1 /*
2  * Functions managing stream_interface structures
3  *
4  * Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  */
12 
13 #include <errno.h>
14 #include <fcntl.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 
18 #include <sys/socket.h>
19 #include <sys/stat.h>
20 #include <sys/types.h>
21 
22 #include <haproxy/api.h>
23 #include <haproxy/applet.h>
24 #include <haproxy/channel.h>
25 #include <haproxy/connection.h>
26 #include <haproxy/dynbuf.h>
27 #include <haproxy/http_htx.h>
28 #include <haproxy/pipe-t.h>
29 #include <haproxy/pipe.h>
30 #include <haproxy/proxy.h>
31 #include <haproxy/stream-t.h>
32 #include <haproxy/stream_interface.h>
33 #include <haproxy/task.h>
34 #include <haproxy/ticks.h>
35 #include <haproxy/time.h>
36 #include <haproxy/tools.h>
37 
38 
39 /* functions used by default on a detached stream-interface */
40 static void stream_int_shutr(struct stream_interface *si);
41 static void stream_int_shutw(struct stream_interface *si);
42 static void stream_int_chk_rcv(struct stream_interface *si);
43 static void stream_int_chk_snd(struct stream_interface *si);
44 
45 /* functions used on a conn_stream-based stream-interface */
46 static void stream_int_shutr_conn(struct stream_interface *si);
47 static void stream_int_shutw_conn(struct stream_interface *si);
48 static void stream_int_chk_rcv_conn(struct stream_interface *si);
49 static void stream_int_chk_snd_conn(struct stream_interface *si);
50 
51 /* functions used on an applet-based stream-interface */
52 static void stream_int_shutr_applet(struct stream_interface *si);
53 static void stream_int_shutw_applet(struct stream_interface *si);
54 static void stream_int_chk_rcv_applet(struct stream_interface *si);
55 static void stream_int_chk_snd_applet(struct stream_interface *si);
56 
57 /* last read notification */
58 static void stream_int_read0(struct stream_interface *si);
59 
60 /* post-IO notification callback */
61 static void stream_int_notify(struct stream_interface *si);
62 
63 /* stream-interface operations for embedded tasks */
64 struct si_ops si_embedded_ops = {
65 	.chk_rcv = stream_int_chk_rcv,
66 	.chk_snd = stream_int_chk_snd,
67 	.shutr   = stream_int_shutr,
68 	.shutw   = stream_int_shutw,
69 };
70 
71 /* stream-interface operations for connections */
72 struct si_ops si_conn_ops = {
73 	.chk_rcv = stream_int_chk_rcv_conn,
74 	.chk_snd = stream_int_chk_snd_conn,
75 	.shutr   = stream_int_shutr_conn,
76 	.shutw   = stream_int_shutw_conn,
77 };
78 
79 /* stream-interface operations for connections */
80 struct si_ops si_applet_ops = {
81 	.chk_rcv = stream_int_chk_rcv_applet,
82 	.chk_snd = stream_int_chk_snd_applet,
83 	.shutr   = stream_int_shutr_applet,
84 	.shutw   = stream_int_shutw_applet,
85 };
86 
87 
88 /* Functions used to communicate with a conn_stream. The first two may be used
89  * directly, the last one is mostly a wake callback.
90  */
91 int si_cs_recv(struct conn_stream *cs);
92 int si_cs_send(struct conn_stream *cs);
93 static int si_cs_process(struct conn_stream *cs);
94 
95 
96 struct data_cb si_conn_cb = {
97 	.wake    = si_cs_process,
98 	.name    = "STRM",
99 };
100 
101 /*
102  * This function only has to be called once after a wakeup event in case of
103  * suspected timeout. It controls the stream interface timeouts and sets
104  * si->flags accordingly. It does NOT close anything, as this timeout may
105  * be used for any purpose. It returns 1 if the timeout fired, otherwise
106  * zero.
107  */
si_check_timeouts(struct stream_interface * si)108 int si_check_timeouts(struct stream_interface *si)
109 {
110 	if (tick_is_expired(si->exp, now_ms)) {
111 		si->flags |= SI_FL_EXP;
112 		return 1;
113 	}
114 	return 0;
115 }
116 
117 /* to be called only when in SI_ST_DIS with SI_FL_ERR */
si_report_error(struct stream_interface * si)118 void si_report_error(struct stream_interface *si)
119 {
120 	if (!si->err_type)
121 		si->err_type = SI_ET_DATA_ERR;
122 
123 	si_oc(si)->flags |= CF_WRITE_ERROR;
124 	si_ic(si)->flags |= CF_READ_ERROR;
125 }
126 
127 /*
128  * Returns a message to the client ; the connection is shut down for read,
129  * and the request is cleared so that no server connection can be initiated.
130  * The buffer is marked for read shutdown on the other side to protect the
131  * message, and the buffer write is enabled. The message is contained in a
132  * "chunk". If it is null, then an empty message is used. The reply buffer does
133  * not need to be empty before this, and its contents will not be overwritten.
134  * The primary goal of this function is to return error messages to a client.
135  */
si_retnclose(struct stream_interface * si,const struct buffer * msg)136 void si_retnclose(struct stream_interface *si,
137 			  const struct buffer *msg)
138 {
139 	struct channel *ic = si_ic(si);
140 	struct channel *oc = si_oc(si);
141 
142 	channel_auto_read(ic);
143 	channel_abort(ic);
144 	channel_auto_close(ic);
145 	channel_erase(ic);
146 	channel_truncate(oc);
147 
148 	if (likely(msg && msg->data))
149 		co_inject(oc, msg->area, msg->data);
150 
151 	oc->wex = tick_add_ifset(now_ms, oc->wto);
152 	channel_auto_read(oc);
153 	channel_auto_close(oc);
154 	channel_shutr_now(oc);
155 }
156 
157 /*
158  * This function performs a shutdown-read on a detached stream interface in a
159  * connected or init state (it does nothing for other states). It either shuts
160  * the read side or marks itself as closed. The buffer flags are updated to
161  * reflect the new state. If the stream interface has SI_FL_NOHALF, we also
162  * forward the close to the write side. The owner task is woken up if it exists.
163  */
stream_int_shutr(struct stream_interface * si)164 static void stream_int_shutr(struct stream_interface *si)
165 {
166 	struct channel *ic = si_ic(si);
167 
168 	si_rx_shut_blk(si);
169 	if (ic->flags & CF_SHUTR)
170 		return;
171 	ic->flags |= CF_SHUTR;
172 	ic->rex = TICK_ETERNITY;
173 
174 	if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
175 		return;
176 
177 	if (si_oc(si)->flags & CF_SHUTW) {
178 		si->state = SI_ST_DIS;
179 		si->exp = TICK_ETERNITY;
180 	}
181 	else if (si->flags & SI_FL_NOHALF) {
182 		/* we want to immediately forward this close to the write side */
183 		return stream_int_shutw(si);
184 	}
185 
186 	/* note that if the task exists, it must unregister itself once it runs */
187 	if (!(si->flags & SI_FL_DONT_WAKE))
188 		task_wakeup(si_task(si), TASK_WOKEN_IO);
189 }
190 
191 /*
192  * This function performs a shutdown-write on a detached stream interface in a
193  * connected or init state (it does nothing for other states). It either shuts
194  * the write side or marks itself as closed. The buffer flags are updated to
195  * reflect the new state. It does also close everything if the SI was marked as
196  * being in error state. The owner task is woken up if it exists.
197  */
stream_int_shutw(struct stream_interface * si)198 static void stream_int_shutw(struct stream_interface *si)
199 {
200 	struct channel *ic = si_ic(si);
201 	struct channel *oc = si_oc(si);
202 
203 	oc->flags &= ~CF_SHUTW_NOW;
204 	if (oc->flags & CF_SHUTW)
205 		return;
206 	oc->flags |= CF_SHUTW;
207 	oc->wex = TICK_ETERNITY;
208 	si_done_get(si);
209 
210 	if (tick_isset(si->hcto)) {
211 		ic->rto = si->hcto;
212 		ic->rex = tick_add(now_ms, ic->rto);
213 	}
214 
215 	switch (si->state) {
216 	case SI_ST_RDY:
217 	case SI_ST_EST:
218 		/* we have to shut before closing, otherwise some short messages
219 		 * may never leave the system, especially when there are remaining
220 		 * unread data in the socket input buffer, or when nolinger is set.
221 		 * However, if SI_FL_NOLINGER is explicitly set, we know there is
222 		 * no risk so we close both sides immediately.
223 		 */
224 		if (!(si->flags & (SI_FL_ERR | SI_FL_NOLINGER)) &&
225 		    !(ic->flags & (CF_SHUTR|CF_DONT_READ)))
226 			return;
227 
228 		/* fall through */
229 	case SI_ST_CON:
230 	case SI_ST_CER:
231 	case SI_ST_QUE:
232 	case SI_ST_TAR:
233 		/* Note that none of these states may happen with applets */
234 		si->state = SI_ST_DIS;
235 		/* fall through */
236 	default:
237 		si->flags &= ~SI_FL_NOLINGER;
238 		si_rx_shut_blk(si);
239 		ic->flags |= CF_SHUTR;
240 		ic->rex = TICK_ETERNITY;
241 		si->exp = TICK_ETERNITY;
242 	}
243 
244 	/* note that if the task exists, it must unregister itself once it runs */
245 	if (!(si->flags & SI_FL_DONT_WAKE))
246 		task_wakeup(si_task(si), TASK_WOKEN_IO);
247 }
248 
249 /* default chk_rcv function for scheduled tasks */
stream_int_chk_rcv(struct stream_interface * si)250 static void stream_int_chk_rcv(struct stream_interface *si)
251 {
252 	struct channel *ic = si_ic(si);
253 
254 	DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
255 		__FUNCTION__,
256 		si, si->state, ic->flags, si_oc(si)->flags);
257 
258 	if (ic->pipe) {
259 		/* stop reading */
260 		si_rx_room_blk(si);
261 	}
262 	else {
263 		/* (re)start reading */
264 		tasklet_wakeup(si->wait_event.tasklet);
265 		if (!(si->flags & SI_FL_DONT_WAKE))
266 			task_wakeup(si_task(si), TASK_WOKEN_IO);
267 	}
268 }
269 
270 /* default chk_snd function for scheduled tasks */
stream_int_chk_snd(struct stream_interface * si)271 static void stream_int_chk_snd(struct stream_interface *si)
272 {
273 	struct channel *oc = si_oc(si);
274 
275 	DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
276 		__FUNCTION__,
277 		si, si->state, si_ic(si)->flags, oc->flags);
278 
279 	if (unlikely(si->state != SI_ST_EST || (oc->flags & CF_SHUTW)))
280 		return;
281 
282 	if (!(si->flags & SI_FL_WAIT_DATA) ||        /* not waiting for data */
283 	    channel_is_empty(oc))           /* called with nothing to send ! */
284 		return;
285 
286 	/* Otherwise there are remaining data to be sent in the buffer,
287 	 * so we tell the handler.
288 	 */
289 	si->flags &= ~SI_FL_WAIT_DATA;
290 	if (!tick_isset(oc->wex))
291 		oc->wex = tick_add_ifset(now_ms, oc->wto);
292 
293 	if (!(si->flags & SI_FL_DONT_WAKE))
294 		task_wakeup(si_task(si), TASK_WOKEN_IO);
295 }
296 
297 /* Register an applet to handle a stream_interface as a new appctx. The SI will
298  * wake it up every time it is solicited. The appctx must be deleted by the task
299  * handler using si_release_endpoint(), possibly from within the function itself.
300  * It also pre-initializes the applet's context and returns it (or NULL in case
301  * it could not be allocated).
302  */
si_register_handler(struct stream_interface * si,struct applet * app)303 struct appctx *si_register_handler(struct stream_interface *si, struct applet *app)
304 {
305 	struct appctx *appctx;
306 
307 	DPRINTF(stderr, "registering handler %p for si %p (was %p)\n", app, si, si_task(si));
308 
309 	appctx = si_alloc_appctx(si, app);
310 	if (!appctx)
311 		return NULL;
312 
313 	si_cant_get(si);
314 	appctx_wakeup(appctx);
315 	return si_appctx(si);
316 }
317 
318 /* This callback is used to send a valid PROXY protocol line to a socket being
319  * established. It returns 0 if it fails in a fatal way or needs to poll to go
320  * further, otherwise it returns non-zero and removes itself from the connection's
321  * flags (the bit is provided in <flag> by the caller). It is designed to be
322  * called by the connection handler and relies on it to commit polling changes.
323  * Note that it can emit a PROXY line by relying on the other end's address
324  * when the connection is attached to a stream interface, or by resolving the
325  * local address otherwise (also called a LOCAL line).
326  */
conn_si_send_proxy(struct connection * conn,unsigned int flag)327 int conn_si_send_proxy(struct connection *conn, unsigned int flag)
328 {
329 	if (!conn_ctrl_ready(conn))
330 		goto out_error;
331 
332 	/* If we have a PROXY line to send, we'll use this to validate the
333 	 * connection, in which case the connection is validated only once
334 	 * we've sent the whole proxy line. Otherwise we use connect().
335 	 */
336 	if (conn->send_proxy_ofs) {
337 		const struct conn_stream *cs;
338 		int ret;
339 
340 		/* If there is no mux attached to the connection, it means the
341 		 * connection context is a conn-stream.
342 		 */
343 		cs = (conn->mux ? cs_get_first(conn) : conn->ctx);
344 
345 		/* The target server expects a PROXY line to be sent first.
346 		 * If the send_proxy_ofs is negative, it corresponds to the
347 		 * offset to start sending from then end of the proxy string
348 		 * (which is recomputed every time since it's constant). If
349 		 * it is positive, it means we have to send from the start.
350 		 * We can only send a "normal" PROXY line when the connection
351 		 * is attached to a stream interface. Otherwise we can only
352 		 * send a LOCAL line (eg: for use with health checks).
353 		 */
354 
355 		if (cs && cs->data_cb == &si_conn_cb) {
356 			struct stream_interface *si = cs->data;
357 			struct conn_stream *remote_cs = objt_cs(si_opposite(si)->end);
358 			struct stream *strm = si_strm(si);
359 
360 			ret = make_proxy_line(trash.area, trash.size,
361 					      objt_server(conn->target),
362 					      remote_cs ? remote_cs->conn : NULL,
363 					      strm);
364 		}
365 		else {
366 			/* The target server expects a LOCAL line to be sent first. Retrieving
367 			 * local or remote addresses may fail until the connection is established.
368 			 */
369 			if (!conn_get_src(conn) || !conn_get_dst(conn))
370 				goto out_wait;
371 
372 			ret = make_proxy_line(trash.area, trash.size,
373 					      objt_server(conn->target), conn,
374 					      NULL);
375 		}
376 
377 		if (!ret)
378 			goto out_error;
379 
380 		if (conn->send_proxy_ofs > 0)
381 			conn->send_proxy_ofs = -ret; /* first call */
382 
383 		/* we have to send trash from (ret+sp for -sp bytes). If the
384 		 * data layer has a pending write, we'll also set MSG_MORE.
385 		 */
386 		ret = conn_ctrl_send(conn,
387 				     trash.area + ret + conn->send_proxy_ofs,
388 		                     -conn->send_proxy_ofs,
389 		                     (conn->subs && conn->subs->events & SUB_RETRY_SEND) ? CO_SFL_MSG_MORE : 0);
390 
391 		if (ret < 0)
392 			goto out_error;
393 
394 		conn->send_proxy_ofs += ret; /* becomes zero once complete */
395 		if (conn->send_proxy_ofs != 0)
396 			goto out_wait;
397 
398 		/* OK we've sent the whole line, we're connected */
399 	}
400 
401 	/* The connection is ready now, simply return and let the connection
402 	 * handler notify upper layers if needed.
403 	 */
404 	conn->flags &= ~CO_FL_WAIT_L4_CONN;
405 	conn->flags &= ~flag;
406 	return 1;
407 
408  out_error:
409 	/* Write error on the file descriptor */
410 	conn->flags |= CO_FL_ERROR;
411 	return 0;
412 
413  out_wait:
414 	return 0;
415 }
416 
417 
418 /* This function is the equivalent to si_update() except that it's
419  * designed to be called from outside the stream handlers, typically the lower
420  * layers (applets, connections) after I/O completion. After updating the stream
421  * interface and timeouts, it will try to forward what can be forwarded, then to
422  * wake the associated task up if an important event requires special handling.
423  * It may update SI_FL_WAIT_DATA and/or SI_FL_RXBLK_ROOM, that the callers are
424  * encouraged to watch to take appropriate action.
425  * It should not be called from within the stream itself, si_update()
426  * is designed for this.
427  */
stream_int_notify(struct stream_interface * si)428 static void stream_int_notify(struct stream_interface *si)
429 {
430 	struct channel *ic = si_ic(si);
431 	struct channel *oc = si_oc(si);
432 	struct stream_interface *sio = si_opposite(si);
433 	struct task *task = si_task(si);
434 
435 	/* process consumer side */
436 	if (channel_is_empty(oc)) {
437 		struct connection *conn = objt_cs(si->end) ? __objt_cs(si->end)->conn : NULL;
438 
439 		if (((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW) &&
440 		    (si->state == SI_ST_EST) && (!conn || !(conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS))))
441 			si_shutw(si);
442 		oc->wex = TICK_ETERNITY;
443 	}
444 
445 	/* indicate that we may be waiting for data from the output channel or
446 	 * we're about to close and can't expect more data if SHUTW_NOW is there.
447 	 */
448 	if (!(oc->flags & (CF_SHUTW|CF_SHUTW_NOW)))
449 		si->flags |= SI_FL_WAIT_DATA;
450 	else if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW)
451 		si->flags &= ~SI_FL_WAIT_DATA;
452 
453 	/* update OC timeouts and wake the other side up if it's waiting for room */
454 	if (oc->flags & CF_WRITE_ACTIVITY) {
455 		if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
456 		    !channel_is_empty(oc))
457 			if (tick_isset(oc->wex))
458 				oc->wex = tick_add_ifset(now_ms, oc->wto);
459 
460 		if (!(si->flags & SI_FL_INDEP_STR))
461 			if (tick_isset(ic->rex))
462 				ic->rex = tick_add_ifset(now_ms, ic->rto);
463 	}
464 
465 	if (oc->flags & CF_DONT_READ)
466 		si_rx_chan_blk(sio);
467 	else
468 		si_rx_chan_rdy(sio);
469 
470 	/* Notify the other side when we've injected data into the IC that
471 	 * needs to be forwarded. We can do fast-forwarding as soon as there
472 	 * are output data, but we avoid doing this if some of the data are
473 	 * not yet scheduled for being forwarded, because it is very likely
474 	 * that it will be done again immediately afterwards once the following
475 	 * data are parsed (eg: HTTP chunking). We only SI_FL_RXBLK_ROOM once
476 	 * we've emptied *some* of the output buffer, and not just when there
477 	 * is available room, because applets are often forced to stop before
478 	 * the buffer is full. We must not stop based on input data alone because
479 	 * an HTTP parser might need more data to complete the parsing.
480 	 */
481 	if (!channel_is_empty(ic) &&
482 	    (sio->flags & SI_FL_WAIT_DATA) &&
483 	    (!(ic->flags & CF_EXPECT_MORE) || c_full(ic) || ci_data(ic) == 0 || ic->pipe)) {
484 		int new_len, last_len;
485 
486 		last_len = co_data(ic);
487 		if (ic->pipe)
488 			last_len += ic->pipe->data;
489 
490 		si_chk_snd(sio);
491 
492 		new_len = co_data(ic);
493 		if (ic->pipe)
494 			new_len += ic->pipe->data;
495 
496 		/* check if the consumer has freed some space either in the
497 		 * buffer or in the pipe.
498 		 */
499 		if (new_len < last_len)
500 			si_rx_room_rdy(si);
501 	}
502 
503 	if (!(ic->flags & CF_DONT_READ))
504 		si_rx_chan_rdy(si);
505 
506 	si_chk_rcv(si);
507 	si_chk_rcv(sio);
508 
509 	if (si_rx_blocked(si)) {
510 		ic->rex = TICK_ETERNITY;
511 	}
512 	else if ((ic->flags & (CF_SHUTR|CF_READ_PARTIAL)) == CF_READ_PARTIAL) {
513 		/* we must re-enable reading if si_chk_snd() has freed some space */
514 		if (!(ic->flags & CF_READ_NOEXP) && tick_isset(ic->rex))
515 			ic->rex = tick_add_ifset(now_ms, ic->rto);
516 	}
517 
518 	/* wake the task up only when needed */
519 	if (/* changes on the production side */
520 	    (ic->flags & (CF_READ_NULL|CF_READ_ERROR)) ||
521 	    !si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST) ||
522 	    (si->flags & SI_FL_ERR) ||
523 	    ((ic->flags & CF_READ_PARTIAL) &&
524 	     ((ic->flags & CF_EOI) || !ic->to_forward || sio->state != SI_ST_EST)) ||
525 
526 	    /* changes on the consumption side */
527 	    (oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) ||
528 	    ((oc->flags & CF_WRITE_ACTIVITY) &&
529 	     ((oc->flags & CF_SHUTW) ||
530 	      (((oc->flags & CF_WAKE_WRITE) ||
531 		!(oc->flags & (CF_AUTO_CLOSE|CF_SHUTW_NOW|CF_SHUTW))) &&
532 	       (sio->state != SI_ST_EST ||
533 	        (channel_is_empty(oc) && !oc->to_forward)))))) {
534 		task_wakeup(task, TASK_WOKEN_IO);
535 	}
536 	else {
537 		/* Update expiration date for the task and requeue it */
538 		task->expire = tick_first((tick_is_expired(task->expire, now_ms) ? 0 : task->expire),
539 					  tick_first(tick_first(ic->rex, ic->wex),
540 						     tick_first(oc->rex, oc->wex)));
541 
542 		task->expire = tick_first(task->expire, ic->analyse_exp);
543 		task->expire = tick_first(task->expire, oc->analyse_exp);
544 
545 		if (si->exp)
546 			task->expire = tick_first(task->expire, si->exp);
547 
548 		if (sio->exp)
549 			task->expire = tick_first(task->expire, sio->exp);
550 
551 		task_queue(task);
552 	}
553 	if (ic->flags & CF_READ_ACTIVITY)
554 		ic->flags &= ~CF_READ_DONTWAIT;
555 }
556 
557 
558 /* Called by I/O handlers after completion.. It propagates
559  * connection flags to the stream interface, updates the stream (which may or
560  * may not take this opportunity to try to forward data), then update the
561  * connection's polling based on the channels and stream interface's final
562  * states. The function always returns 0.
563  */
si_cs_process(struct conn_stream * cs)564 static int si_cs_process(struct conn_stream *cs)
565 {
566 	struct connection *conn = cs->conn;
567 	struct stream_interface *si = cs->data;
568 	struct channel *ic = si_ic(si);
569 	struct channel *oc = si_oc(si);
570 
571 	/* If we have data to send, try it now */
572 	if (!channel_is_empty(oc) && !(si->wait_event.events & SUB_RETRY_SEND))
573 		si_cs_send(cs);
574 
575 	/* First step, report to the stream-int what was detected at the
576 	 * connection layer : errors and connection establishment.
577 	 * Only add SI_FL_ERR if we're connected, or we're attempting to
578 	 * connect, we may get there because we got woken up, but only run
579 	 * after process_stream() noticed there were an error, and decided
580 	 * to retry to connect, the connection may still have CO_FL_ERROR,
581 	 * and we don't want to add SI_FL_ERR back
582 	 *
583 	 * Note: This test is only required because si_cs_process is also the SI
584 	 *       wake callback. Otherwise si_cs_recv()/si_cs_send() already take
585 	 *       care of it.
586 	 */
587 	if (si->state >= SI_ST_CON &&
588 	    (conn->flags & CO_FL_ERROR || cs->flags & CS_FL_ERROR))
589 		si->flags |= SI_FL_ERR;
590 
591 	/* If we had early data, and the handshake ended, then
592 	 * we can remove the flag, and attempt to wake the task up,
593 	 * in the event there's an analyser waiting for the end of
594 	 * the handshake.
595 	 */
596 	if (!(conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS)) &&
597 	    (cs->flags & CS_FL_WAIT_FOR_HS)) {
598 		cs->flags &= ~CS_FL_WAIT_FOR_HS;
599 		task_wakeup(si_task(si), TASK_WOKEN_MSG);
600 	}
601 
602 	if (!si_state_in(si->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO) &&
603 	    (conn->flags & CO_FL_WAIT_XPRT) == 0) {
604 		si->exp = TICK_ETERNITY;
605 		oc->flags |= CF_WRITE_NULL;
606 		if (si->state == SI_ST_CON)
607 			si->state = SI_ST_RDY;
608 	}
609 
610 	/* Report EOS on the channel if it was reached from the mux point of
611 	 * view.
612 	 *
613 	 * Note: This test is only required because si_cs_process is also the SI
614 	 *       wake callback. Otherwise si_cs_recv()/si_cs_send() already take
615 	 *       care of it.
616 	 */
617 	if (cs->flags & CS_FL_EOS && !(ic->flags & CF_SHUTR)) {
618 		/* we received a shutdown */
619 		ic->flags |= CF_READ_NULL;
620 		if (ic->flags & CF_AUTO_CLOSE)
621 			channel_shutw_now(ic);
622 		stream_int_read0(si);
623 	}
624 
625 	/* Report EOI on the channel if it was reached from the mux point of
626 	 * view.
627 	 *
628 	 * Note: This test is only required because si_cs_process is also the SI
629 	 *       wake callback. Otherwise si_cs_recv()/si_cs_send() already take
630 	 *       care of it.
631 	 */
632 	if ((cs->flags & CS_FL_EOI) && !(ic->flags & CF_EOI))
633 		ic->flags |= (CF_EOI|CF_READ_PARTIAL);
634 
635 	/* Second step : update the stream-int and channels, try to forward any
636 	 * pending data, then possibly wake the stream up based on the new
637 	 * stream-int status.
638 	 */
639 	stream_int_notify(si);
640 	stream_release_buffers(si_strm(si));
641 	return 0;
642 }
643 
644 /*
645  * This function is called to send buffer data to a stream socket.
646  * It calls the mux layer's snd_buf function. It relies on the
647  * caller to commit polling changes. The caller should check conn->flags
648  * for errors.
649  */
si_cs_send(struct conn_stream * cs)650 int si_cs_send(struct conn_stream *cs)
651 {
652 	struct connection *conn = cs->conn;
653 	struct stream_interface *si = cs->data;
654 	struct channel *oc = si_oc(si);
655 	int ret;
656 	int did_send = 0;
657 
658 	if (conn->flags & CO_FL_ERROR || cs->flags & (CS_FL_ERROR|CS_FL_ERR_PENDING)) {
659 		/* We're probably there because the tasklet was woken up,
660 		 * but process_stream() ran before, detected there were an
661 		 * error and put the si back to SI_ST_TAR. There's still
662 		 * CO_FL_ERROR on the connection but we don't want to add
663 		 * SI_FL_ERR back, so give up
664 		 */
665 		if (si->state < SI_ST_CON)
666 			return 0;
667 		si->flags |= SI_FL_ERR;
668 		return 1;
669 	}
670 
671 	/* We're already waiting to be able to send, give up */
672 	if (si->wait_event.events & SUB_RETRY_SEND)
673 		return 0;
674 
675 	/* we might have been called just after an asynchronous shutw */
676 	if (oc->flags & CF_SHUTW)
677 		return 1;
678 
679 	/* we must wait because the mux is not installed yet */
680 	if (!conn->mux)
681 		return 0;
682 
683 	if (oc->pipe && conn->xprt->snd_pipe && conn->mux->snd_pipe) {
684 		ret = conn->mux->snd_pipe(cs, oc->pipe);
685 		if (ret > 0)
686 			did_send = 1;
687 
688 		if (!oc->pipe->data) {
689 			put_pipe(oc->pipe);
690 			oc->pipe = NULL;
691 		}
692 
693 		if (oc->pipe)
694 			goto end;
695 	}
696 
697 	/* At this point, the pipe is empty, but we may still have data pending
698 	 * in the normal buffer.
699 	 */
700 	if (co_data(oc)) {
701 		/* when we're here, we already know that there is no spliced
702 		 * data left, and that there are sendable buffered data.
703 		 */
704 
705 		/* check if we want to inform the kernel that we're interested in
706 		 * sending more data after this call. We want this if :
707 		 *  - we're about to close after this last send and want to merge
708 		 *    the ongoing FIN with the last segment.
709 		 *  - we know we can't send everything at once and must get back
710 		 *    here because of unaligned data
711 		 *  - there is still a finite amount of data to forward
712 		 * The test is arranged so that the most common case does only 2
713 		 * tests.
714 		 */
715 		unsigned int send_flag = 0;
716 
717 		if ((!(oc->flags & (CF_NEVER_WAIT|CF_SEND_DONTWAIT)) &&
718 		     ((oc->to_forward && oc->to_forward != CHN_INFINITE_FORWARD) ||
719 		      (oc->flags & CF_EXPECT_MORE) ||
720 		      (IS_HTX_STRM(si_strm(si)) &&
721 		       (!(oc->flags & (CF_EOI|CF_SHUTR)) && htx_expect_more(htxbuf(&oc->buf)))))) ||
722 		    ((oc->flags & CF_ISRESP) &&
723 		     ((oc->flags & (CF_AUTO_CLOSE|CF_SHUTW_NOW)) == (CF_AUTO_CLOSE|CF_SHUTW_NOW))))
724 			send_flag |= CO_SFL_MSG_MORE;
725 
726 		if (oc->flags & CF_STREAMER)
727 			send_flag |= CO_SFL_STREAMER;
728 
729 		if ((si->flags & SI_FL_L7_RETRY) && !b_data(&si->l7_buffer)) {
730 			struct stream *s = si_strm(si);
731 			/* If we want to be able to do L7 retries, copy
732 			 * the data we're about to send, so that we are able
733 			 * to resend them if needed
734 			 */
735 			/* Try to allocate a buffer if we had none.
736 			 * If it fails, the next test will just
737 			 * disable the l7 retries by setting
738 			 * l7_conn_retries to 0.
739 			 */
740 			if (!s->txn || (s->txn->req.msg_state != HTTP_MSG_DONE))
741 				si->flags &= ~SI_FL_L7_RETRY;
742 			else {
743 				if (b_alloc(&si->l7_buffer) == NULL)
744 					si->flags &= ~SI_FL_L7_RETRY;
745 				else {
746 					memcpy(b_orig(&si->l7_buffer),
747 					       b_orig(&oc->buf),
748 					       b_size(&oc->buf));
749 					si->l7_buffer.head = co_data(oc);
750 					b_add(&si->l7_buffer, co_data(oc));
751 				}
752 
753 			}
754 		}
755 
756 		ret = cs->conn->mux->snd_buf(cs, &oc->buf, co_data(oc), send_flag);
757 		if (ret > 0) {
758 			did_send = 1;
759 			co_set_data(oc, co_data(oc) - ret);
760 			c_realign_if_empty(oc);
761 
762 			if (!co_data(oc)) {
763 				/* Always clear both flags once everything has been sent, they're one-shot */
764 				oc->flags &= ~(CF_EXPECT_MORE | CF_SEND_DONTWAIT);
765 			}
766 			/* if some data remain in the buffer, it's only because the
767 			 * system buffers are full, we will try next time.
768 			 */
769 		}
770 	}
771 
772  end:
773 	if (did_send) {
774 		oc->flags |= CF_WRITE_PARTIAL | CF_WROTE_DATA;
775 		if (si->state == SI_ST_CON)
776 			si->state = SI_ST_RDY;
777 
778 		si_rx_room_rdy(si_opposite(si));
779 	}
780 
781 	if (conn->flags & CO_FL_ERROR || cs->flags & (CS_FL_ERROR|CS_FL_ERR_PENDING)) {
782 		si->flags |= SI_FL_ERR;
783 		return 1;
784 	}
785 
786 	/* We couldn't send all of our data, let the mux know we'd like to send more */
787 	if (!channel_is_empty(oc))
788 		conn->mux->subscribe(cs, SUB_RETRY_SEND, &si->wait_event);
789 	return did_send;
790 }
791 
792 /* This is the ->process() function for any stream-interface's wait_event task.
793  * It's assigned during the stream-interface's initialization, for any type of
794  * stream interface. Thus it is always safe to perform a tasklet_wakeup() on a
795  * stream interface, as the presence of the CS is checked there.
796  */
si_cs_io_cb(struct task * t,void * ctx,unsigned int state)797 struct task *si_cs_io_cb(struct task *t, void *ctx, unsigned int state)
798 {
799 	struct stream_interface *si = ctx;
800 	struct conn_stream *cs = objt_cs(si->end);
801 	int ret = 0;
802 
803 	if (!cs)
804 		return t;
805 
806 	if (!(si->wait_event.events & SUB_RETRY_SEND) && !channel_is_empty(si_oc(si)))
807 		ret = si_cs_send(cs);
808 	if (!(si->wait_event.events & SUB_RETRY_RECV))
809 		ret |= si_cs_recv(cs);
810 	if (ret != 0)
811 		si_cs_process(cs);
812 
813 	stream_release_buffers(si_strm(si));
814 	return t;
815 }
816 
817 /* This function is designed to be called from within the stream handler to
818  * update the input channel's expiration timer and the stream interface's
819  * Rx flags based on the channel's flags. It needs to be called only once
820  * after the channel's flags have settled down, and before they are cleared,
821  * though it doesn't harm to call it as often as desired (it just slightly
822  * hurts performance). It must not be called from outside of the stream
823  * handler, as what it does will be used to compute the stream task's
824  * expiration.
825  */
si_update_rx(struct stream_interface * si)826 void si_update_rx(struct stream_interface *si)
827 {
828 	struct channel *ic = si_ic(si);
829 
830 	if (ic->flags & CF_SHUTR) {
831 		si_rx_shut_blk(si);
832 		return;
833 	}
834 
835 	/* Read not closed, update FD status and timeout for reads */
836 	if (ic->flags & CF_DONT_READ)
837 		si_rx_chan_blk(si);
838 	else
839 		si_rx_chan_rdy(si);
840 
841 	if (!channel_is_empty(ic) || !channel_may_recv(ic)) {
842 		/* stop reading, imposed by channel's policy or contents */
843 		si_rx_room_blk(si);
844 	}
845 	else {
846 		/* (re)start reading and update timeout. Note: we don't recompute the timeout
847 		 * every time we get here, otherwise it would risk never to expire. We only
848 		 * update it if is was not yet set. The stream socket handler will already
849 		 * have updated it if there has been a completed I/O.
850 		 */
851 		si_rx_room_rdy(si);
852 	}
853 	if (si->flags & SI_FL_RXBLK_ANY & ~SI_FL_RX_WAIT_EP)
854 		ic->rex = TICK_ETERNITY;
855 	else if (!(ic->flags & CF_READ_NOEXP) && !tick_isset(ic->rex))
856 		ic->rex = tick_add_ifset(now_ms, ic->rto);
857 
858 	si_chk_rcv(si);
859 }
860 
861 /* This function is designed to be called from within the stream handler to
862  * update the output channel's expiration timer and the stream interface's
863  * Tx flags based on the channel's flags. It needs to be called only once
864  * after the channel's flags have settled down, and before they are cleared,
865  * though it doesn't harm to call it as often as desired (it just slightly
866  * hurts performance). It must not be called from outside of the stream
867  * handler, as what it does will be used to compute the stream task's
868  * expiration.
869  */
si_update_tx(struct stream_interface * si)870 void si_update_tx(struct stream_interface *si)
871 {
872 	struct channel *oc = si_oc(si);
873 	struct channel *ic = si_ic(si);
874 
875 	if (oc->flags & CF_SHUTW)
876 		return;
877 
878 	/* Write not closed, update FD status and timeout for writes */
879 	if (channel_is_empty(oc)) {
880 		/* stop writing */
881 		if (!(si->flags & SI_FL_WAIT_DATA)) {
882 			if ((oc->flags & CF_SHUTW_NOW) == 0)
883 				si->flags |= SI_FL_WAIT_DATA;
884 			oc->wex = TICK_ETERNITY;
885 		}
886 		return;
887 	}
888 
889 	/* (re)start writing and update timeout. Note: we don't recompute the timeout
890 	 * every time we get here, otherwise it would risk never to expire. We only
891 	 * update it if is was not yet set. The stream socket handler will already
892 	 * have updated it if there has been a completed I/O.
893 	 */
894 	si->flags &= ~SI_FL_WAIT_DATA;
895 	if (!tick_isset(oc->wex)) {
896 		oc->wex = tick_add_ifset(now_ms, oc->wto);
897 		if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) {
898 			/* Note: depending on the protocol, we don't know if we're waiting
899 			 * for incoming data or not. So in order to prevent the socket from
900 			 * expiring read timeouts during writes, we refresh the read timeout,
901 			 * except if it was already infinite or if we have explicitly setup
902 			 * independent streams.
903 			 */
904 			ic->rex = tick_add_ifset(now_ms, ic->rto);
905 		}
906 	}
907 }
908 
909 /* perform a synchronous send() for the stream interface. The CF_WRITE_NULL and
910  * CF_WRITE_PARTIAL flags are cleared prior to the attempt, and will possibly
911  * be updated in case of success.
912  */
si_sync_send(struct stream_interface * si)913 void si_sync_send(struct stream_interface *si)
914 {
915 	struct channel *oc = si_oc(si);
916 	struct conn_stream *cs;
917 
918 	oc->flags &= ~(CF_WRITE_NULL|CF_WRITE_PARTIAL);
919 
920 	if (oc->flags & CF_SHUTW)
921 		return;
922 
923 	if (channel_is_empty(oc))
924 		return;
925 
926 	if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
927 		return;
928 
929 	cs = objt_cs(si->end);
930 	if (!cs || !cs->conn->mux)
931 		return;
932 
933 	si_cs_send(cs);
934 }
935 
936 /* Updates at once the channel flags, and timers of both stream interfaces of a
937  * same stream, to complete the work after the analysers, then updates the data
938  * layer below. This will ensure that any synchronous update performed at the
939  * data layer will be reflected in the channel flags and/or stream-interface.
940  * Note that this does not change the stream interface's current state, though
941  * it updates the previous state to the current one.
942  */
si_update_both(struct stream_interface * si_f,struct stream_interface * si_b)943 void si_update_both(struct stream_interface *si_f, struct stream_interface *si_b)
944 {
945 	struct channel *req = si_ic(si_f);
946 	struct channel *res = si_oc(si_f);
947 
948 	req->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_READ_ATTACHED|CF_WRITE_NULL|CF_WRITE_PARTIAL);
949 	res->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_READ_ATTACHED|CF_WRITE_NULL|CF_WRITE_PARTIAL);
950 
951 	si_f->prev_state = si_f->state;
952 	si_b->prev_state = si_b->state;
953 
954 	/* let's recompute both sides states */
955 	if (si_state_in(si_f->state, SI_SB_RDY|SI_SB_EST))
956 		si_update(si_f);
957 
958 	if (si_state_in(si_b->state, SI_SB_RDY|SI_SB_EST))
959 		si_update(si_b);
960 
961 	/* stream ints are processed outside of process_stream() and must be
962 	 * handled at the latest moment.
963 	 */
964 	if (obj_type(si_f->end) == OBJ_TYPE_APPCTX &&
965 	    ((si_rx_endp_ready(si_f) && !si_rx_blocked(si_f)) ||
966 	     (si_tx_endp_ready(si_f) && !si_tx_blocked(si_f))))
967 		appctx_wakeup(si_appctx(si_f));
968 
969 	if (obj_type(si_b->end) == OBJ_TYPE_APPCTX &&
970 	    ((si_rx_endp_ready(si_b) && !si_rx_blocked(si_b)) ||
971 	     (si_tx_endp_ready(si_b) && !si_tx_blocked(si_b))))
972 		appctx_wakeup(si_appctx(si_b));
973 }
974 
975 /*
976  * This function performs a shutdown-read on a stream interface attached to
977  * a connection in a connected or init state (it does nothing for other
978  * states). It either shuts the read side or marks itself as closed. The buffer
979  * flags are updated to reflect the new state. If the stream interface has
980  * SI_FL_NOHALF, we also forward the close to the write side. If a control
981  * layer is defined, then it is supposed to be a socket layer and file
982  * descriptors are then shutdown or closed accordingly. The function
983  * automatically disables polling if needed.
984  */
stream_int_shutr_conn(struct stream_interface * si)985 static void stream_int_shutr_conn(struct stream_interface *si)
986 {
987 	struct conn_stream *cs = __objt_cs(si->end);
988 	struct channel *ic = si_ic(si);
989 
990 	si_rx_shut_blk(si);
991 	if (ic->flags & CF_SHUTR)
992 		return;
993 	ic->flags |= CF_SHUTR;
994 	ic->rex = TICK_ETERNITY;
995 
996 	if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
997 		return;
998 
999 	if (si->flags & SI_FL_KILL_CONN)
1000 		cs->flags |= CS_FL_KILL_CONN;
1001 
1002 	if (si_oc(si)->flags & CF_SHUTW) {
1003 		cs_close(cs);
1004 		si->state = SI_ST_DIS;
1005 		si->exp = TICK_ETERNITY;
1006 	}
1007 	else if (si->flags & SI_FL_NOHALF) {
1008 		/* we want to immediately forward this close to the write side */
1009 		return stream_int_shutw_conn(si);
1010 	}
1011 }
1012 
1013 /*
1014  * This function performs a shutdown-write on a stream interface attached to
1015  * a connection in a connected or init state (it does nothing for other
1016  * states). It either shuts the write side or marks itself as closed. The
1017  * buffer flags are updated to reflect the new state.  It does also close
1018  * everything if the SI was marked as being in error state. If there is a
1019  * data-layer shutdown, it is called.
1020  */
stream_int_shutw_conn(struct stream_interface * si)1021 static void stream_int_shutw_conn(struct stream_interface *si)
1022 {
1023 	struct conn_stream *cs = __objt_cs(si->end);
1024 	struct channel *ic = si_ic(si);
1025 	struct channel *oc = si_oc(si);
1026 
1027 	oc->flags &= ~CF_SHUTW_NOW;
1028 	if (oc->flags & CF_SHUTW)
1029 		return;
1030 	oc->flags |= CF_SHUTW;
1031 	oc->wex = TICK_ETERNITY;
1032 	si_done_get(si);
1033 
1034 	if (tick_isset(si->hcto)) {
1035 		ic->rto = si->hcto;
1036 		ic->rex = tick_add(now_ms, ic->rto);
1037 	}
1038 
1039 	switch (si->state) {
1040 	case SI_ST_RDY:
1041 	case SI_ST_EST:
1042 		/* we have to shut before closing, otherwise some short messages
1043 		 * may never leave the system, especially when there are remaining
1044 		 * unread data in the socket input buffer, or when nolinger is set.
1045 		 * However, if SI_FL_NOLINGER is explicitly set, we know there is
1046 		 * no risk so we close both sides immediately.
1047 		 */
1048 		if (si->flags & SI_FL_KILL_CONN)
1049 			cs->flags |= CS_FL_KILL_CONN;
1050 
1051 		if (si->flags & SI_FL_ERR) {
1052 			/* quick close, the socket is already shut anyway */
1053 		}
1054 		else if (si->flags & SI_FL_NOLINGER) {
1055 			/* unclean data-layer shutdown, typically an aborted request
1056 			 * or a forwarded shutdown from a client to a server due to
1057 			 * option abortonclose. No need for the TLS layer to try to
1058 			 * emit a shutdown message.
1059 			 */
1060 			cs_shutw(cs, CS_SHW_SILENT);
1061 		}
1062 		else {
1063 			/* clean data-layer shutdown. This only happens on the
1064 			 * frontend side, or on the backend side when forwarding
1065 			 * a client close in TCP mode or in HTTP TUNNEL mode
1066 			 * while option abortonclose is set. We want the TLS
1067 			 * layer to try to signal it to the peer before we close.
1068 			 */
1069 			cs_shutw(cs, CS_SHW_NORMAL);
1070 
1071 			if (!(ic->flags & (CF_SHUTR|CF_DONT_READ)))
1072 				return;
1073 		}
1074 
1075 		/* fall through */
1076 	case SI_ST_CON:
1077 		/* we may have to close a pending connection, and mark the
1078 		 * response buffer as shutr
1079 		 */
1080 		if (si->flags & SI_FL_KILL_CONN)
1081 			cs->flags |= CS_FL_KILL_CONN;
1082 		cs_close(cs);
1083 		/* fall through */
1084 	case SI_ST_CER:
1085 	case SI_ST_QUE:
1086 	case SI_ST_TAR:
1087 		si->state = SI_ST_DIS;
1088 		/* fall through */
1089 	default:
1090 		si->flags &= ~SI_FL_NOLINGER;
1091 		si_rx_shut_blk(si);
1092 		ic->flags |= CF_SHUTR;
1093 		ic->rex = TICK_ETERNITY;
1094 		si->exp = TICK_ETERNITY;
1095 	}
1096 }
1097 
1098 /* This function is used for inter-stream-interface calls. It is called by the
1099  * consumer to inform the producer side that it may be interested in checking
1100  * for free space in the buffer. Note that it intentionally does not update
1101  * timeouts, so that we can still check them later at wake-up. This function is
1102  * dedicated to connection-based stream interfaces.
1103  */
stream_int_chk_rcv_conn(struct stream_interface * si)1104 static void stream_int_chk_rcv_conn(struct stream_interface *si)
1105 {
1106 	/* (re)start reading */
1107 	if (si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
1108 		tasklet_wakeup(si->wait_event.tasklet);
1109 }
1110 
1111 
1112 /* This function is used for inter-stream-interface calls. It is called by the
1113  * producer to inform the consumer side that it may be interested in checking
1114  * for data in the buffer. Note that it intentionally does not update timeouts,
1115  * so that we can still check them later at wake-up.
1116  */
stream_int_chk_snd_conn(struct stream_interface * si)1117 static void stream_int_chk_snd_conn(struct stream_interface *si)
1118 {
1119 	struct channel *oc = si_oc(si);
1120 	struct conn_stream *cs = __objt_cs(si->end);
1121 
1122 	if (unlikely(!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST) ||
1123 	    (oc->flags & CF_SHUTW)))
1124 		return;
1125 
1126 	if (unlikely(channel_is_empty(oc)))  /* called with nothing to send ! */
1127 		return;
1128 
1129 	if (!oc->pipe &&                          /* spliced data wants to be forwarded ASAP */
1130 	    !(si->flags & SI_FL_WAIT_DATA))       /* not waiting for data */
1131 		return;
1132 
1133 	if (!(si->wait_event.events & SUB_RETRY_SEND) && !channel_is_empty(si_oc(si)))
1134 		si_cs_send(cs);
1135 
1136 	if (cs->flags & (CS_FL_ERROR|CS_FL_ERR_PENDING) || cs->conn->flags & CO_FL_ERROR) {
1137 		/* Write error on the file descriptor */
1138 		if (si->state >= SI_ST_CON)
1139 			si->flags |= SI_FL_ERR;
1140 		goto out_wakeup;
1141 	}
1142 
1143 	/* OK, so now we know that some data might have been sent, and that we may
1144 	 * have to poll first. We have to do that too if the buffer is not empty.
1145 	 */
1146 	if (channel_is_empty(oc)) {
1147 		/* the connection is established but we can't write. Either the
1148 		 * buffer is empty, or we just refrain from sending because the
1149 		 * ->o limit was reached. Maybe we just wrote the last
1150 		 * chunk and need to close.
1151 		 */
1152 		if (((oc->flags & (CF_SHUTW|CF_AUTO_CLOSE|CF_SHUTW_NOW)) ==
1153 		     (CF_AUTO_CLOSE|CF_SHUTW_NOW)) &&
1154 		    si_state_in(si->state, SI_SB_RDY|SI_SB_EST)) {
1155 			si_shutw(si);
1156 			goto out_wakeup;
1157 		}
1158 
1159 		if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0)
1160 			si->flags |= SI_FL_WAIT_DATA;
1161 		oc->wex = TICK_ETERNITY;
1162 	}
1163 	else {
1164 		/* Otherwise there are remaining data to be sent in the buffer,
1165 		 * which means we have to poll before doing so.
1166 		 */
1167 		si->flags &= ~SI_FL_WAIT_DATA;
1168 		if (!tick_isset(oc->wex))
1169 			oc->wex = tick_add_ifset(now_ms, oc->wto);
1170 	}
1171 
1172 	if (likely(oc->flags & CF_WRITE_ACTIVITY)) {
1173 		struct channel *ic = si_ic(si);
1174 
1175 		/* update timeout if we have written something */
1176 		if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
1177 		    !channel_is_empty(oc))
1178 			oc->wex = tick_add_ifset(now_ms, oc->wto);
1179 
1180 		if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) {
1181 			/* Note: to prevent the client from expiring read timeouts
1182 			 * during writes, we refresh it. We only do this if the
1183 			 * interface is not configured for "independent streams",
1184 			 * because for some applications it's better not to do this,
1185 			 * for instance when continuously exchanging small amounts
1186 			 * of data which can full the socket buffers long before a
1187 			 * write timeout is detected.
1188 			 */
1189 			ic->rex = tick_add_ifset(now_ms, ic->rto);
1190 		}
1191 	}
1192 
1193 	/* in case of special condition (error, shutdown, end of write...), we
1194 	 * have to notify the task.
1195 	 */
1196 	if (likely((oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR|CF_SHUTW)) ||
1197 	          ((oc->flags & CF_WAKE_WRITE) &&
1198 	           ((channel_is_empty(oc) && !oc->to_forward) ||
1199 	            !si_state_in(si->state, SI_SB_EST))))) {
1200 	out_wakeup:
1201 		if (!(si->flags & SI_FL_DONT_WAKE))
1202 			task_wakeup(si_task(si), TASK_WOKEN_IO);
1203 	}
1204 }
1205 
1206 /*
1207  * This is the callback which is called by the connection layer to receive data
1208  * into the buffer from the connection. It iterates over the mux layer's
1209  * rcv_buf function.
1210  */
si_cs_recv(struct conn_stream * cs)1211 int si_cs_recv(struct conn_stream *cs)
1212 {
1213 	struct connection *conn = cs->conn;
1214 	struct stream_interface *si = cs->data;
1215 	struct channel *ic = si_ic(si);
1216 	int ret, max, cur_read = 0;
1217 	int read_poll = MAX_READ_POLL_LOOPS;
1218 	int flags = 0;
1219 
1220 	/* If not established yet, do nothing. */
1221 	if (si->state != SI_ST_EST)
1222 		return 0;
1223 
1224 	/* If another call to si_cs_recv() failed, and we subscribed to
1225 	 * recv events already, give up now.
1226 	 */
1227 	if (si->wait_event.events & SUB_RETRY_RECV)
1228 		return 0;
1229 
1230 	/* maybe we were called immediately after an asynchronous shutr */
1231 	if (ic->flags & CF_SHUTR)
1232 		return 1;
1233 
1234 	/* we must wait because the mux is not installed yet */
1235 	if (!conn->mux)
1236 		return 0;
1237 
1238 	/* stop here if we reached the end of data */
1239 	if (cs->flags & CS_FL_EOS)
1240 		goto end_recv;
1241 
1242 	/* stop immediately on errors. Note that we DON'T want to stop on
1243 	 * POLL_ERR, as the poller might report a write error while there
1244 	 * are still data available in the recv buffer. This typically
1245 	 * happens when we send too large a request to a backend server
1246 	 * which rejects it before reading it all.
1247 	 */
1248 	if (!(cs->flags & CS_FL_RCV_MORE)) {
1249 		if (!conn_xprt_ready(conn))
1250 			return 0;
1251 		if (conn->flags & CO_FL_ERROR || cs->flags & CS_FL_ERROR)
1252 			goto end_recv;
1253 	}
1254 
1255 	/* prepare to detect if the mux needs more room */
1256 	cs->flags &= ~CS_FL_WANT_ROOM;
1257 
1258 	if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) && !co_data(ic) &&
1259 	    global.tune.idle_timer &&
1260 	    (unsigned short)(now_ms - ic->last_read) >= global.tune.idle_timer) {
1261 		/* The buffer was empty and nothing was transferred for more
1262 		 * than one second. This was caused by a pause and not by
1263 		 * congestion. Reset any streaming mode to reduce latency.
1264 		 */
1265 		ic->xfer_small = 0;
1266 		ic->xfer_large = 0;
1267 		ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
1268 	}
1269 
1270 	/* First, let's see if we may splice data across the channel without
1271 	 * using a buffer.
1272 	 */
1273 	if (cs->flags & CS_FL_MAY_SPLICE &&
1274 	    (ic->pipe || ic->to_forward >= MIN_SPLICE_FORWARD) &&
1275 	    ic->flags & CF_KERN_SPLICING) {
1276 		if (c_data(ic)) {
1277 			/* We're embarrassed, there are already data pending in
1278 			 * the buffer and we don't want to have them at two
1279 			 * locations at a time. Let's indicate we need some
1280 			 * place and ask the consumer to hurry.
1281 			 */
1282 			flags |= CO_RFL_BUF_FLUSH;
1283 			goto abort_splice;
1284 		}
1285 
1286 		if (unlikely(ic->pipe == NULL)) {
1287 			if (pipes_used >= global.maxpipes || !(ic->pipe = get_pipe())) {
1288 				ic->flags &= ~CF_KERN_SPLICING;
1289 				goto abort_splice;
1290 			}
1291 		}
1292 
1293 		ret = conn->mux->rcv_pipe(cs, ic->pipe, ic->to_forward);
1294 		if (ret < 0) {
1295 			/* splice not supported on this end, let's disable it */
1296 			ic->flags &= ~CF_KERN_SPLICING;
1297 			goto abort_splice;
1298 		}
1299 
1300 		if (ret > 0) {
1301 			if (ic->to_forward != CHN_INFINITE_FORWARD)
1302 				ic->to_forward -= ret;
1303 			ic->total += ret;
1304 			cur_read += ret;
1305 			ic->flags |= CF_READ_PARTIAL;
1306 		}
1307 
1308 		if (conn->flags & CO_FL_ERROR || cs->flags & (CS_FL_EOS|CS_FL_ERROR))
1309 			goto end_recv;
1310 
1311 		if (conn->flags & CO_FL_WAIT_ROOM) {
1312 			/* the pipe is full or we have read enough data that it
1313 			 * could soon be full. Let's stop before needing to poll.
1314 			 */
1315 			si_rx_room_blk(si);
1316 			goto done_recv;
1317 		}
1318 
1319 		/* splice not possible (anymore), let's go on on standard copy */
1320 	}
1321 
1322  abort_splice:
1323 	if (ic->pipe && unlikely(!ic->pipe->data)) {
1324 		put_pipe(ic->pipe);
1325 		ic->pipe = NULL;
1326 	}
1327 
1328 	if (ic->pipe && ic->to_forward && !(flags & CO_RFL_BUF_FLUSH) && cs->flags & CS_FL_MAY_SPLICE) {
1329 		/* don't break splicing by reading, but still call rcv_buf()
1330 		 * to pass the flag.
1331 		 */
1332 		goto done_recv;
1333 	}
1334 
1335 	/* now we'll need a input buffer for the stream */
1336 	if (!si_alloc_ibuf(si, &(si_strm(si)->buffer_wait)))
1337 		goto end_recv;
1338 
1339 	/* For an HTX stream, if the buffer is stuck (no output data with some
1340 	 * input data) and if the HTX message is fragmented or if its free space
1341 	 * wraps, we force an HTX deframentation. It is a way to have a
1342 	 * contiguous free space nad to let the mux to copy as much data as
1343 	 * possible.
1344 	 *
1345 	 * NOTE: A possible optim may be to let the mux decides if defrag is
1346 	 *       required or not, depending on amount of data to be xferred.
1347 	 */
1348 	if (IS_HTX_STRM(si_strm(si)) && !co_data(ic)) {
1349 		struct htx *htx = htxbuf(&ic->buf);
1350 
1351 		if (htx_is_not_empty(htx) && ((htx->flags & HTX_FL_FRAGMENTED) || htx_space_wraps(htx)))
1352 			htx_defrag(htxbuf(&ic->buf), NULL, 0);
1353 	}
1354 
1355 	/* Instruct the mux it must subscribed for read events */
1356 	flags |= ((!conn_is_back(conn) && (si_strm(si)->be->options & PR_O_ABRT_CLOSE)) ? CO_RFL_KEEP_RECV : 0);
1357 
1358 	/* Important note : if we're called with POLL_IN|POLL_HUP, it means the read polling
1359 	 * was enabled, which implies that the recv buffer was not full. So we have a guarantee
1360 	 * that if such an event is not handled above in splice, it will be handled here by
1361 	 * recv().
1362 	 */
1363 	while ((cs->flags & CS_FL_RCV_MORE) ||
1364 	    (!(conn->flags & (CO_FL_ERROR | CO_FL_HANDSHAKE)) &&
1365 	       (!(cs->flags & (CS_FL_ERROR|CS_FL_EOS))) && !(ic->flags & CF_SHUTR))) {
1366 		int cur_flags = flags;
1367 
1368 		/* Compute transient CO_RFL_* flags */
1369 		if (co_data(ic)) {
1370 			cur_flags |= (CO_RFL_BUF_WET | CO_RFL_BUF_NOT_STUCK);
1371 		}
1372 
1373 		/* <max> may be null. This is the mux responsibility to set
1374 		 * CS_FL_RCV_MORE on the CS if more space is needed.
1375 		 */
1376 		max = channel_recv_max(ic);
1377 		ret = cs->conn->mux->rcv_buf(cs, &ic->buf, max, cur_flags);
1378 
1379 		if (cs->flags & CS_FL_WANT_ROOM) {
1380 			si_rx_room_blk(si);
1381 			/* Add READ_PARTIAL because some data are pending but
1382 			 * cannot be xferred to the channel
1383 			 */
1384 			ic->flags |= CF_READ_PARTIAL;
1385 		}
1386 
1387 		if (ret <= 0) {
1388 			/* if we refrained from reading because we asked for a
1389 			 * flush to satisfy rcv_pipe(), we must not subscribe
1390 			 * and instead report that there's not enough room
1391 			 * here to proceed.
1392 			 */
1393 			if (flags & CO_RFL_BUF_FLUSH)
1394 				si_rx_room_blk(si);
1395 			break;
1396 		}
1397 
1398 		cur_read += ret;
1399 
1400 		/* if we're allowed to directly forward data, we must update ->o */
1401 		if (ic->to_forward && !(ic->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
1402 			unsigned long fwd = ret;
1403 			if (ic->to_forward != CHN_INFINITE_FORWARD) {
1404 				if (fwd > ic->to_forward)
1405 					fwd = ic->to_forward;
1406 				ic->to_forward -= fwd;
1407 			}
1408 			c_adv(ic, fwd);
1409 		}
1410 
1411 		ic->flags |= CF_READ_PARTIAL;
1412 		ic->total += ret;
1413 
1414 		/* End-of-input reached, we can leave. In this case, it is
1415 		 * important to break the loop to not block the SI because of
1416 		 * the channel's policies.This way, we are still able to receive
1417 		 * shutdowns.
1418 		 */
1419 		if (cs->flags & CS_FL_EOI)
1420 			break;
1421 
1422 		if ((ic->flags & CF_READ_DONTWAIT) || --read_poll <= 0) {
1423 			/* we're stopped by the channel's policy */
1424 			si_rx_chan_blk(si);
1425 			break;
1426 		}
1427 
1428 		/* if too many bytes were missing from last read, it means that
1429 		 * it's pointless trying to read again because the system does
1430 		 * not have them in buffers.
1431 		 */
1432 		if (ret < max) {
1433 			/* if a streamer has read few data, it may be because we
1434 			 * have exhausted system buffers. It's not worth trying
1435 			 * again.
1436 			 */
1437 			if (ic->flags & CF_STREAMER) {
1438 				/* we're stopped by the channel's policy */
1439 				si_rx_chan_blk(si);
1440 				break;
1441 			}
1442 
1443 			/* if we read a large block smaller than what we requested,
1444 			 * it's almost certain we'll never get anything more.
1445 			 */
1446 			if (ret >= global.tune.recv_enough) {
1447 				/* we're stopped by the channel's policy */
1448 				si_rx_chan_blk(si);
1449 				break;
1450 			}
1451 		}
1452 
1453 		/* if we are waiting for more space, don't try to read more data
1454 		 * right now.
1455 		 */
1456 		if (si_rx_blocked(si))
1457 			break;
1458 	} /* while !flags */
1459 
1460  done_recv:
1461 	if (cur_read) {
1462 		if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) &&
1463 		    (cur_read <= ic->buf.size / 2)) {
1464 			ic->xfer_large = 0;
1465 			ic->xfer_small++;
1466 			if (ic->xfer_small >= 3) {
1467 				/* we have read less than half of the buffer in
1468 				 * one pass, and this happened at least 3 times.
1469 				 * This is definitely not a streamer.
1470 				 */
1471 				ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
1472 			}
1473 			else if (ic->xfer_small >= 2) {
1474 				/* if the buffer has been at least half full twice,
1475 				 * we receive faster than we send, so at least it
1476 				 * is not a "fast streamer".
1477 				 */
1478 				ic->flags &= ~CF_STREAMER_FAST;
1479 			}
1480 		}
1481 		else if (!(ic->flags & CF_STREAMER_FAST) &&
1482 			 (cur_read >= ic->buf.size - global.tune.maxrewrite)) {
1483 			/* we read a full buffer at once */
1484 			ic->xfer_small = 0;
1485 			ic->xfer_large++;
1486 			if (ic->xfer_large >= 3) {
1487 				/* we call this buffer a fast streamer if it manages
1488 				 * to be filled in one call 3 consecutive times.
1489 				 */
1490 				ic->flags |= (CF_STREAMER | CF_STREAMER_FAST);
1491 			}
1492 		}
1493 		else {
1494 			ic->xfer_small = 0;
1495 			ic->xfer_large = 0;
1496 		}
1497 		ic->last_read = now_ms;
1498 	}
1499 
1500  end_recv:
1501 	ret = (cur_read != 0);
1502 
1503 	/* Report EOI on the channel if it was reached from the mux point of
1504 	 * view. */
1505 	if ((cs->flags & CS_FL_EOI) && !(ic->flags & CF_EOI)) {
1506 		ic->flags |= (CF_EOI|CF_READ_PARTIAL);
1507 		ret = 1;
1508 	}
1509 
1510 	if (conn->flags & CO_FL_ERROR || cs->flags & CS_FL_ERROR) {
1511 		cs->flags |= CS_FL_ERROR;
1512 		si->flags |= SI_FL_ERR;
1513 		ret = 1;
1514 	}
1515 	else if (cs->flags & CS_FL_EOS) {
1516 		/* we received a shutdown */
1517 		ic->flags |= CF_READ_NULL;
1518 		if (ic->flags & CF_AUTO_CLOSE)
1519 			channel_shutw_now(ic);
1520 		stream_int_read0(si);
1521 		ret = 1;
1522 	}
1523 	else if (!si_rx_blocked(si)) {
1524 		/* Subscribe to receive events if we're blocking on I/O */
1525 		conn->mux->subscribe(cs, SUB_RETRY_RECV, &si->wait_event);
1526 		si_rx_endp_done(si);
1527 	} else {
1528 		si_rx_endp_more(si);
1529 		ret = 1;
1530 	}
1531 	return ret;
1532 }
1533 
1534 /*
1535  * This function propagates a null read received on a socket-based connection.
1536  * It updates the stream interface. If the stream interface has SI_FL_NOHALF,
1537  * the close is also forwarded to the write side as an abort.
1538  */
stream_int_read0(struct stream_interface * si)1539 static void stream_int_read0(struct stream_interface *si)
1540 {
1541 	struct conn_stream *cs = __objt_cs(si->end);
1542 	struct channel *ic = si_ic(si);
1543 	struct channel *oc = si_oc(si);
1544 
1545 	si_rx_shut_blk(si);
1546 	if (ic->flags & CF_SHUTR)
1547 		return;
1548 	ic->flags |= CF_SHUTR;
1549 	ic->rex = TICK_ETERNITY;
1550 
1551 	if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
1552 		return;
1553 
1554 	if (oc->flags & CF_SHUTW)
1555 		goto do_close;
1556 
1557 	if (si->flags & SI_FL_NOHALF) {
1558 		/* we want to immediately forward this close to the write side */
1559 		/* force flag on ssl to keep stream in cache */
1560 		cs_shutw(cs, CS_SHW_SILENT);
1561 		goto do_close;
1562 	}
1563 
1564 	/* otherwise that's just a normal read shutdown */
1565 	return;
1566 
1567  do_close:
1568 	/* OK we completely close the socket here just as if we went through si_shut[rw]() */
1569 	cs_close(cs);
1570 
1571 	oc->flags &= ~CF_SHUTW_NOW;
1572 	oc->flags |= CF_SHUTW;
1573 	oc->wex = TICK_ETERNITY;
1574 
1575 	si_done_get(si);
1576 
1577 	si->state = SI_ST_DIS;
1578 	si->exp = TICK_ETERNITY;
1579 	return;
1580 }
1581 
1582 /* Callback to be used by applet handlers upon completion. It updates the stream
1583  * (which may or may not take this opportunity to try to forward data), then
1584  * may re-enable the applet's based on the channels and stream interface's final
1585  * states.
1586  */
si_applet_wake_cb(struct stream_interface * si)1587 void si_applet_wake_cb(struct stream_interface *si)
1588 {
1589 	struct channel *ic = si_ic(si);
1590 
1591 	/* If the applet wants to write and the channel is closed, it's a
1592 	 * broken pipe and it must be reported.
1593 	 */
1594 	if (!(si->flags & SI_FL_RX_WAIT_EP) && (ic->flags & CF_SHUTR))
1595 		si->flags |= SI_FL_ERR;
1596 
1597 	/* automatically mark the applet having data available if it reported
1598 	 * begin blocked by the channel.
1599 	 */
1600 	if (si_rx_blocked(si))
1601 		si_rx_endp_more(si);
1602 
1603 	/* update the stream-int, channels, and possibly wake the stream up */
1604 	stream_int_notify(si);
1605 	stream_release_buffers(si_strm(si));
1606 
1607 	/* stream_int_notify may have passed through chk_snd and released some
1608 	 * RXBLK flags. Process_stream will consider those flags to wake up the
1609 	 * appctx but in the case the task is not in runqueue we may have to
1610 	 * wakeup the appctx immediately.
1611 	 */
1612 	if ((si_rx_endp_ready(si) && !si_rx_blocked(si)) ||
1613 	    (si_tx_endp_ready(si) && !si_tx_blocked(si)))
1614 		appctx_wakeup(si_appctx(si));
1615 }
1616 
1617 /*
1618  * This function performs a shutdown-read on a stream interface attached to an
1619  * applet in a connected or init state (it does nothing for other states). It
1620  * either shuts the read side or marks itself as closed. The buffer flags are
1621  * updated to reflect the new state. If the stream interface has SI_FL_NOHALF,
1622  * we also forward the close to the write side. The owner task is woken up if
1623  * it exists.
1624  */
stream_int_shutr_applet(struct stream_interface * si)1625 static void stream_int_shutr_applet(struct stream_interface *si)
1626 {
1627 	struct channel *ic = si_ic(si);
1628 
1629 	si_rx_shut_blk(si);
1630 	if (ic->flags & CF_SHUTR)
1631 		return;
1632 	ic->flags |= CF_SHUTR;
1633 	ic->rex = TICK_ETERNITY;
1634 
1635 	/* Note: on shutr, we don't call the applet */
1636 
1637 	if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
1638 		return;
1639 
1640 	if (si_oc(si)->flags & CF_SHUTW) {
1641 		si_applet_release(si);
1642 		si->state = SI_ST_DIS;
1643 		si->exp = TICK_ETERNITY;
1644 	}
1645 	else if (si->flags & SI_FL_NOHALF) {
1646 		/* we want to immediately forward this close to the write side */
1647 		return stream_int_shutw_applet(si);
1648 	}
1649 }
1650 
1651 /*
1652  * This function performs a shutdown-write on a stream interface attached to an
1653  * applet in a connected or init state (it does nothing for other states). It
1654  * either shuts the write side or marks itself as closed. The buffer flags are
1655  * updated to reflect the new state. It does also close everything if the SI
1656  * was marked as being in error state. The owner task is woken up if it exists.
1657  */
stream_int_shutw_applet(struct stream_interface * si)1658 static void stream_int_shutw_applet(struct stream_interface *si)
1659 {
1660 	struct channel *ic = si_ic(si);
1661 	struct channel *oc = si_oc(si);
1662 
1663 	oc->flags &= ~CF_SHUTW_NOW;
1664 	if (oc->flags & CF_SHUTW)
1665 		return;
1666 	oc->flags |= CF_SHUTW;
1667 	oc->wex = TICK_ETERNITY;
1668 	si_done_get(si);
1669 
1670 	if (tick_isset(si->hcto)) {
1671 		ic->rto = si->hcto;
1672 		ic->rex = tick_add(now_ms, ic->rto);
1673 	}
1674 
1675 	/* on shutw we always wake the applet up */
1676 	appctx_wakeup(si_appctx(si));
1677 
1678 	switch (si->state) {
1679 	case SI_ST_RDY:
1680 	case SI_ST_EST:
1681 		/* we have to shut before closing, otherwise some short messages
1682 		 * may never leave the system, especially when there are remaining
1683 		 * unread data in the socket input buffer, or when nolinger is set.
1684 		 * However, if SI_FL_NOLINGER is explicitly set, we know there is
1685 		 * no risk so we close both sides immediately.
1686 		 */
1687 		if (!(si->flags & (SI_FL_ERR | SI_FL_NOLINGER)) &&
1688 		    !(ic->flags & (CF_SHUTR|CF_DONT_READ)))
1689 			return;
1690 
1691 		/* fall through */
1692 	case SI_ST_CON:
1693 	case SI_ST_CER:
1694 	case SI_ST_QUE:
1695 	case SI_ST_TAR:
1696 		/* Note that none of these states may happen with applets */
1697 		si_applet_release(si);
1698 		si->state = SI_ST_DIS;
1699 		/* fall through */
1700 	default:
1701 		si->flags &= ~SI_FL_NOLINGER;
1702 		si_rx_shut_blk(si);
1703 		ic->flags |= CF_SHUTR;
1704 		ic->rex = TICK_ETERNITY;
1705 		si->exp = TICK_ETERNITY;
1706 	}
1707 }
1708 
1709 /* chk_rcv function for applets */
stream_int_chk_rcv_applet(struct stream_interface * si)1710 static void stream_int_chk_rcv_applet(struct stream_interface *si)
1711 {
1712 	struct channel *ic = si_ic(si);
1713 
1714 	DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
1715 		__FUNCTION__,
1716 		si, si->state, ic->flags, si_oc(si)->flags);
1717 
1718 	if (!ic->pipe) {
1719 		/* (re)start reading */
1720 		appctx_wakeup(si_appctx(si));
1721 	}
1722 }
1723 
1724 /* chk_snd function for applets */
stream_int_chk_snd_applet(struct stream_interface * si)1725 static void stream_int_chk_snd_applet(struct stream_interface *si)
1726 {
1727 	struct channel *oc = si_oc(si);
1728 
1729 	DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
1730 		__FUNCTION__,
1731 		si, si->state, si_ic(si)->flags, oc->flags);
1732 
1733 	if (unlikely(si->state != SI_ST_EST || (oc->flags & CF_SHUTW)))
1734 		return;
1735 
1736 	/* we only wake the applet up if it was waiting for some data */
1737 
1738 	if (!(si->flags & SI_FL_WAIT_DATA))
1739 		return;
1740 
1741 	if (!tick_isset(oc->wex))
1742 		oc->wex = tick_add_ifset(now_ms, oc->wto);
1743 
1744 	if (!channel_is_empty(oc)) {
1745 		/* (re)start sending */
1746 		appctx_wakeup(si_appctx(si));
1747 	}
1748 }
1749 
1750 /*
1751  * Local variables:
1752  *  c-indent-level: 8
1753  *  c-basic-offset: 8
1754  * End:
1755  */
1756