xbe927e4f7eac4bc6
107	2.48015872888517045348E-5,   // 0x3efa01a019c844f5
108	-1.38888888888730564116E-3,  // 0xbf56c16c16c14f91
109	4.16666666666665929218E-2,   // 0x3fa555555555554b
110}
111
112// Cos returns the cosine of the radian argument x.
113//
114// Special cases are:
115//	Cos(±Inf) = NaN
116//	Cos(NaN) = NaN
117func Cos(x float64) float64
118
119func cos(x float64) float64 {
120	const (
121		PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
122		PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
123		PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
124		M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
125	)
126	// special cases
127	switch {
128	case IsNaN(x) || IsInf(x, 0):
129		return NaN()
130	}
131
132	// make argument positive
133	sign := false
134	if x < 0 {
135		x = -x
136	}
137
138	j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
139	y := float64(j)      // integer part of x/(Pi/4), as float
140
141	// map zeros to origin
142	if j&1 == 1 {
143		j++
144		y++
145	}
146	j &= 7 // octant modulo 2Pi radians (360 degrees)
147	if j > 3 {
148		j -= 4
149		sign = !sign
150	}
151	if j > 1 {
152		sign = !sign
153	}
154
155	z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
156	zz := z * z
157	if j == 1 || j == 2 {
158		y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
159	} else {
160		y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
161	}
162	if sign {
163		y = -y
164	}
165	return y
166}
167
168// Sin returns the sine of the radian argument x.
169//
170// Special cases are:
171//	Sin(±0) = ±0
172//	Sin(±Inf) = NaN
173//	Sin(NaN) = NaN
174func Sin(x float64) float64
175
176func sin(x float64) float64 {
177	const (
178		PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
179		PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
180		PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
181		M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
182	)
183	// special cases
184	switch {
185	case x == 0 || IsNaN(x):
186		return x // return ±0 || NaN()
187	case IsInf(x, 0):
188		return NaN()
189	}
190
191	// make argument positive but save the sign
192	sign := false
193	if x < 0 {
194		x = -x
195		sign = true
196	}
197
198	j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
199	y := float64(j)      // integer part of x/(Pi/4), as float
200
201	// map zeros to origin
202	if j&1 == 1 {
203		j++
204		y++
205	}
206	j &= 7 // octant modulo 2Pi radians (360 degrees)
207	// reflect in x axis
208	if j > 3 {
209		sign = !sign
210		j -= 4
211	}
212
213	z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
214	zz := z * z
215	if j == 1 || j == 2 {
216		y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
217	} else {
218		y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
219	}
220	if sign {
221		y = -y
222	}
223	return y
224}
225