1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 /*
28  * g726_24.c
29  *
30  * Description:
31  *
32  * g723_24_encoder(), g723_24_decoder()
33  *
34  * These routines comprise an implementation of the CCITT G.723 24 Kbps
35  * ADPCM coding algorithm.  Essentially, this implementation is identical to
36  * the bit level description except for a few deviations which take advantage
37  * of workstation attributes, such as hardware 2's complement arithmetic.
38  *
39  * The ITU-T G.726 coder is an adaptive differential pulse code modulation
40  * (ADPCM) waveform coding algorithm, suitable for coding of digitized
41  * telephone bandwidth (0.3-3.4 kHz) speech or audio signals sampled at 8 kHz.
42  * This coder operates on a sample-by-sample basis. Input samples may be
43  * represented in linear PCM or companded 8-bit G.711 (m-law/A-law) formats
44  * (i.e., 64 kbps). For 32 kbps operation, each sample is converted into a
45  * 4-bit quantized difference signal resulting in a compression ratio of
46  * 2:1 over the G.711 format. For 24 kbps 40 kbps operation, the quantized
47  * difference signal is 3 bits and 5 bits, respectively.
48  *
49  * $Revision$
50  * $Author$
51  * $Date$
52  */
53 #include "g72x.h"
54 #include "private.h"
55 
56 /*
57  * Maps G.723_24 code word to reconstructed scale factor normalized log
58  * magnitude values.
59  */
60 static short	_dqlntab[8] = {-2048, 135, 273, 373, 373, 273, 135, -2048};
61 
62 /* Maps G.723_24 code word to log of scale factor multiplier. */
63 static short	_witab[8] = {-128, 960, 4384, 18624, 18624, 4384, 960, -128};
64 
65 /*
66  * Maps G.723_24 code words to a set of values whose long and short
67  * term averages are computed and then compared to give an indication
68  * how stationary (steady state) the signal is.
69  */
70 static short	_fitab[8] = {0, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0};
71 
72 static int qtab_723_24[3] = {8, 218, 331};
73 
74 /*
75  * g723_24_encoder()
76  *
77  * Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code.
78  * Returns -1 if invalid input coding value.
79  */
80 int
g726_24_encoder(int sl,int in_coding,g726_state * state_ptr)81 g726_24_encoder(
82 	int		sl,
83 	int		in_coding,
84 	g726_state *state_ptr)
85 {
86 	int		sezi;
87 	int		sei;
88 	int		sez;			/* ACCUM */
89 	int		se;
90 	int		d;				/* SUBTA */
91 	int		y;				/* MIX */
92 	int		i;
93 	int		dq;
94 	int		sr;				/* ADDB */
95 	int		dqsez;			/* ADDC */
96 
97 	switch (in_coding) {	/* linearize input sample to 14-bit PCM */
98 	case AUDIO_ENCODING_ALAW:
99 		sl = alaw2linear(sl) >> 2;
100 		break;
101 	case AUDIO_ENCODING_ULAW:
102 		sl = ulaw2linear(sl) >> 2;
103 		break;
104 	case AUDIO_ENCODING_LINEAR:
105 		sl >>= 2;		/* sl of 14-bit dynamic range */
106 		break;
107 	default:
108 		return (-1);
109 	}
110 
111 	sezi = predictor_zero(state_ptr);
112 	sez = sezi >> 1;
113 	sei = sezi + predictor_pole(state_ptr);
114 	se = sei >> 1;			/* se = estimated signal */
115 
116 	d = sl - se;			/* d = estimation diff. */
117 
118 	/* quantize prediction difference d */
119 	y = step_size(state_ptr);	/* quantizer step size */
120 	i = quantize(d, y, qtab_723_24, 3);	/* i = ADPCM code */
121 	dq = reconstruct(i & 4, _dqlntab[i], y); /* quantized diff. */
122 
123 	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconstructed signal */
124 
125 	dqsez = sr + sez - se;		/* pole prediction diff. */
126 
127 	update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
128 
129 	return (i);
130 }
131 
132 /*
133  * g723_24_decoder()
134  *
135  * Decodes a 3-bit CCITT G.723_24 ADPCM code and returns
136  * the resulting 16-bit linear PCM, A-law or u-law sample value.
137  * -1 is returned if the output coding is unknown.
138  */
139 int
g726_24_decoder(int i,int out_coding,g726_state * state_ptr)140 g726_24_decoder(
141 	int		i,
142 	int		out_coding,
143 	g726_state *state_ptr)
144 {
145 	int		sezi;
146 	int		sez;			/* ACCUM */
147 	int		sei;
148 	int		se;
149 	int		y;				/* MIX */
150 	int		dq;
151 	int		sr;				/* ADDB */
152 	int		dqsez;
153 
154 	i &= 0x07;				/* mask to get proper bits */
155 	sezi = predictor_zero(state_ptr);
156 	sez = sezi >> 1;
157 	sei = sezi + predictor_pole(state_ptr);
158 	se = sei >> 1;			/* se = estimated signal */
159 
160 	y = step_size(state_ptr);	/* adaptive quantizer step size */
161 	dq = reconstruct(i & 0x04, _dqlntab[i], y); /* unquantize pred diff */
162 
163 	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); /* reconst. signal */
164 
165 	dqsez = sr - se + sez;			/* pole prediction diff. */
166 
167 	update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
168 
169 	switch (out_coding) {
170 	case AUDIO_ENCODING_ALAW:
171 		return (tandem_adjust_alaw(sr, se, y, i, 4, qtab_723_24));
172 	case AUDIO_ENCODING_ULAW:
173 		return (tandem_adjust_ulaw(sr, se, y, i, 4, qtab_723_24));
174 	case AUDIO_ENCODING_LINEAR:
175 		return (sr << 2);	/* sr was of 14-bit dynamic range */
176 	default:
177 		return (-1);
178 	}
179 }
180 
181