1 /*
2  * HTTP protocol analyzer
3  *
4  * Copyright 2000-2011 Willy Tarreau <w@1wt.eu>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  */
12 
13 #include <ctype.h>
14 #include <errno.h>
15 #include <fcntl.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <syslog.h>
20 #include <time.h>
21 
22 #include <sys/socket.h>
23 #include <sys/stat.h>
24 #include <sys/types.h>
25 
26 #include <netinet/tcp.h>
27 
28 #include <common/base64.h>
29 #include <common/chunk.h>
30 #include <common/compat.h>
31 #include <common/config.h>
32 #include <common/debug.h>
33 #include <common/memory.h>
34 #include <common/mini-clist.h>
35 #include <common/standard.h>
36 #include <common/ticks.h>
37 #include <common/time.h>
38 #include <common/uri_auth.h>
39 #include <common/version.h>
40 
41 #include <types/capture.h>
42 #include <types/cli.h>
43 #include <types/filters.h>
44 #include <types/global.h>
45 #include <types/stats.h>
46 
47 #include <proto/acl.h>
48 #include <proto/action.h>
49 #include <proto/arg.h>
50 #include <proto/auth.h>
51 #include <proto/backend.h>
52 #include <proto/channel.h>
53 #include <proto/checks.h>
54 #include <proto/cli.h>
55 #include <proto/compression.h>
56 #include <proto/stats.h>
57 #include <proto/fd.h>
58 #include <proto/filters.h>
59 #include <proto/frontend.h>
60 #include <proto/log.h>
61 #include <proto/hdr_idx.h>
62 #include <proto/hlua.h>
63 #include <proto/pattern.h>
64 #include <proto/proto_tcp.h>
65 #include <proto/proto_http.h>
66 #include <proto/proxy.h>
67 #include <proto/queue.h>
68 #include <proto/sample.h>
69 #include <proto/server.h>
70 #include <proto/stream.h>
71 #include <proto/stream_interface.h>
72 #include <proto/task.h>
73 #include <proto/pattern.h>
74 #include <proto/vars.h>
75 
76 const char HTTP_100[] =
77 	"HTTP/1.1 100 Continue\r\n\r\n";
78 
79 const struct chunk http_100_chunk = {
80 	.str = (char *)&HTTP_100,
81 	.len = sizeof(HTTP_100)-1
82 };
83 
84 /* Warning: no "connection" header is provided with the 3xx messages below */
85 const char *HTTP_301 =
86 	"HTTP/1.1 301 Moved Permanently\r\n"
87 	"Content-length: 0\r\n"
88 	"Location: "; /* not terminated since it will be concatenated with the URL */
89 
90 const char *HTTP_302 =
91 	"HTTP/1.1 302 Found\r\n"
92 	"Cache-Control: no-cache\r\n"
93 	"Content-length: 0\r\n"
94 	"Location: "; /* not terminated since it will be concatenated with the URL */
95 
96 /* same as 302 except that the browser MUST retry with the GET method */
97 const char *HTTP_303 =
98 	"HTTP/1.1 303 See Other\r\n"
99 	"Cache-Control: no-cache\r\n"
100 	"Content-length: 0\r\n"
101 	"Location: "; /* not terminated since it will be concatenated with the URL */
102 
103 
104 /* same as 302 except that the browser MUST retry with the same method */
105 const char *HTTP_307 =
106 	"HTTP/1.1 307 Temporary Redirect\r\n"
107 	"Cache-Control: no-cache\r\n"
108 	"Content-length: 0\r\n"
109 	"Location: "; /* not terminated since it will be concatenated with the URL */
110 
111 /* same as 301 except that the browser MUST retry with the same method */
112 const char *HTTP_308 =
113 	"HTTP/1.1 308 Permanent Redirect\r\n"
114 	"Content-length: 0\r\n"
115 	"Location: "; /* not terminated since it will be concatenated with the URL */
116 
117 /* Warning: this one is an sprintf() fmt string, with <realm> as its only argument */
118 const char *HTTP_401_fmt =
119 	"HTTP/1.0 401 Unauthorized\r\n"
120 	"Cache-Control: no-cache\r\n"
121 	"Connection: close\r\n"
122 	"Content-Type: text/html\r\n"
123 	"WWW-Authenticate: Basic realm=\"%s\"\r\n"
124 	"\r\n"
125 	"<html><body><h1>401 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
126 
127 const char *HTTP_407_fmt =
128 	"HTTP/1.0 407 Unauthorized\r\n"
129 	"Cache-Control: no-cache\r\n"
130 	"Connection: close\r\n"
131 	"Content-Type: text/html\r\n"
132 	"Proxy-Authenticate: Basic realm=\"%s\"\r\n"
133 	"\r\n"
134 	"<html><body><h1>407 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
135 
136 
137 const int http_err_codes[HTTP_ERR_SIZE] = {
138 	[HTTP_ERR_200] = 200,  /* used by "monitor-uri" */
139 	[HTTP_ERR_400] = 400,
140 	[HTTP_ERR_403] = 403,
141 	[HTTP_ERR_405] = 405,
142 	[HTTP_ERR_408] = 408,
143 	[HTTP_ERR_429] = 429,
144 	[HTTP_ERR_500] = 500,
145 	[HTTP_ERR_502] = 502,
146 	[HTTP_ERR_503] = 503,
147 	[HTTP_ERR_504] = 504,
148 };
149 
150 static const char *http_err_msgs[HTTP_ERR_SIZE] = {
151 	[HTTP_ERR_200] =
152 	"HTTP/1.0 200 OK\r\n"
153 	"Cache-Control: no-cache\r\n"
154 	"Connection: close\r\n"
155 	"Content-Type: text/html\r\n"
156 	"\r\n"
157 	"<html><body><h1>200 OK</h1>\nService ready.\n</body></html>\n",
158 
159 	[HTTP_ERR_400] =
160 	"HTTP/1.0 400 Bad request\r\n"
161 	"Cache-Control: no-cache\r\n"
162 	"Connection: close\r\n"
163 	"Content-Type: text/html\r\n"
164 	"\r\n"
165 	"<html><body><h1>400 Bad request</h1>\nYour browser sent an invalid request.\n</body></html>\n",
166 
167 	[HTTP_ERR_403] =
168 	"HTTP/1.0 403 Forbidden\r\n"
169 	"Cache-Control: no-cache\r\n"
170 	"Connection: close\r\n"
171 	"Content-Type: text/html\r\n"
172 	"\r\n"
173 	"<html><body><h1>403 Forbidden</h1>\nRequest forbidden by administrative rules.\n</body></html>\n",
174 
175 	[HTTP_ERR_405] =
176 	"HTTP/1.0 405 Method Not Allowed\r\n"
177 	"Cache-Control: no-cache\r\n"
178 	"Connection: close\r\n"
179 	"Content-Type: text/html\r\n"
180 	"\r\n"
181 	"<html><body><h1>405 Method Not Allowed</h1>\nA request was made of a resource using a request method not supported by that resource\n</body></html>\n",
182 
183 	[HTTP_ERR_408] =
184 	"HTTP/1.0 408 Request Time-out\r\n"
185 	"Cache-Control: no-cache\r\n"
186 	"Connection: close\r\n"
187 	"Content-Type: text/html\r\n"
188 	"\r\n"
189 	"<html><body><h1>408 Request Time-out</h1>\nYour browser didn't send a complete request in time.\n</body></html>\n",
190 
191 	[HTTP_ERR_429] =
192 	"HTTP/1.0 429 Too Many Requests\r\n"
193 	"Cache-Control: no-cache\r\n"
194 	"Connection: close\r\n"
195 	"Content-Type: text/html\r\n"
196 	"\r\n"
197 	"<html><body><h1>429 Too Many Requests</h1>\nYou have sent too many requests in a given amount of time.\n</body></html>\n",
198 
199 	[HTTP_ERR_500] =
200 	"HTTP/1.0 500 Server Error\r\n"
201 	"Cache-Control: no-cache\r\n"
202 	"Connection: close\r\n"
203 	"Content-Type: text/html\r\n"
204 	"\r\n"
205 	"<html><body><h1>500 Server Error</h1>\nAn internal server error occured.\n</body></html>\n",
206 
207 	[HTTP_ERR_502] =
208 	"HTTP/1.0 502 Bad Gateway\r\n"
209 	"Cache-Control: no-cache\r\n"
210 	"Connection: close\r\n"
211 	"Content-Type: text/html\r\n"
212 	"\r\n"
213 	"<html><body><h1>502 Bad Gateway</h1>\nThe server returned an invalid or incomplete response.\n</body></html>\n",
214 
215 	[HTTP_ERR_503] =
216 	"HTTP/1.0 503 Service Unavailable\r\n"
217 	"Cache-Control: no-cache\r\n"
218 	"Connection: close\r\n"
219 	"Content-Type: text/html\r\n"
220 	"\r\n"
221 	"<html><body><h1>503 Service Unavailable</h1>\nNo server is available to handle this request.\n</body></html>\n",
222 
223 	[HTTP_ERR_504] =
224 	"HTTP/1.0 504 Gateway Time-out\r\n"
225 	"Cache-Control: no-cache\r\n"
226 	"Connection: close\r\n"
227 	"Content-Type: text/html\r\n"
228 	"\r\n"
229 	"<html><body><h1>504 Gateway Time-out</h1>\nThe server didn't respond in time.\n</body></html>\n",
230 
231 };
232 
233 /* status codes available for the stats admin page (strictly 4 chars length) */
234 const char *stat_status_codes[STAT_STATUS_SIZE] = {
235 	[STAT_STATUS_DENY] = "DENY",
236 	[STAT_STATUS_DONE] = "DONE",
237 	[STAT_STATUS_ERRP] = "ERRP",
238 	[STAT_STATUS_EXCD] = "EXCD",
239 	[STAT_STATUS_NONE] = "NONE",
240 	[STAT_STATUS_PART] = "PART",
241 	[STAT_STATUS_UNKN] = "UNKN",
242 };
243 
244 
245 /* List head of all known action keywords for "http-request" */
246 struct action_kw_list http_req_keywords = {
247        .list = LIST_HEAD_INIT(http_req_keywords.list)
248 };
249 
250 /* List head of all known action keywords for "http-response" */
251 struct action_kw_list http_res_keywords = {
252        .list = LIST_HEAD_INIT(http_res_keywords.list)
253 };
254 
255 /* We must put the messages here since GCC cannot initialize consts depending
256  * on strlen().
257  */
258 struct chunk http_err_chunks[HTTP_ERR_SIZE];
259 
260 /* this struct is used between calls to smp_fetch_hdr() or smp_fetch_cookie() */
261 static struct hdr_ctx static_hdr_ctx;
262 
263 #define FD_SETS_ARE_BITFIELDS
264 #ifdef FD_SETS_ARE_BITFIELDS
265 /*
266  * This map is used with all the FD_* macros to check whether a particular bit
267  * is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes
268  * which should be encoded. When FD_ISSET() returns non-zero, it means that the
269  * byte should be encoded. Be careful to always pass bytes from 0 to 255
270  * exclusively to the macros.
271  */
272 fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
273 fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
274 fd_set http_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
275 
276 #else
277 #error "Check if your OS uses bitfields for fd_sets"
278 #endif
279 
280 static int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn);
281 
282 static inline int http_msg_forward_body(struct stream *s, struct http_msg *msg);
283 static inline int http_msg_forward_chunked_body(struct stream *s, struct http_msg *msg);
284 
285 /* This function returns a reason associated with the HTTP status.
286  * This function never fails, a message is always returned.
287  */
get_reason(unsigned int status)288 const char *get_reason(unsigned int status)
289 {
290 	switch (status) {
291 	case 100: return "Continue";
292 	case 101: return "Switching Protocols";
293 	case 102: return "Processing";
294 	case 200: return "OK";
295 	case 201: return "Created";
296 	case 202: return "Accepted";
297 	case 203: return "Non-Authoritative Information";
298 	case 204: return "No Content";
299 	case 205: return "Reset Content";
300 	case 206: return "Partial Content";
301 	case 207: return "Multi-Status";
302 	case 210: return "Content Different";
303 	case 226: return "IM Used";
304 	case 300: return "Multiple Choices";
305 	case 301: return "Moved Permanently";
306 	case 302: return "Moved Temporarily";
307 	case 303: return "See Other";
308 	case 304: return "Not Modified";
309 	case 305: return "Use Proxy";
310 	case 307: return "Temporary Redirect";
311 	case 308: return "Permanent Redirect";
312 	case 310: return "Too many Redirects";
313 	case 400: return "Bad Request";
314 	case 401: return "Unauthorized";
315 	case 402: return "Payment Required";
316 	case 403: return "Forbidden";
317 	case 404: return "Not Found";
318 	case 405: return "Method Not Allowed";
319 	case 406: return "Not Acceptable";
320 	case 407: return "Proxy Authentication Required";
321 	case 408: return "Request Time-out";
322 	case 409: return "Conflict";
323 	case 410: return "Gone";
324 	case 411: return "Length Required";
325 	case 412: return "Precondition Failed";
326 	case 413: return "Request Entity Too Large";
327 	case 414: return "Request-URI Too Long";
328 	case 415: return "Unsupported Media Type";
329 	case 416: return "Requested range unsatisfiable";
330 	case 417: return "Expectation failed";
331 	case 418: return "I'm a teapot";
332 	case 422: return "Unprocessable entity";
333 	case 423: return "Locked";
334 	case 424: return "Method failure";
335 	case 425: return "Unordered Collection";
336 	case 426: return "Upgrade Required";
337 	case 428: return "Precondition Required";
338 	case 429: return "Too Many Requests";
339 	case 431: return "Request Header Fields Too Large";
340 	case 449: return "Retry With";
341 	case 450: return "Blocked by Windows Parental Controls";
342 	case 451: return "Unavailable For Legal Reasons";
343 	case 456: return "Unrecoverable Error";
344 	case 499: return "client has closed connection";
345 	case 500: return "Internal Server Error";
346 	case 501: return "Not Implemented";
347 	case 502: return "Bad Gateway or Proxy Error";
348 	case 503: return "Service Unavailable";
349 	case 504: return "Gateway Time-out";
350 	case 505: return "HTTP Version not supported";
351 	case 506: return "Variant also negociate";
352 	case 507: return "Insufficient storage";
353 	case 508: return "Loop detected";
354 	case 509: return "Bandwidth Limit Exceeded";
355 	case 510: return "Not extended";
356 	case 511: return "Network authentication required";
357 	case 520: return "Web server is returning an unknown error";
358 	default:
359 		switch (status) {
360 		case 100 ... 199: return "Informational";
361 		case 200 ... 299: return "Success";
362 		case 300 ... 399: return "Redirection";
363 		case 400 ... 499: return "Client Error";
364 		case 500 ... 599: return "Server Error";
365 		default:          return "Other";
366 		}
367 	}
368 }
369 
init_proto_http()370 void init_proto_http()
371 {
372 	int i;
373 	char *tmp;
374 	int msg;
375 
376 	for (msg = 0; msg < HTTP_ERR_SIZE; msg++) {
377 		if (!http_err_msgs[msg]) {
378 			Alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg);
379 			abort();
380 		}
381 
382 		http_err_chunks[msg].str = (char *)http_err_msgs[msg];
383 		http_err_chunks[msg].len = strlen(http_err_msgs[msg]);
384 	}
385 
386 	/* initialize the log header encoding map : '{|}"#' should be encoded with
387 	 * '#' as prefix, as well as non-printable characters ( <32 or >= 127 ).
388 	 * URL encoding only requires '"', '#' to be encoded as well as non-
389 	 * printable characters above.
390 	 */
391 	memset(hdr_encode_map, 0, sizeof(hdr_encode_map));
392 	memset(url_encode_map, 0, sizeof(url_encode_map));
393 	memset(http_encode_map, 0, sizeof(url_encode_map));
394 	for (i = 0; i < 32; i++) {
395 		FD_SET(i, hdr_encode_map);
396 		FD_SET(i, url_encode_map);
397 	}
398 	for (i = 127; i < 256; i++) {
399 		FD_SET(i, hdr_encode_map);
400 		FD_SET(i, url_encode_map);
401 	}
402 
403 	tmp = "\"#{|}";
404 	while (*tmp) {
405 		FD_SET(*tmp, hdr_encode_map);
406 		tmp++;
407 	}
408 
409 	tmp = "\"#";
410 	while (*tmp) {
411 		FD_SET(*tmp, url_encode_map);
412 		tmp++;
413 	}
414 
415 	/* initialize the http header encoding map. The draft httpbis define the
416 	 * header content as:
417 	 *
418 	 *    HTTP-message   = start-line
419 	 *                     *( header-field CRLF )
420 	 *                     CRLF
421 	 *                     [ message-body ]
422 	 *    header-field   = field-name ":" OWS field-value OWS
423 	 *    field-value    = *( field-content / obs-fold )
424 	 *    field-content  = field-vchar [ 1*( SP / HTAB ) field-vchar ]
425 	 *    obs-fold       = CRLF 1*( SP / HTAB )
426 	 *    field-vchar    = VCHAR / obs-text
427 	 *    VCHAR          = %x21-7E
428 	 *    obs-text       = %x80-FF
429 	 *
430 	 * All the chars are encoded except "VCHAR", "obs-text", SP and HTAB.
431 	 * The encoded chars are form 0x00 to 0x08, 0x0a to 0x1f and 0x7f. The
432 	 * "obs-fold" is volontary forgotten because haproxy remove this.
433 	 */
434 	memset(http_encode_map, 0, sizeof(http_encode_map));
435 	for (i = 0x00; i <= 0x08; i++)
436 		FD_SET(i, http_encode_map);
437 	for (i = 0x0a; i <= 0x1f; i++)
438 		FD_SET(i, http_encode_map);
439 	FD_SET(0x7f, http_encode_map);
440 
441 	/* memory allocations */
442 	pool2_http_txn = create_pool("http_txn", sizeof(struct http_txn), MEM_F_SHARED);
443 	pool2_requri = create_pool("requri", REQURI_LEN, MEM_F_SHARED);
444 	pool2_uniqueid = create_pool("uniqueid", UNIQUEID_LEN, MEM_F_SHARED);
445 }
446 
447 /*
448  * We have 26 list of methods (1 per first letter), each of which can have
449  * up to 3 entries (2 valid, 1 null).
450  */
451 struct http_method_desc {
452 	enum http_meth_t meth;
453 	int len;
454 	const char text[8];
455 };
456 
457 const struct http_method_desc http_methods[26][3] = {
458 	['C' - 'A'] = {
459 		[0] = {	.meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" },
460 	},
461 	['D' - 'A'] = {
462 		[0] = {	.meth = HTTP_METH_DELETE  , .len=6, .text="DELETE"  },
463 	},
464 	['G' - 'A'] = {
465 		[0] = {	.meth = HTTP_METH_GET     , .len=3, .text="GET"     },
466 	},
467 	['H' - 'A'] = {
468 		[0] = {	.meth = HTTP_METH_HEAD    , .len=4, .text="HEAD"    },
469 	},
470 	['O' - 'A'] = {
471 		[0] = {	.meth = HTTP_METH_OPTIONS , .len=7, .text="OPTIONS" },
472 	},
473 	['P' - 'A'] = {
474 		[0] = {	.meth = HTTP_METH_POST    , .len=4, .text="POST"    },
475 		[1] = {	.meth = HTTP_METH_PUT     , .len=3, .text="PUT"     },
476 	},
477 	['T' - 'A'] = {
478 		[0] = {	.meth = HTTP_METH_TRACE   , .len=5, .text="TRACE"   },
479 	},
480 	/* rest is empty like this :
481 	 *      [0] = {	.meth = HTTP_METH_OTHER   , .len=0, .text=""        },
482 	 */
483 };
484 
485 const struct http_method_name http_known_methods[HTTP_METH_OTHER] = {
486 	[HTTP_METH_OPTIONS] = { "OPTIONS",  7 },
487 	[HTTP_METH_GET]     = { "GET",      3 },
488 	[HTTP_METH_HEAD]    = { "HEAD",     4 },
489 	[HTTP_METH_POST]    = { "POST",     4 },
490 	[HTTP_METH_PUT]     = { "PUT",      3 },
491 	[HTTP_METH_DELETE]  = { "DELETE",   6 },
492 	[HTTP_METH_TRACE]   = { "TRACE",    5 },
493 	[HTTP_METH_CONNECT] = { "CONNECT",  7 },
494 };
495 
496 /* It is about twice as fast on recent architectures to lookup a byte in a
497  * table than to perform a boolean AND or OR between two tests. Refer to
498  * RFC2616/RFC5234/RFC7230 for those chars. A token is any ASCII char that is
499  * neither a separator nor a CTL char. An http ver_token is any ASCII which can
500  * be found in an HTTP version, which includes 'H', 'T', 'P', '/', '.' and any
501  * digit. Note: please do not overwrite values in assignment since gcc-2.95
502  * will not handle them correctly. It's worth noting that chars 128..255 are
503  * nothing, not even control chars.
504  */
505 const unsigned char http_char_classes[256] = {
506 	[  0] = HTTP_FLG_CTL,
507 	[  1] = HTTP_FLG_CTL,
508 	[  2] = HTTP_FLG_CTL,
509 	[  3] = HTTP_FLG_CTL,
510 	[  4] = HTTP_FLG_CTL,
511 	[  5] = HTTP_FLG_CTL,
512 	[  6] = HTTP_FLG_CTL,
513 	[  7] = HTTP_FLG_CTL,
514 	[  8] = HTTP_FLG_CTL,
515 	[  9] = HTTP_FLG_SPHT | HTTP_FLG_LWS | HTTP_FLG_SEP | HTTP_FLG_CTL,
516 	[ 10] = HTTP_FLG_CRLF | HTTP_FLG_LWS | HTTP_FLG_CTL,
517 	[ 11] = HTTP_FLG_CTL,
518 	[ 12] = HTTP_FLG_CTL,
519 	[ 13] = HTTP_FLG_CRLF | HTTP_FLG_LWS | HTTP_FLG_CTL,
520 	[ 14] = HTTP_FLG_CTL,
521 	[ 15] = HTTP_FLG_CTL,
522 	[ 16] = HTTP_FLG_CTL,
523 	[ 17] = HTTP_FLG_CTL,
524 	[ 18] = HTTP_FLG_CTL,
525 	[ 19] = HTTP_FLG_CTL,
526 	[ 20] = HTTP_FLG_CTL,
527 	[ 21] = HTTP_FLG_CTL,
528 	[ 22] = HTTP_FLG_CTL,
529 	[ 23] = HTTP_FLG_CTL,
530 	[ 24] = HTTP_FLG_CTL,
531 	[ 25] = HTTP_FLG_CTL,
532 	[ 26] = HTTP_FLG_CTL,
533 	[ 27] = HTTP_FLG_CTL,
534 	[ 28] = HTTP_FLG_CTL,
535 	[ 29] = HTTP_FLG_CTL,
536 	[ 30] = HTTP_FLG_CTL,
537 	[ 31] = HTTP_FLG_CTL,
538 	[' '] = HTTP_FLG_SPHT | HTTP_FLG_LWS | HTTP_FLG_SEP,
539 	['!'] = HTTP_FLG_TOK,
540 	['"'] = HTTP_FLG_SEP,
541 	['#'] = HTTP_FLG_TOK,
542 	['$'] = HTTP_FLG_TOK,
543 	['%'] = HTTP_FLG_TOK,
544 	['&'] = HTTP_FLG_TOK,
545 	[ 39] = HTTP_FLG_TOK,
546 	['('] = HTTP_FLG_SEP,
547 	[')'] = HTTP_FLG_SEP,
548 	['*'] = HTTP_FLG_TOK,
549 	['+'] = HTTP_FLG_TOK,
550 	[','] = HTTP_FLG_SEP,
551 	['-'] = HTTP_FLG_TOK,
552 	['.'] = HTTP_FLG_TOK | HTTP_FLG_VER,
553 	['/'] = HTTP_FLG_SEP | HTTP_FLG_VER,
554 	['0'] = HTTP_FLG_TOK | HTTP_FLG_VER,
555 	['1'] = HTTP_FLG_TOK | HTTP_FLG_VER,
556 	['2'] = HTTP_FLG_TOK | HTTP_FLG_VER,
557 	['3'] = HTTP_FLG_TOK | HTTP_FLG_VER,
558 	['4'] = HTTP_FLG_TOK | HTTP_FLG_VER,
559 	['5'] = HTTP_FLG_TOK | HTTP_FLG_VER,
560 	['6'] = HTTP_FLG_TOK | HTTP_FLG_VER,
561 	['7'] = HTTP_FLG_TOK | HTTP_FLG_VER,
562 	['8'] = HTTP_FLG_TOK | HTTP_FLG_VER,
563 	['9'] = HTTP_FLG_TOK | HTTP_FLG_VER,
564 	[':'] = HTTP_FLG_SEP,
565 	[';'] = HTTP_FLG_SEP,
566 	['<'] = HTTP_FLG_SEP,
567 	['='] = HTTP_FLG_SEP,
568 	['>'] = HTTP_FLG_SEP,
569 	['?'] = HTTP_FLG_SEP,
570 	['@'] = HTTP_FLG_SEP,
571 	['A'] = HTTP_FLG_TOK,
572 	['B'] = HTTP_FLG_TOK,
573 	['C'] = HTTP_FLG_TOK,
574 	['D'] = HTTP_FLG_TOK,
575 	['E'] = HTTP_FLG_TOK,
576 	['F'] = HTTP_FLG_TOK,
577 	['G'] = HTTP_FLG_TOK,
578 	['H'] = HTTP_FLG_TOK | HTTP_FLG_VER,
579 	['I'] = HTTP_FLG_TOK,
580 	['J'] = HTTP_FLG_TOK,
581 	['K'] = HTTP_FLG_TOK,
582 	['L'] = HTTP_FLG_TOK,
583 	['M'] = HTTP_FLG_TOK,
584 	['N'] = HTTP_FLG_TOK,
585 	['O'] = HTTP_FLG_TOK,
586 	['P'] = HTTP_FLG_TOK | HTTP_FLG_VER,
587 	['Q'] = HTTP_FLG_TOK,
588 	['R'] = HTTP_FLG_TOK | HTTP_FLG_VER,
589 	['S'] = HTTP_FLG_TOK | HTTP_FLG_VER,
590 	['T'] = HTTP_FLG_TOK | HTTP_FLG_VER,
591 	['U'] = HTTP_FLG_TOK,
592 	['V'] = HTTP_FLG_TOK,
593 	['W'] = HTTP_FLG_TOK,
594 	['X'] = HTTP_FLG_TOK,
595 	['Y'] = HTTP_FLG_TOK,
596 	['Z'] = HTTP_FLG_TOK,
597 	['['] = HTTP_FLG_SEP,
598 	[ 92] = HTTP_FLG_SEP,
599 	[']'] = HTTP_FLG_SEP,
600 	['^'] = HTTP_FLG_TOK,
601 	['_'] = HTTP_FLG_TOK,
602 	['`'] = HTTP_FLG_TOK,
603 	['a'] = HTTP_FLG_TOK,
604 	['b'] = HTTP_FLG_TOK,
605 	['c'] = HTTP_FLG_TOK,
606 	['d'] = HTTP_FLG_TOK,
607 	['e'] = HTTP_FLG_TOK,
608 	['f'] = HTTP_FLG_TOK,
609 	['g'] = HTTP_FLG_TOK,
610 	['h'] = HTTP_FLG_TOK,
611 	['i'] = HTTP_FLG_TOK,
612 	['j'] = HTTP_FLG_TOK,
613 	['k'] = HTTP_FLG_TOK,
614 	['l'] = HTTP_FLG_TOK,
615 	['m'] = HTTP_FLG_TOK,
616 	['n'] = HTTP_FLG_TOK,
617 	['o'] = HTTP_FLG_TOK,
618 	['p'] = HTTP_FLG_TOK,
619 	['q'] = HTTP_FLG_TOK,
620 	['r'] = HTTP_FLG_TOK,
621 	['s'] = HTTP_FLG_TOK,
622 	['t'] = HTTP_FLG_TOK,
623 	['u'] = HTTP_FLG_TOK,
624 	['v'] = HTTP_FLG_TOK,
625 	['w'] = HTTP_FLG_TOK,
626 	['x'] = HTTP_FLG_TOK,
627 	['y'] = HTTP_FLG_TOK,
628 	['z'] = HTTP_FLG_TOK,
629 	['{'] = HTTP_FLG_SEP,
630 	['|'] = HTTP_FLG_TOK,
631 	['}'] = HTTP_FLG_SEP,
632 	['~'] = HTTP_FLG_TOK,
633 	[127] = HTTP_FLG_CTL,
634 };
635 
636 /*
637  * Adds a header and its CRLF at the tail of the message's buffer, just before
638  * the last CRLF. Text length is measured first, so it cannot be NULL.
639  * The header is also automatically added to the index <hdr_idx>, and the end
640  * of headers is automatically adjusted. The number of bytes added is returned
641  * on success, otherwise <0 is returned indicating an error.
642  */
http_header_add_tail(struct http_msg * msg,struct hdr_idx * hdr_idx,const char * text)643 int http_header_add_tail(struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text)
644 {
645 	int bytes, len;
646 
647 	len = strlen(text);
648 	bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len);
649 	if (!bytes)
650 		return -1;
651 	http_msg_move_end(msg, bytes);
652 	return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
653 }
654 
655 /*
656  * Adds a header and its CRLF at the tail of the message's buffer, just before
657  * the last CRLF. <len> bytes are copied, not counting the CRLF. If <text> is NULL, then
658  * the buffer is only opened and the space reserved, but nothing is copied.
659  * The header is also automatically added to the index <hdr_idx>, and the end
660  * of headers is automatically adjusted. The number of bytes added is returned
661  * on success, otherwise <0 is returned indicating an error.
662  */
http_header_add_tail2(struct http_msg * msg,struct hdr_idx * hdr_idx,const char * text,int len)663 int http_header_add_tail2(struct http_msg *msg,
664                           struct hdr_idx *hdr_idx, const char *text, int len)
665 {
666 	int bytes;
667 
668 	bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len);
669 	if (!bytes)
670 		return -1;
671 	http_msg_move_end(msg, bytes);
672 	return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail);
673 }
674 
675 /*
676  * Checks if <hdr> is exactly <name> for <len> chars, and ends with a colon.
677  * If so, returns the position of the first non-space character relative to
678  * <hdr>, or <end>-<hdr> if not found before. If no value is found, it tries
679  * to return a pointer to the place after the first space. Returns 0 if the
680  * header name does not match. Checks are case-insensitive.
681  */
http_header_match2(const char * hdr,const char * end,const char * name,int len)682 int http_header_match2(const char *hdr, const char *end,
683 		       const char *name, int len)
684 {
685 	const char *val;
686 
687 	if (hdr + len >= end)
688 		return 0;
689 	if (hdr[len] != ':')
690 		return 0;
691 	if (strncasecmp(hdr, name, len) != 0)
692 		return 0;
693 	val = hdr + len + 1;
694 	while (val < end && HTTP_IS_SPHT(*val))
695 		val++;
696 	if ((val >= end) && (len + 2 <= end - hdr))
697 		return len + 2; /* we may replace starting from second space */
698 	return val - hdr;
699 }
700 
701 /* Find the first or next occurrence of header <name> in message buffer <sol>
702  * using headers index <idx>, and return it in the <ctx> structure. This
703  * structure holds everything necessary to use the header and find next
704  * occurrence. If its <idx> member is 0, the header is searched from the
705  * beginning. Otherwise, the next occurrence is returned. The function returns
706  * 1 when it finds a value, and 0 when there is no more. It is very similar to
707  * http_find_header2() except that it is designed to work with full-line headers
708  * whose comma is not a delimiter but is part of the syntax. As a special case,
709  * if ctx->val is NULL when searching for a new values of a header, the current
710  * header is rescanned. This allows rescanning after a header deletion.
711  */
http_find_full_header2(const char * name,int len,char * sol,struct hdr_idx * idx,struct hdr_ctx * ctx)712 int http_find_full_header2(const char *name, int len,
713                            char *sol, struct hdr_idx *idx,
714                            struct hdr_ctx *ctx)
715 {
716 	char *eol, *sov;
717 	int cur_idx, old_idx;
718 
719 	cur_idx = ctx->idx;
720 	if (cur_idx) {
721 		/* We have previously returned a header, let's search another one */
722 		sol = ctx->line;
723 		eol = sol + idx->v[cur_idx].len;
724 		goto next_hdr;
725 	}
726 
727 	/* first request for this header */
728 	sol += hdr_idx_first_pos(idx);
729 	old_idx = 0;
730 	cur_idx = hdr_idx_first_idx(idx);
731 	while (cur_idx) {
732 		eol = sol + idx->v[cur_idx].len;
733 
734 		if (len == 0) {
735 			/* No argument was passed, we want any header.
736 			 * To achieve this, we simply build a fake request. */
737 			while (sol + len < eol && sol[len] != ':')
738 				len++;
739 			name = sol;
740 		}
741 
742 		if ((len < eol - sol) &&
743 		    (sol[len] == ':') &&
744 		    (strncasecmp(sol, name, len) == 0)) {
745 			ctx->del = len;
746 			sov = sol + len + 1;
747 			while (sov < eol && HTTP_IS_LWS(*sov))
748 				sov++;
749 
750 			ctx->line = sol;
751 			ctx->prev = old_idx;
752 			ctx->idx  = cur_idx;
753 			ctx->val  = sov - sol;
754 			ctx->tws = 0;
755 			while (eol > sov && HTTP_IS_LWS(*(eol - 1))) {
756 				eol--;
757 				ctx->tws++;
758 			}
759 			ctx->vlen = eol - sov;
760 			return 1;
761 		}
762 	next_hdr:
763 		sol = eol + idx->v[cur_idx].cr + 1;
764 		old_idx = cur_idx;
765 		cur_idx = idx->v[cur_idx].next;
766 	}
767 	return 0;
768 }
769 
770 /* Find the first or next header field in message buffer <sol> using headers
771  * index <idx>, and return it in the <ctx> structure. This structure holds
772  * everything necessary to use the header and find next occurrence. If its
773  * <idx> member is 0, the first header is retrieved. Otherwise, the next
774  * occurrence is returned. The function returns 1 when it finds a value, and
775  * 0 when there is no more. It is equivalent to http_find_full_header2() with
776  * no header name.
777  */
http_find_next_header(char * sol,struct hdr_idx * idx,struct hdr_ctx * ctx)778 int http_find_next_header(char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx)
779 {
780 	char *eol, *sov;
781 	int cur_idx, old_idx;
782 	int len;
783 
784 	cur_idx = ctx->idx;
785 	if (cur_idx) {
786 		/* We have previously returned a header, let's search another one */
787 		sol = ctx->line;
788 		eol = sol + idx->v[cur_idx].len;
789 		goto next_hdr;
790 	}
791 
792 	/* first request for this header */
793 	sol += hdr_idx_first_pos(idx);
794 	old_idx = 0;
795 	cur_idx = hdr_idx_first_idx(idx);
796 	while (cur_idx) {
797 		eol = sol + idx->v[cur_idx].len;
798 
799 		len = 0;
800 		while (1) {
801 			if (len >= eol - sol)
802 				goto next_hdr;
803 			if (sol[len] == ':')
804 				break;
805 			len++;
806 		}
807 
808 		ctx->del = len;
809 		sov = sol + len + 1;
810 		while (sov < eol && HTTP_IS_LWS(*sov))
811 			sov++;
812 
813 		ctx->line = sol;
814 		ctx->prev = old_idx;
815 		ctx->idx  = cur_idx;
816 		ctx->val  = sov - sol;
817 		ctx->tws = 0;
818 
819 		while (eol > sov && HTTP_IS_LWS(*(eol - 1))) {
820 			eol--;
821 			ctx->tws++;
822 		}
823 		ctx->vlen = eol - sov;
824 		return 1;
825 
826 	next_hdr:
827 		sol = eol + idx->v[cur_idx].cr + 1;
828 		old_idx = cur_idx;
829 		cur_idx = idx->v[cur_idx].next;
830 	}
831 	return 0;
832 }
833 
834 /* Find the end of the header value contained between <s> and <e>. See RFC7230,
835  * par 3.2 for more information. Note that it requires a valid header to return
836  * a valid result. This works for headers defined as comma-separated lists.
837  */
find_hdr_value_end(char * s,const char * e)838 char *find_hdr_value_end(char *s, const char *e)
839 {
840 	int quoted, qdpair;
841 
842 	quoted = qdpair = 0;
843 
844 #if defined(__x86_64__) ||						\
845     defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || \
846     defined(__ARM_ARCH_7A__)
847 	/* speedup: skip everything not a comma nor a double quote */
848 	for (; s <= e - sizeof(int); s += sizeof(int)) {
849 		unsigned int c = *(int *)s; // comma
850 		unsigned int q = c;         // quote
851 
852 		c ^= 0x2c2c2c2c; // contains one zero on a comma
853 		q ^= 0x22222222; // contains one zero on a quote
854 
855 		c = (c - 0x01010101) & ~c; // contains 0x80 below a comma
856 		q = (q - 0x01010101) & ~q; // contains 0x80 below a quote
857 
858 		if ((c | q) & 0x80808080)
859 			break; // found a comma or a quote
860 	}
861 #endif
862 	for (; s < e; s++) {
863 		if (qdpair)                    qdpair = 0;
864 		else if (quoted) {
865 			if (*s == '\\')        qdpair = 1;
866 			else if (*s == '"')    quoted = 0;
867 		}
868 		else if (*s == '"')            quoted = 1;
869 		else if (*s == ',')            return s;
870 	}
871 	return s;
872 }
873 
874 /* Find the first or next occurrence of header <name> in message buffer <sol>
875  * using headers index <idx>, and return it in the <ctx> structure. This
876  * structure holds everything necessary to use the header and find next
877  * occurrence. If its <idx> member is 0, the header is searched from the
878  * beginning. Otherwise, the next occurrence is returned. The function returns
879  * 1 when it finds a value, and 0 when there is no more. It is designed to work
880  * with headers defined as comma-separated lists. As a special case, if ctx->val
881  * is NULL when searching for a new values of a header, the current header is
882  * rescanned. This allows rescanning after a header deletion.
883  */
http_find_header2(const char * name,int len,char * sol,struct hdr_idx * idx,struct hdr_ctx * ctx)884 int http_find_header2(const char *name, int len,
885 		      char *sol, struct hdr_idx *idx,
886 		      struct hdr_ctx *ctx)
887 {
888 	char *eol, *sov;
889 	int cur_idx, old_idx;
890 
891 	cur_idx = ctx->idx;
892 	if (cur_idx) {
893 		/* We have previously returned a value, let's search
894 		 * another one on the same line.
895 		 */
896 		sol = ctx->line;
897 		ctx->del = ctx->val + ctx->vlen + ctx->tws;
898 		sov = sol + ctx->del;
899 		eol = sol + idx->v[cur_idx].len;
900 
901 		if (sov >= eol)
902 			/* no more values in this header */
903 			goto next_hdr;
904 
905 		/* values remaining for this header, skip the comma but save it
906 		 * for later use (eg: for header deletion).
907 		 */
908 		sov++;
909 		while (sov < eol && HTTP_IS_LWS((*sov)))
910 			sov++;
911 
912 		goto return_hdr;
913 	}
914 
915 	/* first request for this header */
916 	sol += hdr_idx_first_pos(idx);
917 	old_idx = 0;
918 	cur_idx = hdr_idx_first_idx(idx);
919 	while (cur_idx) {
920 		eol = sol + idx->v[cur_idx].len;
921 
922 		if (len == 0) {
923 			/* No argument was passed, we want any header.
924 			 * To achieve this, we simply build a fake request. */
925 			while (sol + len < eol && sol[len] != ':')
926 				len++;
927 			name = sol;
928 		}
929 
930 		if ((len < eol - sol) &&
931 		    (sol[len] == ':') &&
932 		    (strncasecmp(sol, name, len) == 0)) {
933 			ctx->del = len;
934 			sov = sol + len + 1;
935 			while (sov < eol && HTTP_IS_LWS(*sov))
936 				sov++;
937 
938 			ctx->line = sol;
939 			ctx->prev = old_idx;
940 		return_hdr:
941 			ctx->idx  = cur_idx;
942 			ctx->val  = sov - sol;
943 
944 			eol = find_hdr_value_end(sov, eol);
945 			ctx->tws = 0;
946 			while (eol > sov && HTTP_IS_LWS(*(eol - 1))) {
947 				eol--;
948 				ctx->tws++;
949 			}
950 			ctx->vlen = eol - sov;
951 			return 1;
952 		}
953 	next_hdr:
954 		sol = eol + idx->v[cur_idx].cr + 1;
955 		old_idx = cur_idx;
956 		cur_idx = idx->v[cur_idx].next;
957 	}
958 	return 0;
959 }
960 
http_find_header(const char * name,char * sol,struct hdr_idx * idx,struct hdr_ctx * ctx)961 int http_find_header(const char *name,
962 		     char *sol, struct hdr_idx *idx,
963 		     struct hdr_ctx *ctx)
964 {
965 	return http_find_header2(name, strlen(name), sol, idx, ctx);
966 }
967 
968 /* Remove one value of a header. This only works on a <ctx> returned by one of
969  * the http_find_header functions. The value is removed, as well as surrounding
970  * commas if any. If the removed value was alone, the whole header is removed.
971  * The ctx is always updated accordingly, as well as the buffer and HTTP
972  * message <msg>. The new index is returned. If it is zero, it means there is
973  * no more header, so any processing may stop. The ctx is always left in a form
974  * that can be handled by http_find_header2() to find next occurrence.
975  */
http_remove_header2(struct http_msg * msg,struct hdr_idx * idx,struct hdr_ctx * ctx)976 int http_remove_header2(struct http_msg *msg, struct hdr_idx *idx, struct hdr_ctx *ctx)
977 {
978 	int cur_idx = ctx->idx;
979 	char *sol = ctx->line;
980 	struct hdr_idx_elem *hdr;
981 	int delta, skip_comma;
982 
983 	if (!cur_idx)
984 		return 0;
985 
986 	hdr = &idx->v[cur_idx];
987 	if (sol[ctx->del] == ':' && ctx->val + ctx->vlen + ctx->tws == hdr->len) {
988 		/* This was the only value of the header, we must now remove it entirely. */
989 		delta = buffer_replace2(msg->chn->buf, sol, sol + hdr->len + hdr->cr + 1, NULL, 0);
990 		http_msg_move_end(msg, delta);
991 		idx->used--;
992 		hdr->len = 0;   /* unused entry */
993 		idx->v[ctx->prev].next = idx->v[ctx->idx].next;
994 		if (idx->tail == ctx->idx)
995 			idx->tail = ctx->prev;
996 		ctx->idx = ctx->prev;    /* walk back to the end of previous header */
997 		ctx->line -= idx->v[ctx->idx].len + idx->v[ctx->idx].cr + 1;
998 		ctx->val = idx->v[ctx->idx].len; /* point to end of previous header */
999 		ctx->tws = ctx->vlen = 0;
1000 		return ctx->idx;
1001 	}
1002 
1003 	/* This was not the only value of this header. We have to remove between
1004 	 * ctx->del+1 and ctx->val+ctx->vlen+ctx->tws+1 included. If it is the
1005 	 * last entry of the list, we remove the last separator.
1006 	 */
1007 
1008 	skip_comma = (ctx->val + ctx->vlen + ctx->tws == hdr->len) ? 0 : 1;
1009 	delta = buffer_replace2(msg->chn->buf, sol + ctx->del + skip_comma,
1010 				sol + ctx->val + ctx->vlen + ctx->tws + skip_comma,
1011 				NULL, 0);
1012 	hdr->len += delta;
1013 	http_msg_move_end(msg, delta);
1014 	ctx->val = ctx->del;
1015 	ctx->tws = ctx->vlen = 0;
1016 	return ctx->idx;
1017 }
1018 
1019 /* This function handles a server error at the stream interface level. The
1020  * stream interface is assumed to be already in a closed state. An optional
1021  * message is copied into the input buffer, and an HTTP status code stored.
1022  * The error flags are set to the values in arguments. Any pending request
1023  * in this buffer will be lost.
1024  */
http_server_error(struct stream * s,struct stream_interface * si,int err,int finst,int status,const struct chunk * msg)1025 static void http_server_error(struct stream *s, struct stream_interface *si,
1026 			      int err, int finst, int status, const struct chunk *msg)
1027 {
1028 	FLT_STRM_CB(s, flt_http_reply(s, status, msg));
1029 	channel_auto_read(si_oc(si));
1030 	channel_abort(si_oc(si));
1031 	channel_auto_close(si_oc(si));
1032 	channel_erase(si_oc(si));
1033 	channel_auto_close(si_ic(si));
1034 	channel_auto_read(si_ic(si));
1035 	if (status > 0 && msg) {
1036 		s->txn->status = status;
1037 		bo_inject(si_ic(si), msg->str, msg->len);
1038 	}
1039 	if (!(s->flags & SF_ERR_MASK))
1040 		s->flags |= err;
1041 	if (!(s->flags & SF_FINST_MASK))
1042 		s->flags |= finst;
1043 }
1044 
1045 /* This function returns the appropriate error location for the given stream
1046  * and message.
1047  */
1048 
http_error_message(struct stream * s,int msgnum)1049 struct chunk *http_error_message(struct stream *s, int msgnum)
1050 {
1051 	if (s->be->errmsg[msgnum].str)
1052 		return &s->be->errmsg[msgnum];
1053 	else if (strm_fe(s)->errmsg[msgnum].str)
1054 		return &strm_fe(s)->errmsg[msgnum];
1055 	else
1056 		return &http_err_chunks[msgnum];
1057 }
1058 
1059 void
http_reply_and_close(struct stream * s,short status,struct chunk * msg)1060 http_reply_and_close(struct stream *s, short status, struct chunk *msg)
1061 {
1062 	s->txn->flags &= ~TX_WAIT_NEXT_RQ;
1063 	FLT_STRM_CB(s, flt_http_reply(s, status, msg));
1064 	stream_int_retnclose(&s->si[0], msg);
1065 }
1066 
1067 /*
1068  * returns a known method among HTTP_METH_* or HTTP_METH_OTHER for all unknown
1069  * ones.
1070  */
find_http_meth(const char * str,const int len)1071 enum http_meth_t find_http_meth(const char *str, const int len)
1072 {
1073 	unsigned char m;
1074 	const struct http_method_desc *h;
1075 
1076 	m = ((unsigned)*str - 'A');
1077 
1078 	if (m < 26) {
1079 		for (h = http_methods[m]; h->len > 0; h++) {
1080 			if (unlikely(h->len != len))
1081 				continue;
1082 			if (likely(memcmp(str, h->text, h->len) == 0))
1083 				return h->meth;
1084 		};
1085 	}
1086 	return HTTP_METH_OTHER;
1087 }
1088 
1089 /* Parse the URI from the given transaction (which is assumed to be in request
1090  * phase) and look for the "/" beginning the PATH. If not found, return NULL.
1091  * It is returned otherwise.
1092  */
http_get_path(struct http_txn * txn)1093 char *http_get_path(struct http_txn *txn)
1094 {
1095 	char *ptr, *end;
1096 
1097 	ptr = txn->req.chn->buf->p + txn->req.sl.rq.u;
1098 	end = ptr + txn->req.sl.rq.u_l;
1099 
1100 	if (ptr >= end)
1101 		return NULL;
1102 
1103 	/* RFC7230, par. 2.7 :
1104 	 * Request-URI = "*" | absuri | abspath | authority
1105 	 */
1106 
1107 	if (*ptr == '*')
1108 		return NULL;
1109 
1110 	if (isalpha((unsigned char)*ptr)) {
1111 		/* this is a scheme as described by RFC3986, par. 3.1 */
1112 		ptr++;
1113 		while (ptr < end &&
1114 		       (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.'))
1115 			ptr++;
1116 		/* skip '://' */
1117 		if (ptr == end || *ptr++ != ':')
1118 			return NULL;
1119 		if (ptr == end || *ptr++ != '/')
1120 			return NULL;
1121 		if (ptr == end || *ptr++ != '/')
1122 			return NULL;
1123 	}
1124 	/* skip [user[:passwd]@]host[:[port]] */
1125 
1126 	while (ptr < end && *ptr != '/')
1127 		ptr++;
1128 
1129 	if (ptr == end)
1130 		return NULL;
1131 
1132 	/* OK, we got the '/' ! */
1133 	return ptr;
1134 }
1135 
1136 /* Parse the URI from the given string and look for the "/" beginning the PATH.
1137  * If not found, return NULL. It is returned otherwise.
1138  */
1139 static char *
http_get_path_from_string(char * str)1140 http_get_path_from_string(char *str)
1141 {
1142 	char *ptr = str;
1143 
1144 	/* RFC2616, par. 5.1.2 :
1145 	 * Request-URI = "*" | absuri | abspath | authority
1146 	 */
1147 
1148 	if (*ptr == '*')
1149 		return NULL;
1150 
1151 	if (isalpha((unsigned char)*ptr)) {
1152 		/* this is a scheme as described by RFC3986, par. 3.1 */
1153 		ptr++;
1154 		while (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.')
1155 			ptr++;
1156 		/* skip '://' */
1157 		if (*ptr == '\0' || *ptr++ != ':')
1158 			return NULL;
1159 		if (*ptr == '\0' || *ptr++ != '/')
1160 			return NULL;
1161 		if (*ptr == '\0' || *ptr++ != '/')
1162 			return NULL;
1163 	}
1164 	/* skip [user[:passwd]@]host[:[port]] */
1165 
1166 	while (*ptr != '\0' && *ptr != ' ' && *ptr != '/')
1167 		ptr++;
1168 
1169 	if (*ptr == '\0' || *ptr == ' ')
1170 		return NULL;
1171 
1172 	/* OK, we got the '/' ! */
1173 	return ptr;
1174 }
1175 
1176 /* Returns a 302 for a redirectable request that reaches a server working in
1177  * in redirect mode. This may only be called just after the stream interface
1178  * has moved to SI_ST_ASS. Unprocessable requests are left unchanged and will
1179  * follow normal proxy processing. NOTE: this function is designed to support
1180  * being called once data are scheduled for forwarding.
1181  */
http_perform_server_redirect(struct stream * s,struct stream_interface * si)1182 void http_perform_server_redirect(struct stream *s, struct stream_interface *si)
1183 {
1184 	struct http_txn *txn;
1185 	struct server *srv;
1186 	char *path;
1187 	int len, rewind;
1188 
1189 	/* 1: create the response header */
1190 	trash.len = strlen(HTTP_302);
1191 	memcpy(trash.str, HTTP_302, trash.len);
1192 
1193 	srv = objt_server(s->target);
1194 
1195 	/* 2: add the server's prefix */
1196 	if (trash.len + srv->rdr_len > trash.size)
1197 		return;
1198 
1199 	/* special prefix "/" means don't change URL */
1200 	if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') {
1201 		memcpy(trash.str + trash.len, srv->rdr_pfx, srv->rdr_len);
1202 		trash.len += srv->rdr_len;
1203 	}
1204 
1205 	/* 3: add the request URI. Since it was already forwarded, we need
1206 	 * to temporarily rewind the buffer.
1207 	 */
1208 	txn = s->txn;
1209 	b_rew(s->req.buf, rewind = http_hdr_rewind(&txn->req));
1210 
1211 	path = http_get_path(txn);
1212 	len = buffer_count(s->req.buf, path, b_ptr(s->req.buf, txn->req.sl.rq.u + txn->req.sl.rq.u_l));
1213 
1214 	b_adv(s->req.buf, rewind);
1215 
1216 	if (!path)
1217 		return;
1218 
1219 	if (trash.len + len > trash.size - 4) /* 4 for CRLF-CRLF */
1220 		return;
1221 
1222 	memcpy(trash.str + trash.len, path, len);
1223 	trash.len += len;
1224 
1225 	if (unlikely(txn->flags & TX_USE_PX_CONN)) {
1226 		memcpy(trash.str + trash.len, "\r\nProxy-Connection: close\r\n\r\n", 29);
1227 		trash.len += 29;
1228 	} else {
1229 		memcpy(trash.str + trash.len, "\r\nConnection: close\r\n\r\n", 23);
1230 		trash.len += 23;
1231 	}
1232 
1233 	/* prepare to return without error. */
1234 	si_shutr(si);
1235 	si_shutw(si);
1236 	si->err_type = SI_ET_NONE;
1237 	si->state    = SI_ST_CLO;
1238 
1239 	/* send the message */
1240 	http_server_error(s, si, SF_ERR_LOCAL, SF_FINST_C, 302, &trash);
1241 
1242 	/* FIXME: we should increase a counter of redirects per server and per backend. */
1243 	srv_inc_sess_ctr(srv);
1244 	srv_set_sess_last(srv);
1245 }
1246 
1247 /* Return the error message corresponding to si->err_type. It is assumed
1248  * that the server side is closed. Note that err_type is actually a
1249  * bitmask, where almost only aborts may be cumulated with other
1250  * values. We consider that aborted operations are more important
1251  * than timeouts or errors due to the fact that nobody else in the
1252  * logs might explain incomplete retries. All others should avoid
1253  * being cumulated. It should normally not be possible to have multiple
1254  * aborts at once, but just in case, the first one in sequence is reported.
1255  * Note that connection errors appearing on the second request of a keep-alive
1256  * connection are not reported since this allows the client to retry.
1257  */
http_return_srv_error(struct stream * s,struct stream_interface * si)1258 void http_return_srv_error(struct stream *s, struct stream_interface *si)
1259 {
1260 	int err_type = si->err_type;
1261 
1262 	if (err_type & SI_ET_QUEUE_ABRT)
1263 		http_server_error(s, si, SF_ERR_CLICL, SF_FINST_Q,
1264 				  503, http_error_message(s, HTTP_ERR_503));
1265 	else if (err_type & SI_ET_CONN_ABRT)
1266 		http_server_error(s, si, SF_ERR_CLICL, SF_FINST_C,
1267 				  503, (s->txn->flags & TX_NOT_FIRST) ? NULL :
1268 				  http_error_message(s, HTTP_ERR_503));
1269 	else if (err_type & SI_ET_QUEUE_TO)
1270 		http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_Q,
1271 				  503, http_error_message(s, HTTP_ERR_503));
1272 	else if (err_type & SI_ET_QUEUE_ERR)
1273 		http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_Q,
1274 				  503, http_error_message(s, HTTP_ERR_503));
1275 	else if (err_type & SI_ET_CONN_TO)
1276 		http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_C,
1277 				  503, (s->txn->flags & TX_NOT_FIRST) ? NULL :
1278 				  http_error_message(s, HTTP_ERR_503));
1279 	else if (err_type & SI_ET_CONN_ERR)
1280 		http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_C,
1281 				  503, (s->flags & SF_SRV_REUSED) ? NULL :
1282 				  http_error_message(s, HTTP_ERR_503));
1283 	else if (err_type & SI_ET_CONN_RES)
1284 		http_server_error(s, si, SF_ERR_RESOURCE, SF_FINST_C,
1285 				  503, (s->txn->flags & TX_NOT_FIRST) ? NULL :
1286 				  http_error_message(s, HTTP_ERR_503));
1287 	else /* SI_ET_CONN_OTHER and others */
1288 		http_server_error(s, si, SF_ERR_INTERNAL, SF_FINST_C,
1289 				  500, http_error_message(s, HTTP_ERR_500));
1290 }
1291 
1292 extern const char sess_term_cond[8];
1293 extern const char sess_fin_state[8];
1294 extern const char *monthname[12];
1295 struct pool_head *pool2_http_txn;
1296 struct pool_head *pool2_requri;
1297 struct pool_head *pool2_capture = NULL;
1298 struct pool_head *pool2_uniqueid;
1299 
1300 /*
1301  * Capture headers from message starting at <som> according to header list
1302  * <cap_hdr>, and fill the <cap> pointers appropriately.
1303  */
capture_headers(char * som,struct hdr_idx * idx,char ** cap,struct cap_hdr * cap_hdr)1304 void capture_headers(char *som, struct hdr_idx *idx,
1305 		     char **cap, struct cap_hdr *cap_hdr)
1306 {
1307 	char *eol, *sol, *col, *sov;
1308 	int cur_idx;
1309 	struct cap_hdr *h;
1310 	int len;
1311 
1312 	sol = som + hdr_idx_first_pos(idx);
1313 	cur_idx = hdr_idx_first_idx(idx);
1314 
1315 	while (cur_idx) {
1316 		eol = sol + idx->v[cur_idx].len;
1317 
1318 		col = sol;
1319 		while (col < eol && *col != ':')
1320 			col++;
1321 
1322 		sov = col + 1;
1323 		while (sov < eol && HTTP_IS_LWS(*sov))
1324 			sov++;
1325 
1326 		for (h = cap_hdr; h; h = h->next) {
1327 			if (h->namelen && (h->namelen == col - sol) &&
1328 			    (strncasecmp(sol, h->name, h->namelen) == 0)) {
1329 				if (cap[h->index] == NULL)
1330 					cap[h->index] =
1331 						pool_alloc2(h->pool);
1332 
1333 				if (cap[h->index] == NULL) {
1334 					Alert("HTTP capture : out of memory.\n");
1335 					continue;
1336 				}
1337 
1338 				len = eol - sov;
1339 				if (len > h->len)
1340 					len = h->len;
1341 
1342 				memcpy(cap[h->index], sov, len);
1343 				cap[h->index][len]=0;
1344 			}
1345 		}
1346 		sol = eol + idx->v[cur_idx].cr + 1;
1347 		cur_idx = idx->v[cur_idx].next;
1348 	}
1349 }
1350 
1351 
1352 /* either we find an LF at <ptr> or we jump to <bad>.
1353  */
1354 #define EXPECT_LF_HERE(ptr, bad, st)	do { if (unlikely(*(ptr) != '\n')) { state = st; goto bad;}; } while (0)
1355 
1356 /* plays with variables <ptr>, <end> and <state>. Jumps to <good> if OK,
1357  * otherwise to <http_msg_ood> with <state> set to <st>.
1358  */
1359 #define EAT_AND_JUMP_OR_RETURN(good, st)   do { \
1360 		ptr++;                          \
1361 		if (likely(ptr < end))          \
1362 			goto good;              \
1363 		else {                          \
1364 			state = (st);           \
1365 			goto http_msg_ood;      \
1366 		}                               \
1367 	} while (0)
1368 
1369 
1370 /*
1371  * This function parses a status line between <ptr> and <end>, starting with
1372  * parser state <state>. Only states HTTP_MSG_RPVER, HTTP_MSG_RPVER_SP,
1373  * HTTP_MSG_RPCODE, HTTP_MSG_RPCODE_SP and HTTP_MSG_RPREASON are handled. Others
1374  * will give undefined results.
1375  * Note that it is upon the caller's responsibility to ensure that ptr < end,
1376  * and that msg->sol points to the beginning of the response.
1377  * If a complete line is found (which implies that at least one CR or LF is
1378  * found before <end>, the updated <ptr> is returned, otherwise NULL is
1379  * returned indicating an incomplete line (which does not mean that parts have
1380  * not been updated). In the incomplete case, if <ret_ptr> or <ret_state> are
1381  * non-NULL, they are fed with the new <ptr> and <state> values to be passed
1382  * upon next call.
1383  *
1384  * This function was intentionally designed to be called from
1385  * http_msg_analyzer() with the lowest overhead. It should integrate perfectly
1386  * within its state machine and use the same macros, hence the need for same
1387  * labels and variable names. Note that msg->sol is left unchanged.
1388  */
http_parse_stsline(struct http_msg * msg,enum ht_state state,const char * ptr,const char * end,unsigned int * ret_ptr,enum ht_state * ret_state)1389 const char *http_parse_stsline(struct http_msg *msg,
1390 			       enum ht_state state, const char *ptr, const char *end,
1391 			       unsigned int *ret_ptr, enum ht_state *ret_state)
1392 {
1393 	const char *msg_start = msg->chn->buf->p;
1394 
1395 	switch (state)	{
1396 	case HTTP_MSG_RPVER:
1397 	http_msg_rpver:
1398 		if (likely(HTTP_IS_VER_TOKEN(*ptr)))
1399 			EAT_AND_JUMP_OR_RETURN(http_msg_rpver, HTTP_MSG_RPVER);
1400 
1401 		if (likely(HTTP_IS_SPHT(*ptr))) {
1402 			msg->sl.st.v_l = ptr - msg_start;
1403 			EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP);
1404 		}
1405 		msg->err_state = HTTP_MSG_RPVER;
1406 		state = HTTP_MSG_ERROR;
1407 		break;
1408 
1409 	case HTTP_MSG_RPVER_SP:
1410 	http_msg_rpver_sp:
1411 		if (likely(!HTTP_IS_LWS(*ptr))) {
1412 			msg->sl.st.c = ptr - msg_start;
1413 			goto http_msg_rpcode;
1414 		}
1415 		if (likely(HTTP_IS_SPHT(*ptr)))
1416 			EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP);
1417 		/* so it's a CR/LF, this is invalid */
1418 		msg->err_state = HTTP_MSG_RPVER_SP;
1419 		state = HTTP_MSG_ERROR;
1420 		break;
1421 
1422 	case HTTP_MSG_RPCODE:
1423 	http_msg_rpcode:
1424 		if (likely(!HTTP_IS_LWS(*ptr)))
1425 			EAT_AND_JUMP_OR_RETURN(http_msg_rpcode, HTTP_MSG_RPCODE);
1426 
1427 		if (likely(HTTP_IS_SPHT(*ptr))) {
1428 			msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c;
1429 			EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP);
1430 		}
1431 
1432 		/* so it's a CR/LF, so there is no reason phrase */
1433 		msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c;
1434 	http_msg_rsp_reason:
1435 		/* FIXME: should we support HTTP responses without any reason phrase ? */
1436 		msg->sl.st.r = ptr - msg_start;
1437 		msg->sl.st.r_l = 0;
1438 		goto http_msg_rpline_eol;
1439 
1440 	case HTTP_MSG_RPCODE_SP:
1441 	http_msg_rpcode_sp:
1442 		if (likely(!HTTP_IS_LWS(*ptr))) {
1443 			msg->sl.st.r = ptr - msg_start;
1444 			goto http_msg_rpreason;
1445 		}
1446 		if (likely(HTTP_IS_SPHT(*ptr)))
1447 			EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP);
1448 		/* so it's a CR/LF, so there is no reason phrase */
1449 		goto http_msg_rsp_reason;
1450 
1451 	case HTTP_MSG_RPREASON:
1452 	http_msg_rpreason:
1453 		if (likely(!HTTP_IS_CRLF(*ptr)))
1454 			EAT_AND_JUMP_OR_RETURN(http_msg_rpreason, HTTP_MSG_RPREASON);
1455 		msg->sl.st.r_l = ptr - msg_start - msg->sl.st.r;
1456 	http_msg_rpline_eol:
1457 		/* We have seen the end of line. Note that we do not
1458 		 * necessarily have the \n yet, but at least we know that we
1459 		 * have EITHER \r OR \n, otherwise the response would not be
1460 		 * complete. We can then record the response length and return
1461 		 * to the caller which will be able to register it.
1462 		 */
1463 		msg->sl.st.l = ptr - msg_start - msg->sol;
1464 		return ptr;
1465 
1466 	default:
1467 #ifdef DEBUG_FULL
1468 		fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
1469 		exit(1);
1470 #endif
1471 		;
1472 	}
1473 
1474  http_msg_ood:
1475 	/* out of valid data */
1476 	if (ret_state)
1477 		*ret_state = state;
1478 	if (ret_ptr)
1479 		*ret_ptr = ptr - msg_start;
1480 	return NULL;
1481 }
1482 
1483 /*
1484  * This function parses a request line between <ptr> and <end>, starting with
1485  * parser state <state>. Only states HTTP_MSG_RQMETH, HTTP_MSG_RQMETH_SP,
1486  * HTTP_MSG_RQURI, HTTP_MSG_RQURI_SP and HTTP_MSG_RQVER are handled. Others
1487  * will give undefined results.
1488  * Note that it is upon the caller's responsibility to ensure that ptr < end,
1489  * and that msg->sol points to the beginning of the request.
1490  * If a complete line is found (which implies that at least one CR or LF is
1491  * found before <end>, the updated <ptr> is returned, otherwise NULL is
1492  * returned indicating an incomplete line (which does not mean that parts have
1493  * not been updated). In the incomplete case, if <ret_ptr> or <ret_state> are
1494  * non-NULL, they are fed with the new <ptr> and <state> values to be passed
1495  * upon next call.
1496  *
1497  * This function was intentionally designed to be called from
1498  * http_msg_analyzer() with the lowest overhead. It should integrate perfectly
1499  * within its state machine and use the same macros, hence the need for same
1500  * labels and variable names. Note that msg->sol is left unchanged.
1501  */
http_parse_reqline(struct http_msg * msg,enum ht_state state,const char * ptr,const char * end,unsigned int * ret_ptr,enum ht_state * ret_state)1502 const char *http_parse_reqline(struct http_msg *msg,
1503 			       enum ht_state state, const char *ptr, const char *end,
1504 			       unsigned int *ret_ptr, enum ht_state *ret_state)
1505 {
1506 	const char *msg_start = msg->chn->buf->p;
1507 
1508 	switch (state)	{
1509 	case HTTP_MSG_RQMETH:
1510 	http_msg_rqmeth:
1511 		if (likely(HTTP_IS_TOKEN(*ptr)))
1512 			EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth, HTTP_MSG_RQMETH);
1513 
1514 		if (likely(HTTP_IS_SPHT(*ptr))) {
1515 			msg->sl.rq.m_l = ptr - msg_start;
1516 			EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP);
1517 		}
1518 
1519 		if (likely(HTTP_IS_CRLF(*ptr))) {
1520 			/* HTTP 0.9 request */
1521 			msg->sl.rq.m_l = ptr - msg_start;
1522 		http_msg_req09_uri:
1523 			msg->sl.rq.u = ptr - msg_start;
1524 		http_msg_req09_uri_e:
1525 			msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u;
1526 		http_msg_req09_ver:
1527 			msg->sl.rq.v = ptr - msg_start;
1528 			msg->sl.rq.v_l = 0;
1529 			goto http_msg_rqline_eol;
1530 		}
1531 		msg->err_state = HTTP_MSG_RQMETH;
1532 		state = HTTP_MSG_ERROR;
1533 		break;
1534 
1535 	case HTTP_MSG_RQMETH_SP:
1536 	http_msg_rqmeth_sp:
1537 		if (likely(!HTTP_IS_LWS(*ptr))) {
1538 			msg->sl.rq.u = ptr - msg_start;
1539 			goto http_msg_rquri;
1540 		}
1541 		if (likely(HTTP_IS_SPHT(*ptr)))
1542 			EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP);
1543 		/* so it's a CR/LF, meaning an HTTP 0.9 request */
1544 		goto http_msg_req09_uri;
1545 
1546 	case HTTP_MSG_RQURI:
1547 	http_msg_rquri:
1548 #if defined(__x86_64__) ||						\
1549     defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || \
1550     defined(__ARM_ARCH_7A__)
1551 		/* speedup: skip bytes not between 0x21 and 0x7e inclusive */
1552 		while (ptr <= end - sizeof(int)) {
1553 			int x = *(int *)ptr - 0x21212121;
1554 			if (x & 0x80808080)
1555 				break;
1556 
1557 			x -= 0x5e5e5e5e;
1558 			if (!(x & 0x80808080))
1559 				break;
1560 
1561 			ptr += sizeof(int);
1562 		}
1563 #endif
1564 		if (ptr >= end) {
1565 			state = HTTP_MSG_RQURI;
1566 			goto http_msg_ood;
1567 		}
1568 	http_msg_rquri2:
1569 		if (likely((unsigned char)(*ptr - 33) <= 93)) /* 33 to 126 included */
1570 			EAT_AND_JUMP_OR_RETURN(http_msg_rquri2, HTTP_MSG_RQURI);
1571 
1572 		if (likely(HTTP_IS_SPHT(*ptr))) {
1573 			msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u;
1574 			EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP);
1575 		}
1576 
1577 		if (likely((unsigned char)*ptr >= 128)) {
1578 			/* non-ASCII chars are forbidden unless option
1579 			 * accept-invalid-http-request is enabled in the frontend.
1580 			 * In any case, we capture the faulty char.
1581 			 */
1582 			if (msg->err_pos < -1)
1583 				goto invalid_char;
1584 			if (msg->err_pos == -1)
1585 				msg->err_pos = ptr - msg_start;
1586 			EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI);
1587 		}
1588 
1589 		if (likely(HTTP_IS_CRLF(*ptr))) {
1590 			/* so it's a CR/LF, meaning an HTTP 0.9 request */
1591 			goto http_msg_req09_uri_e;
1592 		}
1593 
1594 		/* OK forbidden chars, 0..31 or 127 */
1595 	invalid_char:
1596 		msg->err_pos = ptr - msg_start;
1597 		msg->err_state = HTTP_MSG_RQURI;
1598 		state = HTTP_MSG_ERROR;
1599 		break;
1600 
1601 	case HTTP_MSG_RQURI_SP:
1602 	http_msg_rquri_sp:
1603 		if (likely(!HTTP_IS_LWS(*ptr))) {
1604 			msg->sl.rq.v = ptr - msg_start;
1605 			goto http_msg_rqver;
1606 		}
1607 		if (likely(HTTP_IS_SPHT(*ptr)))
1608 			EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP);
1609 		/* so it's a CR/LF, meaning an HTTP 0.9 request */
1610 		goto http_msg_req09_ver;
1611 
1612 	case HTTP_MSG_RQVER:
1613 	http_msg_rqver:
1614 		if (likely(HTTP_IS_VER_TOKEN(*ptr)))
1615 			EAT_AND_JUMP_OR_RETURN(http_msg_rqver, HTTP_MSG_RQVER);
1616 
1617 		if (likely(HTTP_IS_CRLF(*ptr))) {
1618 			msg->sl.rq.v_l = ptr - msg_start - msg->sl.rq.v;
1619 		http_msg_rqline_eol:
1620 			/* We have seen the end of line. Note that we do not
1621 			 * necessarily have the \n yet, but at least we know that we
1622 			 * have EITHER \r OR \n, otherwise the request would not be
1623 			 * complete. We can then record the request length and return
1624 			 * to the caller which will be able to register it.
1625 			 */
1626 			msg->sl.rq.l = ptr - msg_start - msg->sol;
1627 			return ptr;
1628 		}
1629 
1630 		/* neither an HTTP_VER token nor a CRLF */
1631 		msg->err_state = HTTP_MSG_RQVER;
1632 		state = HTTP_MSG_ERROR;
1633 		break;
1634 
1635 	default:
1636 #ifdef DEBUG_FULL
1637 		fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
1638 		exit(1);
1639 #endif
1640 		;
1641 	}
1642 
1643  http_msg_ood:
1644 	/* out of valid data */
1645 	if (ret_state)
1646 		*ret_state = state;
1647 	if (ret_ptr)
1648 		*ret_ptr = ptr - msg_start;
1649 	return NULL;
1650 }
1651 
1652 /*
1653  * Returns the data from Authorization header. Function may be called more
1654  * than once so data is stored in txn->auth_data. When no header is found
1655  * or auth method is unknown auth_method is set to HTTP_AUTH_WRONG to avoid
1656  * searching again for something we are unable to find anyway. However, if
1657  * the result if valid, the cache is not reused because we would risk to
1658  * have the credentials overwritten by another stream in parallel.
1659  */
1660 
1661 /* This bufffer is initialized in the file 'src/haproxy.c'. This length is
1662  * set according to global.tune.bufsize.
1663  */
1664 char *get_http_auth_buff;
1665 
1666 int
get_http_auth(struct stream * s)1667 get_http_auth(struct stream *s)
1668 {
1669 
1670 	struct http_txn *txn = s->txn;
1671 	struct chunk auth_method;
1672 	struct hdr_ctx ctx;
1673 	char *h, *p;
1674 	int len;
1675 
1676 #ifdef DEBUG_AUTH
1677 	printf("Auth for stream %p: %d\n", s, txn->auth.method);
1678 #endif
1679 
1680 	if (txn->auth.method == HTTP_AUTH_WRONG)
1681 		return 0;
1682 
1683 	txn->auth.method = HTTP_AUTH_WRONG;
1684 
1685 	ctx.idx = 0;
1686 
1687 	if (txn->flags & TX_USE_PX_CONN) {
1688 		h = "Proxy-Authorization";
1689 		len = strlen(h);
1690 	} else {
1691 		h = "Authorization";
1692 		len = strlen(h);
1693 	}
1694 
1695 	if (!http_find_header2(h, len, s->req.buf->p, &txn->hdr_idx, &ctx))
1696 		return 0;
1697 
1698 	h = ctx.line + ctx.val;
1699 
1700 	p = memchr(h, ' ', ctx.vlen);
1701 	len = p - h;
1702 	if (!p || len <= 0)
1703 		return 0;
1704 
1705 	if (chunk_initlen(&auth_method, h, 0, len) != 1)
1706 		return 0;
1707 
1708 	chunk_initlen(&txn->auth.method_data, p + 1, 0, ctx.vlen - len - 1);
1709 
1710 	if (!strncasecmp("Basic", auth_method.str, auth_method.len)) {
1711 
1712 		len = base64dec(txn->auth.method_data.str, txn->auth.method_data.len,
1713 				get_http_auth_buff, global.tune.bufsize - 1);
1714 
1715 		if (len < 0)
1716 			return 0;
1717 
1718 
1719 		get_http_auth_buff[len] = '\0';
1720 
1721 		p = strchr(get_http_auth_buff, ':');
1722 
1723 		if (!p)
1724 			return 0;
1725 
1726 		txn->auth.user = get_http_auth_buff;
1727 		*p = '\0';
1728 		txn->auth.pass = p+1;
1729 
1730 		txn->auth.method = HTTP_AUTH_BASIC;
1731 		return 1;
1732 	}
1733 
1734 	return 0;
1735 }
1736 
1737 
1738 /*
1739  * This function parses an HTTP message, either a request or a response,
1740  * depending on the initial msg->msg_state. The caller is responsible for
1741  * ensuring that the message does not wrap. The function can be preempted
1742  * everywhere when data are missing and recalled at the exact same location
1743  * with no information loss. The message may even be realigned between two
1744  * calls. The header index is re-initialized when switching from
1745  * MSG_R[PQ]BEFORE to MSG_RPVER|MSG_RQMETH. It modifies msg->sol among other
1746  * fields. Note that msg->sol will be initialized after completing the first
1747  * state, so that none of the msg pointers has to be initialized prior to the
1748  * first call.
1749  */
http_msg_analyzer(struct http_msg * msg,struct hdr_idx * idx)1750 void http_msg_analyzer(struct http_msg *msg, struct hdr_idx *idx)
1751 {
1752 	enum ht_state state;       /* updated only when leaving the FSM */
1753 	register char *ptr, *end; /* request pointers, to avoid dereferences */
1754 	struct buffer *buf;
1755 
1756 	state = msg->msg_state;
1757 	buf = msg->chn->buf;
1758 	ptr = buf->p + msg->next;
1759 	end = buf->p + buf->i;
1760 
1761 	if (unlikely(ptr >= end))
1762 		goto http_msg_ood;
1763 
1764 	switch (state)	{
1765 	/*
1766 	 * First, states that are specific to the response only.
1767 	 * We check them first so that request and headers are
1768 	 * closer to each other (accessed more often).
1769 	 */
1770 	case HTTP_MSG_RPBEFORE:
1771 	http_msg_rpbefore:
1772 		if (likely(HTTP_IS_TOKEN(*ptr))) {
1773 			/* we have a start of message, but we have to check
1774 			 * first if we need to remove some CRLF. We can only
1775 			 * do this when o=0.
1776 			 */
1777 			if (unlikely(ptr != buf->p)) {
1778 				if (buf->o)
1779 					goto http_msg_ood;
1780 				/* Remove empty leading lines, as recommended by RFC2616. */
1781 				bi_fast_delete(buf, ptr - buf->p);
1782 			}
1783 			msg->sol = 0;
1784 			msg->sl.st.l = 0; /* used in debug mode */
1785 			hdr_idx_init(idx);
1786 			state = HTTP_MSG_RPVER;
1787 			goto http_msg_rpver;
1788 		}
1789 
1790 		if (unlikely(!HTTP_IS_CRLF(*ptr))) {
1791 			state = HTTP_MSG_RPBEFORE;
1792 			goto http_msg_invalid;
1793 		}
1794 
1795 		if (unlikely(*ptr == '\n'))
1796 			EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE);
1797 		EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore_cr, HTTP_MSG_RPBEFORE_CR);
1798 		/* stop here */
1799 
1800 	case HTTP_MSG_RPBEFORE_CR:
1801 	http_msg_rpbefore_cr:
1802 		EXPECT_LF_HERE(ptr, http_msg_invalid, HTTP_MSG_RPBEFORE_CR);
1803 		EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE);
1804 		/* stop here */
1805 
1806 	case HTTP_MSG_RPVER:
1807 	http_msg_rpver:
1808 	case HTTP_MSG_RPVER_SP:
1809 	case HTTP_MSG_RPCODE:
1810 	case HTTP_MSG_RPCODE_SP:
1811 	case HTTP_MSG_RPREASON:
1812 		ptr = (char *)http_parse_stsline(msg,
1813 						 state, ptr, end,
1814 						 &msg->next, &msg->msg_state);
1815 		if (unlikely(!ptr))
1816 			return;
1817 
1818 		/* we have a full response and we know that we have either a CR
1819 		 * or an LF at <ptr>.
1820 		 */
1821 		hdr_idx_set_start(idx, msg->sl.st.l, *ptr == '\r');
1822 
1823 		msg->sol = ptr - buf->p;
1824 		if (likely(*ptr == '\r'))
1825 			EAT_AND_JUMP_OR_RETURN(http_msg_rpline_end, HTTP_MSG_RPLINE_END);
1826 		goto http_msg_rpline_end;
1827 
1828 	case HTTP_MSG_RPLINE_END:
1829 	http_msg_rpline_end:
1830 		/* msg->sol must point to the first of CR or LF. */
1831 		EXPECT_LF_HERE(ptr, http_msg_invalid, HTTP_MSG_RPLINE_END);
1832 		EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST);
1833 		/* stop here */
1834 
1835 	/*
1836 	 * Second, states that are specific to the request only
1837 	 */
1838 	case HTTP_MSG_RQBEFORE:
1839 	http_msg_rqbefore:
1840 		if (likely(HTTP_IS_TOKEN(*ptr))) {
1841 			/* we have a start of message, but we have to check
1842 			 * first if we need to remove some CRLF. We can only
1843 			 * do this when o=0.
1844 			 */
1845 			if (likely(ptr != buf->p)) {
1846 				if (buf->o)
1847 					goto http_msg_ood;
1848 				/* Remove empty leading lines, as recommended by RFC2616. */
1849 				bi_fast_delete(buf, ptr - buf->p);
1850 			}
1851 			msg->sol = 0;
1852 			msg->sl.rq.l = 0; /* used in debug mode */
1853 			state = HTTP_MSG_RQMETH;
1854 			goto http_msg_rqmeth;
1855 		}
1856 
1857 		if (unlikely(!HTTP_IS_CRLF(*ptr))) {
1858 			state = HTTP_MSG_RQBEFORE;
1859 			goto http_msg_invalid;
1860 		}
1861 
1862 		if (unlikely(*ptr == '\n'))
1863 			EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE);
1864 		EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore_cr, HTTP_MSG_RQBEFORE_CR);
1865 		/* stop here */
1866 
1867 	case HTTP_MSG_RQBEFORE_CR:
1868 	http_msg_rqbefore_cr:
1869 		EXPECT_LF_HERE(ptr, http_msg_invalid, HTTP_MSG_RQBEFORE_CR);
1870 		EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE);
1871 		/* stop here */
1872 
1873 	case HTTP_MSG_RQMETH:
1874 	http_msg_rqmeth:
1875 	case HTTP_MSG_RQMETH_SP:
1876 	case HTTP_MSG_RQURI:
1877 	case HTTP_MSG_RQURI_SP:
1878 	case HTTP_MSG_RQVER:
1879 		ptr = (char *)http_parse_reqline(msg,
1880 						 state, ptr, end,
1881 						 &msg->next, &msg->msg_state);
1882 		if (unlikely(!ptr))
1883 			return;
1884 
1885 		/* we have a full request and we know that we have either a CR
1886 		 * or an LF at <ptr>.
1887 		 */
1888 		hdr_idx_set_start(idx, msg->sl.rq.l, *ptr == '\r');
1889 
1890 		msg->sol = ptr - buf->p;
1891 		if (likely(*ptr == '\r'))
1892 			EAT_AND_JUMP_OR_RETURN(http_msg_rqline_end, HTTP_MSG_RQLINE_END);
1893 		goto http_msg_rqline_end;
1894 
1895 	case HTTP_MSG_RQLINE_END:
1896 	http_msg_rqline_end:
1897 		/* check for HTTP/0.9 request : no version information available.
1898 		 * msg->sol must point to the first of CR or LF.
1899 		 */
1900 		if (unlikely(msg->sl.rq.v_l == 0))
1901 			goto http_msg_last_lf;
1902 
1903 		EXPECT_LF_HERE(ptr, http_msg_invalid, HTTP_MSG_RQLINE_END);
1904 		EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST);
1905 		/* stop here */
1906 
1907 	/*
1908 	 * Common states below
1909 	 */
1910 	case HTTP_MSG_HDR_FIRST:
1911 	http_msg_hdr_first:
1912 		msg->sol = ptr - buf->p;
1913 		if (likely(!HTTP_IS_CRLF(*ptr))) {
1914 			goto http_msg_hdr_name;
1915 		}
1916 
1917 		if (likely(*ptr == '\r'))
1918 			EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF);
1919 		goto http_msg_last_lf;
1920 
1921 	case HTTP_MSG_HDR_NAME:
1922 	http_msg_hdr_name:
1923 		/* assumes msg->sol points to the first char */
1924 		if (likely(HTTP_IS_TOKEN(*ptr)))
1925 			EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME);
1926 
1927 		if (likely(*ptr == ':'))
1928 			EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP);
1929 
1930 		if (likely(msg->err_pos < -1) || *ptr == '\n') {
1931 			state = HTTP_MSG_HDR_NAME;
1932 			goto http_msg_invalid;
1933 		}
1934 
1935 		if (msg->err_pos == -1) /* capture error pointer */
1936 			msg->err_pos = ptr - buf->p; /* >= 0 now */
1937 
1938 		/* and we still accept this non-token character */
1939 		EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME);
1940 
1941 	case HTTP_MSG_HDR_L1_SP:
1942 	http_msg_hdr_l1_sp:
1943 		/* assumes msg->sol points to the first char */
1944 		if (likely(HTTP_IS_SPHT(*ptr)))
1945 			EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP);
1946 
1947 		/* header value can be basically anything except CR/LF */
1948 		msg->sov = ptr - buf->p;
1949 
1950 		if (likely(!HTTP_IS_CRLF(*ptr))) {
1951 			goto http_msg_hdr_val;
1952 		}
1953 
1954 		if (likely(*ptr == '\r'))
1955 			EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lf, HTTP_MSG_HDR_L1_LF);
1956 		goto http_msg_hdr_l1_lf;
1957 
1958 	case HTTP_MSG_HDR_L1_LF:
1959 	http_msg_hdr_l1_lf:
1960 		EXPECT_LF_HERE(ptr, http_msg_invalid, HTTP_MSG_HDR_L1_LF);
1961 		EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lws, HTTP_MSG_HDR_L1_LWS);
1962 
1963 	case HTTP_MSG_HDR_L1_LWS:
1964 	http_msg_hdr_l1_lws:
1965 		if (likely(HTTP_IS_SPHT(*ptr))) {
1966 			/* replace HT,CR,LF with spaces */
1967 			for (; buf->p + msg->sov < ptr; msg->sov++)
1968 				buf->p[msg->sov] = ' ';
1969 			goto http_msg_hdr_l1_sp;
1970 		}
1971 		/* we had a header consisting only in spaces ! */
1972 		msg->eol = msg->sov;
1973 		goto http_msg_complete_header;
1974 
1975 	case HTTP_MSG_HDR_VAL:
1976 	http_msg_hdr_val:
1977 		/* assumes msg->sol points to the first char, and msg->sov
1978 		 * points to the first character of the value.
1979 		 */
1980 
1981 		/* speedup: we'll skip packs of 4 or 8 bytes not containing bytes 0x0D
1982 		 * and lower. In fact since most of the time is spent in the loop, we
1983 		 * also remove the sign bit test so that bytes 0x8e..0x0d break the
1984 		 * loop, but we don't care since they're very rare in header values.
1985 		 */
1986 #if defined(__x86_64__)
1987 		while (ptr <= end - sizeof(long)) {
1988 			if ((*(long *)ptr - 0x0e0e0e0e0e0e0e0eULL) & 0x8080808080808080ULL)
1989 				goto http_msg_hdr_val2;
1990 			ptr += sizeof(long);
1991 		}
1992 #endif
1993 #if defined(__x86_64__) || \
1994     defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || \
1995     defined(__ARM_ARCH_7A__)
1996 		while (ptr <= end - sizeof(int)) {
1997 			if ((*(int*)ptr - 0x0e0e0e0e) & 0x80808080)
1998 				goto http_msg_hdr_val2;
1999 			ptr += sizeof(int);
2000 		}
2001 #endif
2002 		if (ptr >= end) {
2003 			state = HTTP_MSG_HDR_VAL;
2004 			goto http_msg_ood;
2005 		}
2006 	http_msg_hdr_val2:
2007 		if (likely(!HTTP_IS_CRLF(*ptr)))
2008 			EAT_AND_JUMP_OR_RETURN(http_msg_hdr_val2, HTTP_MSG_HDR_VAL);
2009 
2010 		msg->eol = ptr - buf->p;
2011 		/* Note: we could also copy eol into ->eoh so that we have the
2012 		 * real header end in case it ends with lots of LWS, but is this
2013 		 * really needed ?
2014 		 */
2015 		if (likely(*ptr == '\r'))
2016 			EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lf, HTTP_MSG_HDR_L2_LF);
2017 		goto http_msg_hdr_l2_lf;
2018 
2019 	case HTTP_MSG_HDR_L2_LF:
2020 	http_msg_hdr_l2_lf:
2021 		EXPECT_LF_HERE(ptr, http_msg_invalid, HTTP_MSG_HDR_L2_LF);
2022 		EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lws, HTTP_MSG_HDR_L2_LWS);
2023 
2024 	case HTTP_MSG_HDR_L2_LWS:
2025 	http_msg_hdr_l2_lws:
2026 		if (unlikely(HTTP_IS_SPHT(*ptr))) {
2027 			/* LWS: replace HT,CR,LF with spaces */
2028 			for (; buf->p + msg->eol < ptr; msg->eol++)
2029 				buf->p[msg->eol] = ' ';
2030 			goto http_msg_hdr_val;
2031 		}
2032 	http_msg_complete_header:
2033 		/*
2034 		 * It was a new header, so the last one is finished.
2035 		 * Assumes msg->sol points to the first char, msg->sov points
2036 		 * to the first character of the value and msg->eol to the
2037 		 * first CR or LF so we know how the line ends. We insert last
2038 		 * header into the index.
2039 		 */
2040 		if (unlikely(hdr_idx_add(msg->eol - msg->sol, buf->p[msg->eol] == '\r',
2041 					 idx, idx->tail) < 0)) {
2042 			state = HTTP_MSG_HDR_L2_LWS;
2043 			goto http_msg_invalid;
2044 		}
2045 
2046 		msg->sol = ptr - buf->p;
2047 		if (likely(!HTTP_IS_CRLF(*ptr))) {
2048 			goto http_msg_hdr_name;
2049 		}
2050 
2051 		if (likely(*ptr == '\r'))
2052 			EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF);
2053 		goto http_msg_last_lf;
2054 
2055 	case HTTP_MSG_LAST_LF:
2056 	http_msg_last_lf:
2057 		/* Assumes msg->sol points to the first of either CR or LF.
2058 		 * Sets ->sov and ->next to the total header length, ->eoh to
2059 		 * the last CRLF, and ->eol to the last CRLF length (1 or 2).
2060 		 */
2061 		EXPECT_LF_HERE(ptr, http_msg_invalid, HTTP_MSG_LAST_LF);
2062 		ptr++;
2063 		msg->sov = msg->next = ptr - buf->p;
2064 		msg->eoh = msg->sol;
2065 		msg->sol = 0;
2066 		msg->eol = msg->sov - msg->eoh;
2067 		msg->msg_state = HTTP_MSG_BODY;
2068 		return;
2069 
2070 	case HTTP_MSG_ERROR:
2071 		/* this may only happen if we call http_msg_analyser() twice with an error */
2072 		break;
2073 
2074 	default:
2075 #ifdef DEBUG_FULL
2076 		fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state);
2077 		exit(1);
2078 #endif
2079 		;
2080 	}
2081  http_msg_ood:
2082 	/* out of data */
2083 	msg->msg_state = state;
2084 	msg->next = ptr - buf->p;
2085 	return;
2086 
2087  http_msg_invalid:
2088 	/* invalid message */
2089 	msg->err_state = state;
2090 	msg->msg_state = HTTP_MSG_ERROR;
2091 	msg->next = ptr - buf->p;
2092 	return;
2093 }
2094 
2095 /* convert an HTTP/0.9 request into an HTTP/1.0 request. Returns 1 if the
2096  * conversion succeeded, 0 in case of error. If the request was already 1.X,
2097  * nothing is done and 1 is returned.
2098  */
http_upgrade_v09_to_v10(struct http_txn * txn)2099 static int http_upgrade_v09_to_v10(struct http_txn *txn)
2100 {
2101 	int delta;
2102 	char *cur_end;
2103 	struct http_msg *msg = &txn->req;
2104 
2105 	if (msg->sl.rq.v_l != 0)
2106 		return 1;
2107 
2108 	/* RFC 1945 allows only GET for HTTP/0.9 requests */
2109 	if (txn->meth != HTTP_METH_GET)
2110 		return 0;
2111 
2112 	cur_end = msg->chn->buf->p + msg->sl.rq.l;
2113 
2114 	if (msg->sl.rq.u_l == 0) {
2115 		/* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */
2116 		return 0;
2117 	}
2118 	/* add HTTP version */
2119 	delta = buffer_replace2(msg->chn->buf, cur_end, cur_end, " HTTP/1.0\r\n", 11);
2120 	http_msg_move_end(msg, delta);
2121 	cur_end += delta;
2122 	cur_end = (char *)http_parse_reqline(msg,
2123 					     HTTP_MSG_RQMETH,
2124 					     msg->chn->buf->p, cur_end + 1,
2125 					     NULL, NULL);
2126 	if (unlikely(!cur_end))
2127 		return 0;
2128 
2129 	/* we have a full HTTP/1.0 request now and we know that
2130 	 * we have either a CR or an LF at <ptr>.
2131 	 */
2132 	hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r');
2133 	return 1;
2134 }
2135 
2136 /* Parse the Connection: header of an HTTP request, looking for both "close"
2137  * and "keep-alive" values. If we already know that some headers may safely
2138  * be removed, we remove them now. The <to_del> flags are used for that :
2139  *  - bit 0 means remove "close" headers (in HTTP/1.0 requests/responses)
2140  *  - bit 1 means remove "keep-alive" headers (in HTTP/1.1 reqs/resp to 1.1).
2141  * Presence of the "Upgrade" token is also checked and reported.
2142  * The TX_HDR_CONN_* flags are adjusted in txn->flags depending on what was
2143  * found, and TX_CON_*_SET is adjusted depending on what is left so only
2144  * harmless combinations may be removed. Do not call that after changes have
2145  * been processed.
2146  */
http_parse_connection_header(struct http_txn * txn,struct http_msg * msg,int to_del)2147 void http_parse_connection_header(struct http_txn *txn, struct http_msg *msg, int to_del)
2148 {
2149 	struct hdr_ctx ctx;
2150 	const char *hdr_val = "Connection";
2151 	int hdr_len = 10;
2152 
2153 	if (txn->flags & TX_HDR_CONN_PRS)
2154 		return;
2155 
2156 	if (unlikely(txn->flags & TX_USE_PX_CONN)) {
2157 		hdr_val = "Proxy-Connection";
2158 		hdr_len = 16;
2159 	}
2160 
2161 	ctx.idx = 0;
2162 	txn->flags &= ~(TX_CON_KAL_SET|TX_CON_CLO_SET);
2163 	while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) {
2164 		if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) {
2165 			txn->flags |= TX_HDR_CONN_KAL;
2166 			if (to_del & 2)
2167 				http_remove_header2(msg, &txn->hdr_idx, &ctx);
2168 			else
2169 				txn->flags |= TX_CON_KAL_SET;
2170 		}
2171 		else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) {
2172 			txn->flags |= TX_HDR_CONN_CLO;
2173 			if (to_del & 1)
2174 				http_remove_header2(msg, &txn->hdr_idx, &ctx);
2175 			else
2176 				txn->flags |= TX_CON_CLO_SET;
2177 		}
2178 		else if (ctx.vlen >= 7 && word_match(ctx.line + ctx.val, ctx.vlen, "upgrade", 7)) {
2179 			txn->flags |= TX_HDR_CONN_UPG;
2180 		}
2181 	}
2182 
2183 	txn->flags |= TX_HDR_CONN_PRS;
2184 	return;
2185 }
2186 
2187 /* Apply desired changes on the Connection: header. Values may be removed and/or
2188  * added depending on the <wanted> flags, which are exclusively composed of
2189  * TX_CON_CLO_SET and TX_CON_KAL_SET, depending on what flags are desired. The
2190  * TX_CON_*_SET flags are adjusted in txn->flags depending on what is left.
2191  */
http_change_connection_header(struct http_txn * txn,struct http_msg * msg,int wanted)2192 void http_change_connection_header(struct http_txn *txn, struct http_msg *msg, int wanted)
2193 {
2194 	struct hdr_ctx ctx;
2195 	const char *hdr_val = "Connection";
2196 	int hdr_len = 10;
2197 
2198 	ctx.idx = 0;
2199 
2200 
2201 	if (unlikely(txn->flags & TX_USE_PX_CONN)) {
2202 		hdr_val = "Proxy-Connection";
2203 		hdr_len = 16;
2204 	}
2205 
2206 	txn->flags &= ~(TX_CON_CLO_SET | TX_CON_KAL_SET);
2207 	while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) {
2208 		if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) {
2209 			if (wanted & TX_CON_KAL_SET)
2210 				txn->flags |= TX_CON_KAL_SET;
2211 			else
2212 				http_remove_header2(msg, &txn->hdr_idx, &ctx);
2213 		}
2214 		else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) {
2215 			if (wanted & TX_CON_CLO_SET)
2216 				txn->flags |= TX_CON_CLO_SET;
2217 			else
2218 				http_remove_header2(msg, &txn->hdr_idx, &ctx);
2219 		}
2220 	}
2221 
2222 	if (wanted == (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
2223 		return;
2224 
2225 	if ((wanted & TX_CON_CLO_SET) && !(txn->flags & TX_CON_CLO_SET)) {
2226 		txn->flags |= TX_CON_CLO_SET;
2227 		hdr_val = "Connection: close";
2228 		hdr_len  = 17;
2229 		if (unlikely(txn->flags & TX_USE_PX_CONN)) {
2230 			hdr_val = "Proxy-Connection: close";
2231 			hdr_len = 23;
2232 		}
2233 		http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len);
2234 	}
2235 
2236 	if ((wanted & TX_CON_KAL_SET) && !(txn->flags & TX_CON_KAL_SET)) {
2237 		txn->flags |= TX_CON_KAL_SET;
2238 		hdr_val = "Connection: keep-alive";
2239 		hdr_len = 22;
2240 		if (unlikely(txn->flags & TX_USE_PX_CONN)) {
2241 			hdr_val = "Proxy-Connection: keep-alive";
2242 			hdr_len = 28;
2243 		}
2244 		http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len);
2245 	}
2246 	return;
2247 }
2248 
2249 /* Parse the chunk size at msg->next. Once done, caller should adjust ->next to
2250  * point to the first byte of data after the chunk size, so that we know we can
2251  * forward exactly msg->next bytes. msg->sol contains the exact number of bytes
2252  * forming the chunk size. That way it is always possible to differentiate
2253  * between the start of the body and the start of the data.  Return the number
2254  * of byte parsed on success, 0 when some data is missing, <0 on error.  Note:
2255  * this function is designed to parse wrapped CRLF at the end of the buffer.
2256  */
http_parse_chunk_size(struct http_msg * msg)2257 static inline int http_parse_chunk_size(struct http_msg *msg)
2258 {
2259 	const struct buffer *buf = msg->chn->buf;
2260 	const char *ptr = b_ptr(buf, msg->next);
2261 	const char *ptr_old = ptr;
2262 	const char *end = buf->data + buf->size;
2263 	const char *stop = bi_end(buf);
2264 	unsigned int chunk = 0;
2265 
2266 	/* The chunk size is in the following form, though we are only
2267 	 * interested in the size and CRLF :
2268 	 *    1*HEXDIGIT *WSP *[ ';' extensions ] CRLF
2269 	 */
2270 	while (1) {
2271 		int c;
2272 		if (ptr == stop)
2273 			return 0;
2274 		c = hex2i(*ptr);
2275 		if (c < 0) /* not a hex digit anymore */
2276 			break;
2277 		if (unlikely(++ptr >= end))
2278 			ptr = buf->data;
2279 		if (chunk & 0xF8000000) /* integer overflow will occur if result >= 2GB */
2280 			goto error;
2281 		chunk = (chunk << 4) + c;
2282 	}
2283 
2284 	/* empty size not allowed */
2285 	if (unlikely(ptr == ptr_old))
2286 		goto error;
2287 
2288 	while (HTTP_IS_SPHT(*ptr)) {
2289 		if (++ptr >= end)
2290 			ptr = buf->data;
2291 		if (unlikely(ptr == stop))
2292 			return 0;
2293 	}
2294 
2295 	/* Up to there, we know that at least one byte is present at *ptr. Check
2296 	 * for the end of chunk size.
2297 	 */
2298 	while (1) {
2299 		if (likely(HTTP_IS_CRLF(*ptr))) {
2300 			/* we now have a CR or an LF at ptr */
2301 			if (likely(*ptr == '\r')) {
2302 				if (++ptr >= end)
2303 					ptr = buf->data;
2304 				if (ptr == stop)
2305 					return 0;
2306 			}
2307 
2308 			if (*ptr != '\n')
2309 				goto error;
2310 			if (++ptr >= end)
2311 				ptr = buf->data;
2312 			/* done */
2313 			break;
2314 		}
2315 		else if (*ptr == ';') {
2316 			/* chunk extension, ends at next CRLF */
2317 			if (++ptr >= end)
2318 				ptr = buf->data;
2319 			if (ptr == stop)
2320 				return 0;
2321 
2322 			while (!HTTP_IS_CRLF(*ptr)) {
2323 				if (++ptr >= end)
2324 					ptr = buf->data;
2325 				if (ptr == stop)
2326 					return 0;
2327 			}
2328 			/* we have a CRLF now, loop above */
2329 			continue;
2330 		}
2331 		else
2332 			goto error;
2333 	}
2334 
2335 	/* OK we found our CRLF and now <ptr> points to the next byte, which may
2336 	 * or may not be present. We save the number of bytes parsed into
2337 	 * msg->sol.
2338 	 */
2339 	msg->sol = ptr - ptr_old;
2340 	if (unlikely(ptr < ptr_old))
2341 		msg->sol += buf->size;
2342 	msg->chunk_len = chunk;
2343 	msg->body_len += chunk;
2344 	return msg->sol;
2345  error:
2346 	msg->err_pos = buffer_count(buf, buf->p, ptr);
2347 	return -1;
2348 }
2349 
2350 /* This function skips trailers in the buffer associated with HTTP message
2351  * <msg>. The first visited position is msg->next. If the end of the trailers is
2352  * found, the function returns >0. So, the caller can automatically schedul it
2353  * to be forwarded, and switch msg->msg_state to HTTP_MSG_DONE. If not enough
2354  * data are available, the function does not change anything except maybe
2355  * msg->sol if it could parse some lines, and returns zero.  If a parse error
2356  * is encountered, the function returns < 0 and does not change anything except
2357  * maybe msg->sol. Note that the message must already be in HTTP_MSG_TRAILERS
2358  * state before calling this function, which implies that all non-trailers data
2359  * have already been scheduled for forwarding, and that msg->next exactly
2360  * matches the length of trailers already parsed and not forwarded. It is also
2361  * important to note that this function is designed to be able to parse wrapped
2362  * headers at end of buffer.
2363  */
http_forward_trailers(struct http_msg * msg)2364 static int http_forward_trailers(struct http_msg *msg)
2365 {
2366 	const struct buffer *buf = msg->chn->buf;
2367 
2368 	/* we have msg->next which points to next line. Look for CRLF. But
2369 	 * first, we reset msg->sol */
2370 	msg->sol = 0;
2371 	while (1) {
2372 		const char *p1 = NULL, *p2 = NULL;
2373 		const char *start = b_ptr(buf, msg->next + msg->sol);
2374 		const char *stop  = bi_end(buf);
2375 		const char *ptr   = start;
2376 		int bytes = 0;
2377 
2378 		/* scan current line and stop at LF or CRLF */
2379 		while (1) {
2380 			if (ptr == stop)
2381 				return 0;
2382 
2383 			if (*ptr == '\n') {
2384 				if (!p1)
2385 					p1 = ptr;
2386 				p2 = ptr;
2387 				break;
2388 			}
2389 
2390 			if (*ptr == '\r') {
2391 				if (p1) {
2392 					msg->err_pos = buffer_count(buf, buf->p, ptr);
2393 					return -1;
2394 				}
2395 				p1 = ptr;
2396 			}
2397 
2398 			ptr++;
2399 			if (ptr >= buf->data + buf->size)
2400 				ptr = buf->data;
2401 		}
2402 
2403 		/* after LF; point to beginning of next line */
2404 		p2++;
2405 		if (p2 >= buf->data + buf->size)
2406 			p2 = buf->data;
2407 
2408 		bytes = p2 - start;
2409 		if (bytes < 0)
2410 			bytes += buf->size;
2411 		msg->sol += bytes;
2412 
2413 		/* LF/CRLF at beginning of line => end of trailers at p2.
2414 		 * Everything was scheduled for forwarding, there's nothing left
2415 		 * from this message. */
2416 		if (p1 == start)
2417 			return 1;
2418 
2419 		/* OK, next line then */
2420 	}
2421 }
2422 
2423 /* This function may be called only in HTTP_MSG_CHUNK_CRLF. It reads the CRLF or
2424  * a possible LF alone at the end of a chunk. The caller should adjust msg->next
2425  * in order to include this part into the next forwarding phase.  Note that the
2426  * caller must ensure that ->p points to the first byte to parse.  It returns
2427  * the number of bytes parsed on success, so the caller can set msg_state to
2428  * HTTP_MSG_CHUNK_SIZE. If not enough data are available, the function does not
2429  * change anything and returns zero. If a parse error is encountered, the
2430  * function returns < 0. Note: this function is designed to parse wrapped CRLF
2431  * at the end of the buffer.
2432  */
http_skip_chunk_crlf(struct http_msg * msg)2433 static inline int http_skip_chunk_crlf(struct http_msg *msg)
2434 {
2435 	const struct buffer *buf = msg->chn->buf;
2436 	const char *ptr;
2437 	int bytes;
2438 
2439 	/* NB: we'll check data availabilty at the end. It's not a
2440 	 * problem because whatever we match first will be checked
2441 	 * against the correct length.
2442 	 */
2443 	bytes = 1;
2444 	ptr = b_ptr(buf, msg->next);
2445 	if (*ptr == '\r') {
2446 		bytes++;
2447 		ptr++;
2448 		if (ptr >= buf->data + buf->size)
2449 			ptr = buf->data;
2450 	}
2451 
2452 	if (msg->next + bytes > buf->i)
2453 		return 0;
2454 
2455 	if (*ptr != '\n') {
2456 		msg->err_pos = buffer_count(buf, buf->p, ptr);
2457 		return -1;
2458 	}
2459 	return bytes;
2460 }
2461 
2462 /* Parses a qvalue and returns it multipled by 1000, from 0 to 1000. If the
2463  * value is larger than 1000, it is bound to 1000. The parser consumes up to
2464  * 1 digit, one dot and 3 digits and stops on the first invalid character.
2465  * Unparsable qvalues return 1000 as "q=1.000".
2466  */
parse_qvalue(const char * qvalue,const char ** end)2467 int parse_qvalue(const char *qvalue, const char **end)
2468 {
2469 	int q = 1000;
2470 
2471 	if (!isdigit((unsigned char)*qvalue))
2472 		goto out;
2473 	q = (*qvalue++ - '0') * 1000;
2474 
2475 	if (*qvalue++ != '.')
2476 		goto out;
2477 
2478 	if (!isdigit((unsigned char)*qvalue))
2479 		goto out;
2480 	q += (*qvalue++ - '0') * 100;
2481 
2482 	if (!isdigit((unsigned char)*qvalue))
2483 		goto out;
2484 	q += (*qvalue++ - '0') * 10;
2485 
2486 	if (!isdigit((unsigned char)*qvalue))
2487 		goto out;
2488 	q += (*qvalue++ - '0') * 1;
2489  out:
2490 	if (q > 1000)
2491 		q = 1000;
2492 	if (end)
2493 		*end = qvalue;
2494 	return q;
2495 }
2496 
http_adjust_conn_mode(struct stream * s,struct http_txn * txn,struct http_msg * msg)2497 void http_adjust_conn_mode(struct stream *s, struct http_txn *txn, struct http_msg *msg)
2498 {
2499 	struct proxy *fe = strm_fe(s);
2500 	int tmp = TX_CON_WANT_KAL;
2501 
2502 	if (!((fe->options2|s->be->options2) & PR_O2_FAKE_KA)) {
2503 		if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN ||
2504 		    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN)
2505 			tmp = TX_CON_WANT_TUN;
2506 
2507 		if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
2508 		    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)
2509 			tmp = TX_CON_WANT_TUN;
2510 	}
2511 
2512 	if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
2513 	    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL) {
2514 		/* option httpclose + server_close => forceclose */
2515 		if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
2516 		    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)
2517 			tmp = TX_CON_WANT_CLO;
2518 		else
2519 			tmp = TX_CON_WANT_SCL;
2520 	}
2521 
2522 	if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_FCL ||
2523 	    (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_FCL)
2524 		tmp = TX_CON_WANT_CLO;
2525 
2526 	if ((txn->flags & TX_CON_WANT_MSK) < tmp)
2527 		txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp;
2528 
2529 	if (!(txn->flags & TX_HDR_CONN_PRS) &&
2530 	    (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) {
2531 		/* parse the Connection header and possibly clean it */
2532 		int to_del = 0;
2533 		if ((msg->flags & HTTP_MSGF_VER_11) ||
2534 		    ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL &&
2535 		     !((fe->options2|s->be->options2) & PR_O2_FAKE_KA)))
2536 			to_del |= 2; /* remove "keep-alive" */
2537 		if (!(msg->flags & HTTP_MSGF_VER_11))
2538 			to_del |= 1; /* remove "close" */
2539 		http_parse_connection_header(txn, msg, to_del);
2540 	}
2541 
2542 	/* check if client or config asks for explicit close in KAL/SCL */
2543 	if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
2544 	     (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) &&
2545 	    ((txn->flags & TX_HDR_CONN_CLO) ||                         /* "connection: close" */
2546 	     (!(msg->flags & HTTP_MSGF_VER_11) && !(txn->flags & TX_HDR_CONN_KAL)) || /* no "connection: k-a" in 1.0 */
2547 	     !(msg->flags & HTTP_MSGF_XFER_LEN) ||                     /* no length known => close */
2548 	     fe->state == PR_STSTOPPED))                            /* frontend is stopping */
2549 		txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
2550 }
2551 
2552 /* This stream analyser waits for a complete HTTP request. It returns 1 if the
2553  * processing can continue on next analysers, or zero if it either needs more
2554  * data or wants to immediately abort the request (eg: timeout, error, ...). It
2555  * is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req.analysers
2556  * when it has nothing left to do, and may remove any analyser when it wants to
2557  * abort.
2558  */
http_wait_for_request(struct stream * s,struct channel * req,int an_bit)2559 int http_wait_for_request(struct stream *s, struct channel *req, int an_bit)
2560 {
2561 	/*
2562 	 * We will parse the partial (or complete) lines.
2563 	 * We will check the request syntax, and also join multi-line
2564 	 * headers. An index of all the lines will be elaborated while
2565 	 * parsing.
2566 	 *
2567 	 * For the parsing, we use a 28 states FSM.
2568 	 *
2569 	 * Here is the information we currently have :
2570 	 *   req->buf->p             = beginning of request
2571 	 *   req->buf->p + msg->eoh  = end of processed headers / start of current one
2572 	 *   req->buf->p + req->buf->i    = end of input data
2573 	 *   msg->eol           = end of current header or line (LF or CRLF)
2574 	 *   msg->next          = first non-visited byte
2575 	 *
2576 	 * At end of parsing, we may perform a capture of the error (if any), and
2577 	 * we will set a few fields (txn->meth, sn->flags/SF_REDIRECTABLE).
2578 	 * We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and
2579 	 * finally headers capture.
2580 	 */
2581 
2582 	int cur_idx;
2583 	struct session *sess = s->sess;
2584 	struct http_txn *txn = s->txn;
2585 	struct http_msg *msg = &txn->req;
2586 	struct hdr_ctx ctx;
2587 
2588 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
2589 		now_ms, __FUNCTION__,
2590 		s,
2591 		req,
2592 		req->rex, req->wex,
2593 		req->flags,
2594 		req->buf->i,
2595 		req->analysers);
2596 
2597 	/* we're speaking HTTP here, so let's speak HTTP to the client */
2598 	s->srv_error = http_return_srv_error;
2599 
2600 	/* There's a protected area at the end of the buffer for rewriting
2601 	 * purposes. We don't want to start to parse the request if the
2602 	 * protected area is affected, because we may have to move processed
2603 	 * data later, which is much more complicated.
2604 	 */
2605 	if (buffer_not_empty(req->buf) && msg->msg_state < HTTP_MSG_ERROR) {
2606 
2607 		/* This point is executed when some data is avalaible for analysis,
2608 		 * so we log the end of the idle time. */
2609 		if (s->logs.t_idle == -1)
2610 			s->logs.t_idle = tv_ms_elapsed(&s->logs.tv_accept, &now) - s->logs.t_handshake;
2611 
2612 		if (txn->flags & TX_NOT_FIRST) {
2613 			if (unlikely(!channel_is_rewritable(req) && req->buf->o)) {
2614 				if (req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT))
2615 					goto failed_keep_alive;
2616 				/* some data has still not left the buffer, wake us once that's done */
2617 				channel_dont_connect(req);
2618 				req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
2619 				req->flags |= CF_WAKE_WRITE;
2620 				return 0;
2621 			}
2622 			if (unlikely(bi_end(req->buf) < b_ptr(req->buf, msg->next) ||
2623 			             bi_end(req->buf) > req->buf->data + req->buf->size - global.tune.maxrewrite))
2624 				buffer_slow_realign(req->buf);
2625 		}
2626 
2627 		if (likely(msg->next < req->buf->i)) /* some unparsed data are available */
2628 			http_msg_analyzer(msg, &txn->hdr_idx);
2629 	}
2630 
2631 	/* 1: we might have to print this header in debug mode */
2632 	if (unlikely((global.mode & MODE_DEBUG) &&
2633 		     (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
2634 		     msg->msg_state >= HTTP_MSG_BODY)) {
2635 		char *eol, *sol;
2636 
2637 		sol = req->buf->p;
2638 		/* this is a bit complex : in case of error on the request line,
2639 		 * we know that rq.l is still zero, so we display only the part
2640 		 * up to the end of the line (truncated by debug_hdr).
2641 		 */
2642 		eol = sol + (msg->sl.rq.l ? msg->sl.rq.l : req->buf->i);
2643 		debug_hdr("clireq", s, sol, eol);
2644 
2645 		sol += hdr_idx_first_pos(&txn->hdr_idx);
2646 		cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
2647 
2648 		while (cur_idx) {
2649 			eol = sol + txn->hdr_idx.v[cur_idx].len;
2650 			debug_hdr("clihdr", s, sol, eol);
2651 			sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
2652 			cur_idx = txn->hdr_idx.v[cur_idx].next;
2653 		}
2654 	}
2655 
2656 
2657 	/*
2658 	 * Now we quickly check if we have found a full valid request.
2659 	 * If not so, we check the FD and buffer states before leaving.
2660 	 * A full request is indicated by the fact that we have seen
2661 	 * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
2662 	 * requests are checked first. When waiting for a second request
2663 	 * on a keep-alive stream, if we encounter and error, close, t/o,
2664 	 * we note the error in the stream flags but don't set any state.
2665 	 * Since the error will be noted there, it will not be counted by
2666 	 * process_stream() as a frontend error.
2667 	 * Last, we may increase some tracked counters' http request errors on
2668 	 * the cases that are deliberately the client's fault. For instance,
2669 	 * a timeout or connection reset is not counted as an error. However
2670 	 * a bad request is.
2671 	 */
2672 
2673 	if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
2674 		/*
2675 		 * First, let's catch bad requests.
2676 		 */
2677 		if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
2678 			stream_inc_http_req_ctr(s);
2679 			stream_inc_http_err_ctr(s);
2680 			proxy_inc_fe_req_ctr(sess->fe);
2681 			goto return_bad_req;
2682 		}
2683 
2684 		/* 1: Since we are in header mode, if there's no space
2685 		 *    left for headers, we won't be able to free more
2686 		 *    later, so the stream will never terminate. We
2687 		 *    must terminate it now.
2688 		 */
2689 		if (unlikely(buffer_full(req->buf, global.tune.maxrewrite))) {
2690 			/* FIXME: check if URI is set and return Status
2691 			 * 414 Request URI too long instead.
2692 			 */
2693 			stream_inc_http_req_ctr(s);
2694 			stream_inc_http_err_ctr(s);
2695 			proxy_inc_fe_req_ctr(sess->fe);
2696 			if (msg->err_pos < 0)
2697 				msg->err_pos = req->buf->i;
2698 			goto return_bad_req;
2699 		}
2700 
2701 		/* 2: have we encountered a read error ? */
2702 		else if (req->flags & CF_READ_ERROR) {
2703 			if (!(s->flags & SF_ERR_MASK))
2704 				s->flags |= SF_ERR_CLICL;
2705 
2706 			if (txn->flags & TX_WAIT_NEXT_RQ)
2707 				goto failed_keep_alive;
2708 
2709 			if (sess->fe->options & PR_O_IGNORE_PRB)
2710 				goto failed_keep_alive;
2711 
2712 			/* we cannot return any message on error */
2713 			if (msg->err_pos >= 0) {
2714 				http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
2715 				stream_inc_http_err_ctr(s);
2716 			}
2717 
2718 			txn->status = 400;
2719 			msg->err_state = msg->msg_state;
2720 			msg->msg_state = HTTP_MSG_ERROR;
2721 			http_reply_and_close(s, txn->status, NULL);
2722 			req->analysers &= AN_REQ_FLT_END;
2723 			stream_inc_http_req_ctr(s);
2724 			proxy_inc_fe_req_ctr(sess->fe);
2725 			sess->fe->fe_counters.failed_req++;
2726 			if (sess->listener->counters)
2727 				sess->listener->counters->failed_req++;
2728 
2729 			if (!(s->flags & SF_FINST_MASK))
2730 				s->flags |= SF_FINST_R;
2731 			return 0;
2732 		}
2733 
2734 		/* 3: has the read timeout expired ? */
2735 		else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) {
2736 			if (!(s->flags & SF_ERR_MASK))
2737 				s->flags |= SF_ERR_CLITO;
2738 
2739 			if (txn->flags & TX_WAIT_NEXT_RQ)
2740 				goto failed_keep_alive;
2741 
2742 			if (sess->fe->options & PR_O_IGNORE_PRB)
2743 				goto failed_keep_alive;
2744 
2745 			/* read timeout : give up with an error message. */
2746 			if (msg->err_pos >= 0) {
2747 				http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
2748 				stream_inc_http_err_ctr(s);
2749 			}
2750 			txn->status = 408;
2751 			msg->err_state = msg->msg_state;
2752 			msg->msg_state = HTTP_MSG_ERROR;
2753 			http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_408));
2754 			req->analysers &= AN_REQ_FLT_END;
2755 
2756 			stream_inc_http_req_ctr(s);
2757 			proxy_inc_fe_req_ctr(sess->fe);
2758 			sess->fe->fe_counters.failed_req++;
2759 			if (sess->listener->counters)
2760 				sess->listener->counters->failed_req++;
2761 
2762 			if (!(s->flags & SF_FINST_MASK))
2763 				s->flags |= SF_FINST_R;
2764 			return 0;
2765 		}
2766 
2767 		/* 4: have we encountered a close ? */
2768 		else if (req->flags & CF_SHUTR) {
2769 			if (!(s->flags & SF_ERR_MASK))
2770 				s->flags |= SF_ERR_CLICL;
2771 
2772 			if (txn->flags & TX_WAIT_NEXT_RQ)
2773 				goto failed_keep_alive;
2774 
2775 			if (sess->fe->options & PR_O_IGNORE_PRB)
2776 				goto failed_keep_alive;
2777 
2778 			if (msg->err_pos >= 0)
2779 				http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
2780 			txn->status = 400;
2781 			msg->err_state = msg->msg_state;
2782 			msg->msg_state = HTTP_MSG_ERROR;
2783 			http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400));
2784 			req->analysers &= AN_REQ_FLT_END;
2785 			stream_inc_http_err_ctr(s);
2786 			stream_inc_http_req_ctr(s);
2787 			proxy_inc_fe_req_ctr(sess->fe);
2788 			sess->fe->fe_counters.failed_req++;
2789 			if (sess->listener->counters)
2790 				sess->listener->counters->failed_req++;
2791 
2792 			if (!(s->flags & SF_FINST_MASK))
2793 				s->flags |= SF_FINST_R;
2794 			return 0;
2795 		}
2796 
2797 		channel_dont_connect(req);
2798 		req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
2799 		s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
2800 #ifdef TCP_QUICKACK
2801 		if (sess->listener->options & LI_O_NOQUICKACK && req->buf->i &&
2802 		    objt_conn(sess->origin) && conn_ctrl_ready(__objt_conn(sess->origin))) {
2803 			/* We need more data, we have to re-enable quick-ack in case we
2804 			 * previously disabled it, otherwise we might cause the client
2805 			 * to delay next data.
2806 			 */
2807 			setsockopt(__objt_conn(sess->origin)->t.sock.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));
2808 		}
2809 #endif
2810 
2811 		if ((msg->msg_state != HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ)) {
2812 			/* If the client starts to talk, let's fall back to
2813 			 * request timeout processing.
2814 			 */
2815 			txn->flags &= ~TX_WAIT_NEXT_RQ;
2816 			req->analyse_exp = TICK_ETERNITY;
2817 		}
2818 
2819 		/* just set the request timeout once at the beginning of the request */
2820 		if (!tick_isset(req->analyse_exp)) {
2821 			if ((msg->msg_state == HTTP_MSG_RQBEFORE) &&
2822 			    (txn->flags & TX_WAIT_NEXT_RQ) &&
2823 			    tick_isset(s->be->timeout.httpka))
2824 				req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka);
2825 			else
2826 				req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
2827 		}
2828 
2829 		/* we're not ready yet */
2830 		return 0;
2831 
2832 	failed_keep_alive:
2833 		/* Here we process low-level errors for keep-alive requests. In
2834 		 * short, if the request is not the first one and it experiences
2835 		 * a timeout, read error or shutdown, we just silently close so
2836 		 * that the client can try again.
2837 		 */
2838 		txn->status = 0;
2839 		msg->msg_state = HTTP_MSG_RQBEFORE;
2840 		req->analysers &= AN_REQ_FLT_END;
2841 		s->logs.logwait = 0;
2842 		s->logs.level = 0;
2843 		s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
2844 		http_reply_and_close(s, txn->status, NULL);
2845 		return 0;
2846 	}
2847 
2848 	/* OK now we have a complete HTTP request with indexed headers. Let's
2849 	 * complete the request parsing by setting a few fields we will need
2850 	 * later. At this point, we have the last CRLF at req->buf->data + msg->eoh.
2851 	 * If the request is in HTTP/0.9 form, the rule is still true, and eoh
2852 	 * points to the CRLF of the request line. msg->next points to the first
2853 	 * byte after the last LF. msg->sov points to the first byte of data.
2854 	 * msg->eol cannot be trusted because it may have been left uninitialized
2855 	 * (for instance in the absence of headers).
2856 	 */
2857 
2858 	stream_inc_http_req_ctr(s);
2859 	proxy_inc_fe_req_ctr(sess->fe); /* one more valid request for this FE */
2860 
2861 	if (txn->flags & TX_WAIT_NEXT_RQ) {
2862 		/* kill the pending keep-alive timeout */
2863 		txn->flags &= ~TX_WAIT_NEXT_RQ;
2864 		req->analyse_exp = TICK_ETERNITY;
2865 	}
2866 
2867 
2868 	/* Maybe we found in invalid header name while we were configured not
2869 	 * to block on that, so we have to capture it now.
2870 	 */
2871 	if (unlikely(msg->err_pos >= 0))
2872 		http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
2873 
2874 	/*
2875 	 * 1: identify the method
2876 	 */
2877 	txn->meth = find_http_meth(req->buf->p, msg->sl.rq.m_l);
2878 
2879 	/* we can make use of server redirect on GET and HEAD */
2880 	if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
2881 		s->flags |= SF_REDIRECTABLE;
2882 	else if (txn->meth == HTTP_METH_OTHER &&
2883 		 msg->sl.rq.m_l == 3 && memcmp(req->buf->p, "PRI", 3) == 0) {
2884 		/* PRI is reserved for the HTTP/2 preface */
2885 		msg->err_pos = 0;
2886 		goto return_bad_req;
2887 	}
2888 
2889 	/*
2890 	 * 2: check if the URI matches the monitor_uri.
2891 	 * We have to do this for every request which gets in, because
2892 	 * the monitor-uri is defined by the frontend.
2893 	 */
2894 	if (unlikely((sess->fe->monitor_uri_len != 0) &&
2895 		     (sess->fe->monitor_uri_len == msg->sl.rq.u_l) &&
2896 		     !memcmp(req->buf->p + msg->sl.rq.u,
2897 			     sess->fe->monitor_uri,
2898 			     sess->fe->monitor_uri_len))) {
2899 		/*
2900 		 * We have found the monitor URI
2901 		 */
2902 		struct acl_cond *cond;
2903 
2904 		s->flags |= SF_MONITOR;
2905 		sess->fe->fe_counters.intercepted_req++;
2906 
2907 		/* Check if we want to fail this monitor request or not */
2908 		list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) {
2909 			int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
2910 
2911 			ret = acl_pass(ret);
2912 			if (cond->pol == ACL_COND_UNLESS)
2913 				ret = !ret;
2914 
2915 			if (ret) {
2916 				/* we fail this request, let's return 503 service unavail */
2917 				txn->status = 503;
2918 				http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_503));
2919 				if (!(s->flags & SF_ERR_MASK))
2920 					s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
2921 				goto return_prx_cond;
2922 			}
2923 		}
2924 
2925 		/* nothing to fail, let's reply normaly */
2926 		txn->status = 200;
2927 		http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_200));
2928 		if (!(s->flags & SF_ERR_MASK))
2929 			s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
2930 		goto return_prx_cond;
2931 	}
2932 
2933 	/*
2934 	 * 3: Maybe we have to copy the original REQURI for the logs ?
2935 	 * Note: we cannot log anymore if the request has been
2936 	 * classified as invalid.
2937 	 */
2938 	if (unlikely(s->logs.logwait & LW_REQ)) {
2939 		/* we have a complete HTTP request that we must log */
2940 		if ((txn->uri = pool_alloc2(pool2_requri)) != NULL) {
2941 			int urilen = msg->sl.rq.l;
2942 
2943 			if (urilen >= REQURI_LEN)
2944 				urilen = REQURI_LEN - 1;
2945 			memcpy(txn->uri, req->buf->p, urilen);
2946 			txn->uri[urilen] = 0;
2947 
2948 			if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT)))
2949 				s->do_log(s);
2950 		} else {
2951 			Alert("HTTP logging : out of memory.\n");
2952 		}
2953 	}
2954 
2955 	/* RFC7230#2.6 has enforced the format of the HTTP version string to be
2956 	 * exactly one digit "." one digit. This check may be disabled using
2957 	 * option accept-invalid-http-request.
2958 	 */
2959 	if (!(sess->fe->options2 & PR_O2_REQBUG_OK)) {
2960 		if (msg->sl.rq.v_l != 8) {
2961 			msg->err_pos = msg->sl.rq.v;
2962 			goto return_bad_req;
2963 		}
2964 
2965 		if (req->buf->p[msg->sl.rq.v + 4] != '/' ||
2966 		    !isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 5]) ||
2967 		    req->buf->p[msg->sl.rq.v + 6] != '.' ||
2968 		    !isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 7])) {
2969 			msg->err_pos = msg->sl.rq.v + 4;
2970 			goto return_bad_req;
2971 		}
2972 	}
2973 	else {
2974 		/* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */
2975 		if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn))
2976 			goto return_bad_req;
2977 	}
2978 
2979 	/* ... and check if the request is HTTP/1.1 or above */
2980 	if ((msg->sl.rq.v_l == 8) &&
2981 	    ((req->buf->p[msg->sl.rq.v + 5] > '1') ||
2982 	     ((req->buf->p[msg->sl.rq.v + 5] == '1') &&
2983 	      (req->buf->p[msg->sl.rq.v + 7] >= '1'))))
2984 		msg->flags |= HTTP_MSGF_VER_11;
2985 
2986 	/* "connection" has not been parsed yet */
2987 	txn->flags &= ~(TX_HDR_CONN_PRS | TX_HDR_CONN_CLO | TX_HDR_CONN_KAL | TX_HDR_CONN_UPG);
2988 
2989 	/* if the frontend has "option http-use-proxy-header", we'll check if
2990 	 * we have what looks like a proxied connection instead of a connection,
2991 	 * and in this case set the TX_USE_PX_CONN flag to use Proxy-connection.
2992 	 * Note that this is *not* RFC-compliant, however browsers and proxies
2993 	 * happen to do that despite being non-standard :-(
2994 	 * We consider that a request not beginning with either '/' or '*' is
2995 	 * a proxied connection, which covers both "scheme://location" and
2996 	 * CONNECT ip:port.
2997 	 */
2998 	if ((sess->fe->options2 & PR_O2_USE_PXHDR) &&
2999 	    req->buf->p[msg->sl.rq.u] != '/' && req->buf->p[msg->sl.rq.u] != '*')
3000 		txn->flags |= TX_USE_PX_CONN;
3001 
3002 	/* transfer length unknown*/
3003 	msg->flags &= ~HTTP_MSGF_XFER_LEN;
3004 
3005 	/* 5: we may need to capture headers */
3006 	if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap))
3007 		capture_headers(req->buf->p, &txn->hdr_idx,
3008 				s->req_cap, sess->fe->req_cap);
3009 
3010 	/* 6: determine the transfer-length according to RFC2616 #4.4, updated
3011 	 * by RFC7230#3.3.3 :
3012 	 *
3013 	 * The length of a message body is determined by one of the following
3014 	 *   (in order of precedence):
3015 	 *
3016 	 *   1.  Any response to a HEAD request and any response with a 1xx
3017 	 *       (Informational), 204 (No Content), or 304 (Not Modified) status
3018 	 *       code is always terminated by the first empty line after the
3019 	 *       header fields, regardless of the header fields present in the
3020 	 *       message, and thus cannot contain a message body.
3021 	 *
3022 	 *   2.  Any 2xx (Successful) response to a CONNECT request implies that
3023 	 *       the connection will become a tunnel immediately after the empty
3024 	 *       line that concludes the header fields.  A client MUST ignore any
3025 	 *       Content-Length or Transfer-Encoding header fields received in
3026 	 *       such a message.
3027 	 *
3028 	 *   3.  If a Transfer-Encoding header field is present and the chunked
3029 	 *       transfer coding (Section 4.1) is the final encoding, the message
3030 	 *       body length is determined by reading and decoding the chunked
3031 	 *       data until the transfer coding indicates the data is complete.
3032 	 *
3033 	 *       If a Transfer-Encoding header field is present in a response and
3034 	 *       the chunked transfer coding is not the final encoding, the
3035 	 *       message body length is determined by reading the connection until
3036 	 *       it is closed by the server.  If a Transfer-Encoding header field
3037 	 *       is present in a request and the chunked transfer coding is not
3038 	 *       the final encoding, the message body length cannot be determined
3039 	 *       reliably; the server MUST respond with the 400 (Bad Request)
3040 	 *       status code and then close the connection.
3041 	 *
3042 	 *       If a message is received with both a Transfer-Encoding and a
3043 	 *       Content-Length header field, the Transfer-Encoding overrides the
3044 	 *       Content-Length.  Such a message might indicate an attempt to
3045 	 *       perform request smuggling (Section 9.5) or response splitting
3046 	 *       (Section 9.4) and ought to be handled as an error.  A sender MUST
3047 	 *       remove the received Content-Length field prior to forwarding such
3048 	 *       a message downstream.
3049 	 *
3050 	 *   4.  If a message is received without Transfer-Encoding and with
3051 	 *       either multiple Content-Length header fields having differing
3052 	 *       field-values or a single Content-Length header field having an
3053 	 *       invalid value, then the message framing is invalid and the
3054 	 *       recipient MUST treat it as an unrecoverable error.  If this is a
3055 	 *       request message, the server MUST respond with a 400 (Bad Request)
3056 	 *       status code and then close the connection.  If this is a response
3057 	 *       message received by a proxy, the proxy MUST close the connection
3058 	 *       to the server, discard the received response, and send a 502 (Bad
3059 	 *       Gateway) response to the client.  If this is a response message
3060 	 *       received by a user agent, the user agent MUST close the
3061 	 *       connection to the server and discard the received response.
3062 	 *
3063 	 *   5.  If a valid Content-Length header field is present without
3064 	 *       Transfer-Encoding, its decimal value defines the expected message
3065 	 *       body length in octets.  If the sender closes the connection or
3066 	 *       the recipient times out before the indicated number of octets are
3067 	 *       received, the recipient MUST consider the message to be
3068 	 *       incomplete and close the connection.
3069 	 *
3070 	 *   6.  If this is a request message and none of the above are true, then
3071 	 *       the message body length is zero (no message body is present).
3072 	 *
3073 	 *   7.  Otherwise, this is a response message without a declared message
3074 	 *       body length, so the message body length is determined by the
3075 	 *       number of octets received prior to the server closing the
3076 	 *       connection.
3077 	 */
3078 
3079 	ctx.idx = 0;
3080 	/* set TE_CHNK and XFER_LEN only if "chunked" is seen last */
3081 	while (http_find_header2("Transfer-Encoding", 17, req->buf->p, &txn->hdr_idx, &ctx)) {
3082 		if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
3083 			msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
3084 		else if (msg->flags & HTTP_MSGF_TE_CHNK) {
3085 			/* chunked not last, return badreq */
3086 			goto return_bad_req;
3087 		}
3088 	}
3089 
3090 	/* "chunked" mandatory if transfer-encoding is used */
3091 	if (ctx.idx && !(msg->flags & HTTP_MSGF_TE_CHNK))
3092 		goto return_bad_req;
3093 
3094 	/* Chunked requests must have their content-length removed */
3095 	ctx.idx = 0;
3096 	if (msg->flags & HTTP_MSGF_TE_CHNK) {
3097 		while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx))
3098 			http_remove_header2(msg, &txn->hdr_idx, &ctx);
3099 	}
3100 	else while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx)) {
3101 		signed long long cl;
3102 
3103 		if (!ctx.vlen) {
3104 			msg->err_pos = ctx.line + ctx.val - req->buf->p;
3105 			goto return_bad_req;
3106 		}
3107 
3108 		if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
3109 			msg->err_pos = ctx.line + ctx.val - req->buf->p;
3110 			goto return_bad_req; /* parse failure */
3111 		}
3112 
3113 		if (cl < 0) {
3114 			msg->err_pos = ctx.line + ctx.val - req->buf->p;
3115 			goto return_bad_req;
3116 		}
3117 
3118 		if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
3119 			msg->err_pos = ctx.line + ctx.val - req->buf->p;
3120 			goto return_bad_req; /* already specified, was different */
3121 		}
3122 
3123 		msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN;
3124 		msg->body_len = msg->chunk_len = cl;
3125 	}
3126 
3127 	/* even bodyless requests have a known length */
3128 	msg->flags |= HTTP_MSGF_XFER_LEN;
3129 
3130 	/* Until set to anything else, the connection mode is set as Keep-Alive. It will
3131 	 * only change if both the request and the config reference something else.
3132 	 * Option httpclose by itself sets tunnel mode where headers are mangled.
3133 	 * However, if another mode is set, it will affect it (eg: server-close/
3134 	 * keep-alive + httpclose = close). Note that we avoid to redo the same work
3135 	 * if FE and BE have the same settings (common). The method consists in
3136 	 * checking if options changed between the two calls (implying that either
3137 	 * one is non-null, or one of them is non-null and we are there for the first
3138 	 * time.
3139 	 */
3140 	if (!(txn->flags & TX_HDR_CONN_PRS) ||
3141 	    ((sess->fe->options & PR_O_HTTP_MODE) != (s->be->options & PR_O_HTTP_MODE)))
3142 		http_adjust_conn_mode(s, txn, msg);
3143 
3144 	/* we may have to wait for the request's body */
3145 	if ((s->be->options & PR_O_WREQ_BODY) &&
3146 	    (msg->body_len || (msg->flags & HTTP_MSGF_TE_CHNK)))
3147 		req->analysers |= AN_REQ_HTTP_BODY;
3148 
3149 	/* end of job, return OK */
3150 	req->analysers &= ~an_bit;
3151 	req->analyse_exp = TICK_ETERNITY;
3152 	return 1;
3153 
3154  return_bad_req:
3155 	/* We centralize bad requests processing here */
3156 	if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
3157 		/* we detected a parsing error. We want to archive this request
3158 		 * in the dedicated proxy area for later troubleshooting.
3159 		 */
3160 		http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
3161 	}
3162 
3163 	txn->req.err_state = txn->req.msg_state;
3164 	txn->req.msg_state = HTTP_MSG_ERROR;
3165 	txn->status = 400;
3166 	http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400));
3167 
3168 	sess->fe->fe_counters.failed_req++;
3169 	if (sess->listener->counters)
3170 		sess->listener->counters->failed_req++;
3171 
3172  return_prx_cond:
3173 	if (!(s->flags & SF_ERR_MASK))
3174 		s->flags |= SF_ERR_PRXCOND;
3175 	if (!(s->flags & SF_FINST_MASK))
3176 		s->flags |= SF_FINST_R;
3177 
3178 	req->analysers &= AN_REQ_FLT_END;
3179 	req->analyse_exp = TICK_ETERNITY;
3180 	return 0;
3181 }
3182 
3183 
3184 /* This function prepares an applet to handle the stats. It can deal with the
3185  * "100-continue" expectation, check that admin rules are met for POST requests,
3186  * and program a response message if something was unexpected. It cannot fail
3187  * and always relies on the stats applet to complete the job. It does not touch
3188  * analysers nor counters, which are left to the caller. It does not touch
3189  * s->target which is supposed to already point to the stats applet. The caller
3190  * is expected to have already assigned an appctx to the stream.
3191  */
http_handle_stats(struct stream * s,struct channel * req)3192 int http_handle_stats(struct stream *s, struct channel *req)
3193 {
3194 	struct stats_admin_rule *stats_admin_rule;
3195 	struct stream_interface *si = &s->si[1];
3196 	struct session *sess = s->sess;
3197 	struct http_txn *txn = s->txn;
3198 	struct http_msg *msg = &txn->req;
3199 	struct uri_auth *uri_auth = s->be->uri_auth;
3200 	const char *uri, *h, *lookup;
3201 	struct appctx *appctx;
3202 
3203 	appctx = si_appctx(si);
3204 	memset(&appctx->ctx.stats, 0, sizeof(appctx->ctx.stats));
3205 	appctx->st1 = appctx->st2 = 0;
3206 	appctx->ctx.stats.st_code = STAT_STATUS_INIT;
3207 	appctx->ctx.stats.flags |= STAT_FMT_HTML; /* assume HTML mode by default */
3208 	if ((msg->flags & HTTP_MSGF_VER_11) && (s->txn->meth != HTTP_METH_HEAD))
3209 		appctx->ctx.stats.flags |= STAT_CHUNKED;
3210 
3211 	uri = msg->chn->buf->p + msg->sl.rq.u;
3212 	lookup = uri + uri_auth->uri_len;
3213 
3214 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 3; h++) {
3215 		if (memcmp(h, ";up", 3) == 0) {
3216 			appctx->ctx.stats.flags |= STAT_HIDE_DOWN;
3217 			break;
3218 		}
3219 	}
3220 
3221 	if (uri_auth->refresh) {
3222 		for (h = lookup; h <= uri + msg->sl.rq.u_l - 10; h++) {
3223 			if (memcmp(h, ";norefresh", 10) == 0) {
3224 				appctx->ctx.stats.flags |= STAT_NO_REFRESH;
3225 				break;
3226 			}
3227 		}
3228 	}
3229 
3230 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 4; h++) {
3231 		if (memcmp(h, ";csv", 4) == 0) {
3232 			appctx->ctx.stats.flags &= ~STAT_FMT_HTML;
3233 			break;
3234 		}
3235 	}
3236 
3237 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 6; h++) {
3238 		if (memcmp(h, ";typed", 6) == 0) {
3239 			appctx->ctx.stats.flags &= ~STAT_FMT_HTML;
3240 			appctx->ctx.stats.flags |= STAT_FMT_TYPED;
3241 			break;
3242 		}
3243 	}
3244 
3245 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) {
3246 		if (memcmp(h, ";st=", 4) == 0) {
3247 			int i;
3248 			h += 4;
3249 			appctx->ctx.stats.st_code = STAT_STATUS_UNKN;
3250 			for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) {
3251 				if (strncmp(stat_status_codes[i], h, 4) == 0) {
3252 					appctx->ctx.stats.st_code = i;
3253 					break;
3254 				}
3255 			}
3256 			break;
3257 		}
3258 	}
3259 
3260 	appctx->ctx.stats.scope_str = 0;
3261 	appctx->ctx.stats.scope_len = 0;
3262 	for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) {
3263 		if (memcmp(h, STAT_SCOPE_INPUT_NAME "=", strlen(STAT_SCOPE_INPUT_NAME) + 1) == 0) {
3264 			int itx = 0;
3265 			const char *h2;
3266 			char scope_txt[STAT_SCOPE_TXT_MAXLEN + 1];
3267 			const char *err;
3268 
3269 			h += strlen(STAT_SCOPE_INPUT_NAME) + 1;
3270 			h2 = h;
3271 			appctx->ctx.stats.scope_str = h2 - msg->chn->buf->p;
3272 			while (*h != ';' && *h != '\0' && *h != '&' && *h != ' ' && *h != '\n') {
3273 				itx++;
3274 				h++;
3275 			}
3276 
3277 			if (itx > STAT_SCOPE_TXT_MAXLEN)
3278 				itx = STAT_SCOPE_TXT_MAXLEN;
3279 			appctx->ctx.stats.scope_len = itx;
3280 
3281 			/* scope_txt = search query, appctx->ctx.stats.scope_len is always <= STAT_SCOPE_TXT_MAXLEN */
3282 			memcpy(scope_txt, h2, itx);
3283 			scope_txt[itx] = '\0';
3284 			err = invalid_char(scope_txt);
3285 			if (err) {
3286 				/* bad char in search text => clear scope */
3287 				appctx->ctx.stats.scope_str = 0;
3288 				appctx->ctx.stats.scope_len = 0;
3289 			}
3290 			break;
3291 		}
3292 	}
3293 
3294 	/* now check whether we have some admin rules for this request */
3295 	list_for_each_entry(stats_admin_rule, &uri_auth->admin_rules, list) {
3296 		int ret = 1;
3297 
3298 		if (stats_admin_rule->cond) {
3299 			ret = acl_exec_cond(stats_admin_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
3300 			ret = acl_pass(ret);
3301 			if (stats_admin_rule->cond->pol == ACL_COND_UNLESS)
3302 				ret = !ret;
3303 		}
3304 
3305 		if (ret) {
3306 			/* no rule, or the rule matches */
3307 			appctx->ctx.stats.flags |= STAT_ADMIN;
3308 			break;
3309 		}
3310 	}
3311 
3312 	/* Was the status page requested with a POST ? */
3313 	if (unlikely(txn->meth == HTTP_METH_POST && txn->req.body_len > 0)) {
3314 		if (appctx->ctx.stats.flags & STAT_ADMIN) {
3315 			/* we'll need the request body, possibly after sending 100-continue */
3316 			if (msg->msg_state < HTTP_MSG_CHUNK_SIZE)
3317 				req->analysers |= AN_REQ_HTTP_BODY;
3318 			appctx->st0 = STAT_HTTP_POST;
3319 		}
3320 		else {
3321 			appctx->ctx.stats.st_code = STAT_STATUS_DENY;
3322 			appctx->st0 = STAT_HTTP_LAST;
3323 		}
3324 	}
3325 	else {
3326 		/* So it was another method (GET/HEAD) */
3327 		appctx->st0 = STAT_HTTP_HEAD;
3328 	}
3329 
3330 	s->task->nice = -32; /* small boost for HTTP statistics */
3331 	return 1;
3332 }
3333 
3334 /* Sets the TOS header in IPv4 and the traffic class header in IPv6 packets
3335  * (as per RFC3260 #4 and BCP37 #4.2 and #5.2).
3336  */
inet_set_tos(int fd,const struct sockaddr_storage * from,int tos)3337 void inet_set_tos(int fd, const struct sockaddr_storage *from, int tos)
3338 {
3339 #ifdef IP_TOS
3340 	if (from->ss_family == AF_INET)
3341 		setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
3342 #endif
3343 #ifdef IPV6_TCLASS
3344 	if (from->ss_family == AF_INET6) {
3345 		if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)from)->sin6_addr))
3346 			/* v4-mapped addresses need IP_TOS */
3347 			setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
3348 		else
3349 			setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, &tos, sizeof(tos));
3350 	}
3351 #endif
3352 }
3353 
http_transform_header_str(struct stream * s,struct http_msg * msg,const char * name,unsigned int name_len,const char * str,struct my_regex * re,int action)3354 int http_transform_header_str(struct stream* s, struct http_msg *msg,
3355                               const char* name, unsigned int name_len,
3356                               const char *str, struct my_regex *re,
3357                               int action)
3358 {
3359 	struct hdr_ctx ctx;
3360 	char *buf = msg->chn->buf->p;
3361 	struct hdr_idx *idx = &s->txn->hdr_idx;
3362 	int (*http_find_hdr_func)(const char *name, int len, char *sol,
3363 	                          struct hdr_idx *idx, struct hdr_ctx *ctx);
3364 	struct chunk *output = get_trash_chunk();
3365 
3366 	ctx.idx = 0;
3367 
3368 	/* Choose the header browsing function. */
3369 	switch (action) {
3370 	case ACT_HTTP_REPLACE_VAL:
3371 		http_find_hdr_func = http_find_header2;
3372 		break;
3373 	case ACT_HTTP_REPLACE_HDR:
3374 		http_find_hdr_func = http_find_full_header2;
3375 		break;
3376 	default: /* impossible */
3377 		return -1;
3378 	}
3379 
3380 	while (http_find_hdr_func(name, name_len, buf, idx, &ctx)) {
3381 		struct hdr_idx_elem *hdr = idx->v + ctx.idx;
3382 		int delta;
3383 		char *val = ctx.line + ctx.val;
3384 		char* val_end = val + ctx.vlen;
3385 
3386 		if (!regex_exec_match2(re, val, val_end-val, MAX_MATCH, pmatch, 0))
3387 			continue;
3388 
3389 		output->len = exp_replace(output->str, output->size, val, str, pmatch);
3390 		if (output->len == -1)
3391 			return -1;
3392 
3393 		delta = buffer_replace2(msg->chn->buf, val, val_end, output->str, output->len);
3394 
3395 		hdr->len += delta;
3396 		http_msg_move_end(msg, delta);
3397 
3398 		/* Adjust the length of the current value of the index. */
3399 		ctx.vlen += delta;
3400 	}
3401 
3402 	return 0;
3403 }
3404 
http_transform_header(struct stream * s,struct http_msg * msg,const char * name,unsigned int name_len,struct list * fmt,struct my_regex * re,int action)3405 static int http_transform_header(struct stream* s, struct http_msg *msg,
3406                                  const char* name, unsigned int name_len,
3407                                  struct list *fmt, struct my_regex *re,
3408                                  int action)
3409 {
3410 	struct chunk *replace;
3411 	int ret = -1;
3412 
3413 	replace = alloc_trash_chunk();
3414 	if (!replace)
3415 		goto leave;
3416 
3417 	replace->len = build_logline(s, replace->str, replace->size, fmt);
3418 	if (replace->len >= replace->size - 1)
3419 		goto leave;
3420 
3421 	ret = http_transform_header_str(s, msg, name, name_len, replace->str, re, action);
3422 
3423   leave:
3424 	free_trash_chunk(replace);
3425 	return ret;
3426 }
3427 
3428 /* Executes the http-request rules <rules> for stream <s>, proxy <px> and
3429  * transaction <txn>. Returns the verdict of the first rule that prevents
3430  * further processing of the request (auth, deny, ...), and defaults to
3431  * HTTP_RULE_RES_STOP if it executed all rules or stopped on an allow, or
3432  * HTTP_RULE_RES_CONT if the last rule was reached. It may set the TX_CLTARPIT
3433  * on txn->flags if it encounters a tarpit rule. If <deny_status> is not NULL
3434  * and a deny/tarpit rule is matched, it will be filled with this rule's deny
3435  * status.
3436  */
3437 enum rule_result
http_req_get_intercept_rule(struct proxy * px,struct list * rules,struct stream * s,int * deny_status)3438 http_req_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s, int *deny_status)
3439 {
3440 	struct session *sess = strm_sess(s);
3441 	struct http_txn *txn = s->txn;
3442 	struct connection *cli_conn;
3443 	struct act_rule *rule;
3444 	struct hdr_ctx ctx;
3445 	const char *auth_realm;
3446 	int act_flags = 0;
3447 	int len;
3448 
3449 	/* If "the current_rule_list" match the executed rule list, we are in
3450 	 * resume condition. If a resume is needed it is always in the action
3451 	 * and never in the ACL or converters. In this case, we initialise the
3452 	 * current rule, and go to the action execution point.
3453 	 */
3454 	if (s->current_rule) {
3455 		rule = s->current_rule;
3456 		s->current_rule = NULL;
3457 		if (s->current_rule_list == rules)
3458 			goto resume_execution;
3459 	}
3460 	s->current_rule_list = rules;
3461 
3462 	list_for_each_entry(rule, rules, list) {
3463 
3464 		/* check optional condition */
3465 		if (rule->cond) {
3466 			int ret;
3467 
3468 			ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
3469 			ret = acl_pass(ret);
3470 
3471 			if (rule->cond->pol == ACL_COND_UNLESS)
3472 				ret = !ret;
3473 
3474 			if (!ret) /* condition not matched */
3475 				continue;
3476 		}
3477 
3478 		act_flags |= ACT_FLAG_FIRST;
3479 resume_execution:
3480 		switch (rule->action) {
3481 		case ACT_ACTION_ALLOW:
3482 			return HTTP_RULE_RES_STOP;
3483 
3484 		case ACT_ACTION_DENY:
3485 			if (deny_status)
3486 				*deny_status = rule->deny_status;
3487 			return HTTP_RULE_RES_DENY;
3488 
3489 		case ACT_HTTP_REQ_TARPIT:
3490 			txn->flags |= TX_CLTARPIT;
3491 			if (deny_status)
3492 				*deny_status = rule->deny_status;
3493 			return HTTP_RULE_RES_DENY;
3494 
3495 		case ACT_HTTP_REQ_AUTH:
3496 			/* Auth might be performed on regular http-req rules as well as on stats */
3497 			auth_realm = rule->arg.auth.realm;
3498 			if (!auth_realm) {
3499 				if (px->uri_auth && rules == &px->uri_auth->http_req_rules)
3500 					auth_realm = STATS_DEFAULT_REALM;
3501 				else
3502 					auth_realm = px->id;
3503 			}
3504 			/* send 401/407 depending on whether we use a proxy or not. We still
3505 			 * count one error, because normal browsing won't significantly
3506 			 * increase the counter but brute force attempts will.
3507 			 */
3508 			chunk_printf(&trash, (txn->flags & TX_USE_PX_CONN) ? HTTP_407_fmt : HTTP_401_fmt, auth_realm);
3509 			txn->status = (txn->flags & TX_USE_PX_CONN) ? 407 : 401;
3510 			http_reply_and_close(s, txn->status, &trash);
3511 			stream_inc_http_err_ctr(s);
3512 			return HTTP_RULE_RES_ABRT;
3513 
3514 		case ACT_HTTP_REDIR:
3515 			if (!http_apply_redirect_rule(rule->arg.redir, s, txn))
3516 				return HTTP_RULE_RES_BADREQ;
3517 			return HTTP_RULE_RES_DONE;
3518 
3519 		case ACT_HTTP_SET_NICE:
3520 			s->task->nice = rule->arg.nice;
3521 			break;
3522 
3523 		case ACT_HTTP_SET_TOS:
3524 			if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
3525 				inet_set_tos(cli_conn->t.sock.fd, &cli_conn->addr.from, rule->arg.tos);
3526 			break;
3527 
3528 		case ACT_HTTP_SET_MARK:
3529 #ifdef SO_MARK
3530 			if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
3531 				setsockopt(cli_conn->t.sock.fd, SOL_SOCKET, SO_MARK, &rule->arg.mark, sizeof(rule->arg.mark));
3532 #endif
3533 			break;
3534 
3535 		case ACT_HTTP_SET_LOGL:
3536 			s->logs.level = rule->arg.loglevel;
3537 			break;
3538 
3539 		case ACT_HTTP_REPLACE_HDR:
3540 		case ACT_HTTP_REPLACE_VAL:
3541 			if (http_transform_header(s, &txn->req, rule->arg.hdr_add.name,
3542 			                          rule->arg.hdr_add.name_len,
3543 			                          &rule->arg.hdr_add.fmt,
3544 			                          &rule->arg.hdr_add.re, rule->action))
3545 				return HTTP_RULE_RES_BADREQ;
3546 			break;
3547 
3548 		case ACT_HTTP_DEL_HDR:
3549 			ctx.idx = 0;
3550 			/* remove all occurrences of the header */
3551 			while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
3552 						 txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
3553 				http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
3554 			}
3555 			break;
3556 
3557 		case ACT_HTTP_SET_HDR:
3558 		case ACT_HTTP_ADD_HDR: {
3559 			/* The scope of the trash buffer must be limited to this function. The
3560 			 * build_logline() function can execute a lot of other function which
3561 			 * can use the trash buffer. So for limiting the scope of this global
3562 			 * buffer, we build first the header value using build_logline, and
3563 			 * after we store the header name.
3564 			 */
3565 			struct chunk *replace;
3566 
3567 			replace = alloc_trash_chunk();
3568 			if (!replace)
3569 				return HTTP_RULE_RES_BADREQ;
3570 
3571 			len = rule->arg.hdr_add.name_len + 2,
3572 			len += build_logline(s, replace->str + len, replace->size - len, &rule->arg.hdr_add.fmt);
3573 			memcpy(replace->str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len);
3574 			replace->str[rule->arg.hdr_add.name_len] = ':';
3575 			replace->str[rule->arg.hdr_add.name_len + 1] = ' ';
3576 			replace->len = len;
3577 
3578 			if (rule->action == ACT_HTTP_SET_HDR) {
3579 				/* remove all occurrences of the header */
3580 				ctx.idx = 0;
3581 				while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
3582 							 txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
3583 					http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
3584 				}
3585 			}
3586 
3587 			http_header_add_tail2(&txn->req, &txn->hdr_idx, replace->str, replace->len);
3588 
3589 			free_trash_chunk(replace);
3590 			break;
3591 			}
3592 
3593 		case ACT_HTTP_DEL_ACL:
3594 		case ACT_HTTP_DEL_MAP: {
3595 			struct pat_ref *ref;
3596 			struct chunk *key;
3597 
3598 			/* collect reference */
3599 			ref = pat_ref_lookup(rule->arg.map.ref);
3600 			if (!ref)
3601 				continue;
3602 
3603 			/* allocate key */
3604 			key = alloc_trash_chunk();
3605 			if (!key)
3606 				return HTTP_RULE_RES_BADREQ;
3607 
3608 			/* collect key */
3609 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
3610 			key->str[key->len] = '\0';
3611 
3612 			/* perform update */
3613 			/* returned code: 1=ok, 0=ko */
3614 			pat_ref_delete(ref, key->str);
3615 
3616 			free_trash_chunk(key);
3617 			break;
3618 			}
3619 
3620 		case ACT_HTTP_ADD_ACL: {
3621 			struct pat_ref *ref;
3622 			struct chunk *key;
3623 
3624 			/* collect reference */
3625 			ref = pat_ref_lookup(rule->arg.map.ref);
3626 			if (!ref)
3627 				continue;
3628 
3629 			/* allocate key */
3630 			key = alloc_trash_chunk();
3631 			if (!key)
3632 				return HTTP_RULE_RES_BADREQ;
3633 
3634 			/* collect key */
3635 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
3636 			key->str[key->len] = '\0';
3637 
3638 			/* perform update */
3639 			/* add entry only if it does not already exist */
3640 			if (pat_ref_find_elt(ref, key->str) == NULL)
3641 				pat_ref_add(ref, key->str, NULL, NULL);
3642 
3643 			free_trash_chunk(key);
3644 			break;
3645 			}
3646 
3647 		case ACT_HTTP_SET_MAP: {
3648 			struct pat_ref *ref;
3649 			struct chunk *key, *value;
3650 
3651 			/* collect reference */
3652 			ref = pat_ref_lookup(rule->arg.map.ref);
3653 			if (!ref)
3654 				continue;
3655 
3656 			/* allocate key */
3657 			key = alloc_trash_chunk();
3658 			if (!key)
3659 				return HTTP_RULE_RES_BADREQ;
3660 
3661 			/* allocate value */
3662 			value = alloc_trash_chunk();
3663 			if (!value) {
3664 				free_trash_chunk(key);
3665 				return HTTP_RULE_RES_BADREQ;
3666 			}
3667 
3668 			/* collect key */
3669 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
3670 			key->str[key->len] = '\0';
3671 
3672 			/* collect value */
3673 			value->len = build_logline(s, value->str, value->size, &rule->arg.map.value);
3674 			value->str[value->len] = '\0';
3675 
3676 			/* perform update */
3677 			if (pat_ref_find_elt(ref, key->str) != NULL)
3678 				/* update entry if it exists */
3679 				pat_ref_set(ref, key->str, value->str, NULL);
3680 			else
3681 				/* insert a new entry */
3682 				pat_ref_add(ref, key->str, value->str, NULL);
3683 
3684 			free_trash_chunk(key);
3685 			free_trash_chunk(value);
3686 			break;
3687 			}
3688 
3689 		case ACT_CUSTOM:
3690 			if ((px->options & PR_O_ABRT_CLOSE) && (s->req.flags & (CF_SHUTR|CF_READ_NULL|CF_READ_ERROR)))
3691 				act_flags |= ACT_FLAG_FINAL;
3692 
3693 			switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) {
3694 			case ACT_RET_ERR:
3695 			case ACT_RET_CONT:
3696 				break;
3697 			case ACT_RET_STOP:
3698 				return HTTP_RULE_RES_DONE;
3699 			case ACT_RET_YIELD:
3700 				s->current_rule = rule;
3701 				return HTTP_RULE_RES_YIELD;
3702 			}
3703 			break;
3704 
3705 		case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX:
3706 			/* Note: only the first valid tracking parameter of each
3707 			 * applies.
3708 			 */
3709 
3710 			if (stkctr_entry(&s->stkctr[http_trk_idx(rule->action)]) == NULL) {
3711 				struct stktable *t;
3712 				struct stksess *ts;
3713 				struct stktable_key *key;
3714 				void *ptr;
3715 
3716 				t = rule->arg.trk_ctr.table.t;
3717 				key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL);
3718 
3719 				if (key && (ts = stktable_get_entry(t, key))) {
3720 					stream_track_stkctr(&s->stkctr[http_trk_idx(rule->action)], t, ts);
3721 
3722 					/* let's count a new HTTP request as it's the first time we do it */
3723 					ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT);
3724 					if (ptr)
3725 						stktable_data_cast(ptr, http_req_cnt)++;
3726 
3727 					ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE);
3728 					if (ptr)
3729 						update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
3730 						                       t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1);
3731 
3732 					stkctr_set_flags(&s->stkctr[http_trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
3733 					if (sess->fe != s->be)
3734 						stkctr_set_flags(&s->stkctr[http_trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
3735 				}
3736 			}
3737 			break;
3738 
3739 		/* other flags exists, but normaly, they never be matched. */
3740 		default:
3741 			break;
3742 		}
3743 	}
3744 
3745 	/* we reached the end of the rules, nothing to report */
3746 	return HTTP_RULE_RES_CONT;
3747 }
3748 
3749 
3750 /* Executes the http-response rules <rules> for stream <s> and proxy <px>. It
3751  * returns one of 5 possible statuses: HTTP_RULE_RES_CONT, HTTP_RULE_RES_STOP,
3752  * HTTP_RULE_RES_DONE, HTTP_RULE_RES_YIELD, or HTTP_RULE_RES_BADREQ. If *CONT
3753  * is returned, the process can continue the evaluation of next rule list. If
3754  * *STOP or *DONE is returned, the process must stop the evaluation. If *BADREQ
3755  * is returned, it means the operation could not be processed and a server error
3756  * must be returned. It may set the TX_SVDENY on txn->flags if it encounters a
3757  * deny rule. If *YIELD is returned, the caller must call again the function
3758  * with the same context.
3759  */
3760 static enum rule_result
http_res_get_intercept_rule(struct proxy * px,struct list * rules,struct stream * s)3761 http_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s)
3762 {
3763 	struct session *sess = strm_sess(s);
3764 	struct http_txn *txn = s->txn;
3765 	struct connection *cli_conn;
3766 	struct act_rule *rule;
3767 	struct hdr_ctx ctx;
3768 	int act_flags = 0;
3769 
3770 	/* If "the current_rule_list" match the executed rule list, we are in
3771 	 * resume condition. If a resume is needed it is always in the action
3772 	 * and never in the ACL or converters. In this case, we initialise the
3773 	 * current rule, and go to the action execution point.
3774 	 */
3775 	if (s->current_rule) {
3776 		rule = s->current_rule;
3777 		s->current_rule = NULL;
3778 		if (s->current_rule_list == rules)
3779 			goto resume_execution;
3780 	}
3781 	s->current_rule_list = rules;
3782 
3783 	list_for_each_entry(rule, rules, list) {
3784 
3785 		/* check optional condition */
3786 		if (rule->cond) {
3787 			int ret;
3788 
3789 			ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
3790 			ret = acl_pass(ret);
3791 
3792 			if (rule->cond->pol == ACL_COND_UNLESS)
3793 				ret = !ret;
3794 
3795 			if (!ret) /* condition not matched */
3796 				continue;
3797 		}
3798 
3799 		act_flags |= ACT_FLAG_FIRST;
3800 resume_execution:
3801 		switch (rule->action) {
3802 		case ACT_ACTION_ALLOW:
3803 			return HTTP_RULE_RES_STOP; /* "allow" rules are OK */
3804 
3805 		case ACT_ACTION_DENY:
3806 			txn->flags |= TX_SVDENY;
3807 			return HTTP_RULE_RES_STOP;
3808 
3809 		case ACT_HTTP_SET_NICE:
3810 			s->task->nice = rule->arg.nice;
3811 			break;
3812 
3813 		case ACT_HTTP_SET_TOS:
3814 			if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
3815 				inet_set_tos(cli_conn->t.sock.fd, &cli_conn->addr.from, rule->arg.tos);
3816 			break;
3817 
3818 		case ACT_HTTP_SET_MARK:
3819 #ifdef SO_MARK
3820 			if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
3821 				setsockopt(cli_conn->t.sock.fd, SOL_SOCKET, SO_MARK, &rule->arg.mark, sizeof(rule->arg.mark));
3822 #endif
3823 			break;
3824 
3825 		case ACT_HTTP_SET_LOGL:
3826 			s->logs.level = rule->arg.loglevel;
3827 			break;
3828 
3829 		case ACT_HTTP_REPLACE_HDR:
3830 		case ACT_HTTP_REPLACE_VAL:
3831 			if (http_transform_header(s, &txn->rsp, rule->arg.hdr_add.name,
3832 			                          rule->arg.hdr_add.name_len,
3833 			                          &rule->arg.hdr_add.fmt,
3834 			                          &rule->arg.hdr_add.re, rule->action))
3835 				return HTTP_RULE_RES_BADREQ;
3836 			break;
3837 
3838 		case ACT_HTTP_DEL_HDR:
3839 			ctx.idx = 0;
3840 			/* remove all occurrences of the header */
3841 			while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
3842 						 txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) {
3843 				http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx);
3844 			}
3845 			break;
3846 
3847 		case ACT_HTTP_SET_HDR:
3848 		case ACT_HTTP_ADD_HDR: {
3849 			struct chunk *replace;
3850 
3851 			replace = alloc_trash_chunk();
3852 			if (!replace)
3853 				return HTTP_RULE_RES_BADREQ;
3854 
3855 			chunk_printf(replace, "%s: ", rule->arg.hdr_add.name);
3856 			memcpy(replace->str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len);
3857 			replace->len = rule->arg.hdr_add.name_len;
3858 			replace->str[replace->len++] = ':';
3859 			replace->str[replace->len++] = ' ';
3860 			replace->len += build_logline(s, replace->str + replace->len, replace->size - replace->len,
3861 			                              &rule->arg.hdr_add.fmt);
3862 
3863 			if (rule->action == ACT_HTTP_SET_HDR) {
3864 				/* remove all occurrences of the header */
3865 				ctx.idx = 0;
3866 				while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
3867 							 txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) {
3868 					http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx);
3869 				}
3870 			}
3871 			http_header_add_tail2(&txn->rsp, &txn->hdr_idx, replace->str, replace->len);
3872 
3873 			free_trash_chunk(replace);
3874 			break;
3875 			}
3876 
3877 		case ACT_HTTP_DEL_ACL:
3878 		case ACT_HTTP_DEL_MAP: {
3879 			struct pat_ref *ref;
3880 			struct chunk *key;
3881 
3882 			/* collect reference */
3883 			ref = pat_ref_lookup(rule->arg.map.ref);
3884 			if (!ref)
3885 				continue;
3886 
3887 			/* allocate key */
3888 			key = alloc_trash_chunk();
3889 			if (!key)
3890 				return HTTP_RULE_RES_BADREQ;
3891 
3892 			/* collect key */
3893 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
3894 			key->str[key->len] = '\0';
3895 
3896 			/* perform update */
3897 			/* returned code: 1=ok, 0=ko */
3898 			pat_ref_delete(ref, key->str);
3899 
3900 			free_trash_chunk(key);
3901 			break;
3902 			}
3903 
3904 		case ACT_HTTP_ADD_ACL: {
3905 			struct pat_ref *ref;
3906 			struct chunk *key;
3907 
3908 			/* collect reference */
3909 			ref = pat_ref_lookup(rule->arg.map.ref);
3910 			if (!ref)
3911 				continue;
3912 
3913 			/* allocate key */
3914 			key = alloc_trash_chunk();
3915 			if (!key)
3916 				return HTTP_RULE_RES_BADREQ;
3917 
3918 			/* collect key */
3919 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
3920 			key->str[key->len] = '\0';
3921 
3922 			/* perform update */
3923 			/* check if the entry already exists */
3924 			if (pat_ref_find_elt(ref, key->str) == NULL)
3925 				pat_ref_add(ref, key->str, NULL, NULL);
3926 
3927 			free_trash_chunk(key);
3928 			break;
3929 			}
3930 
3931 		case ACT_HTTP_SET_MAP: {
3932 			struct pat_ref *ref;
3933 			struct chunk *key, *value;
3934 
3935 			/* collect reference */
3936 			ref = pat_ref_lookup(rule->arg.map.ref);
3937 			if (!ref)
3938 				continue;
3939 
3940 			/* allocate key */
3941 			key = alloc_trash_chunk();
3942 			if (!key)
3943 				return HTTP_RULE_RES_BADREQ;
3944 
3945 			/* allocate value */
3946 			value = alloc_trash_chunk();
3947 			if (!value) {
3948 				free_trash_chunk(key);
3949 				return HTTP_RULE_RES_BADREQ;
3950 			}
3951 
3952 			/* collect key */
3953 			key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
3954 			key->str[key->len] = '\0';
3955 
3956 			/* collect value */
3957 			value->len = build_logline(s, value->str, value->size, &rule->arg.map.value);
3958 			value->str[value->len] = '\0';
3959 
3960 			/* perform update */
3961 			if (pat_ref_find_elt(ref, key->str) != NULL)
3962 				/* update entry if it exists */
3963 				pat_ref_set(ref, key->str, value->str, NULL);
3964 			else
3965 				/* insert a new entry */
3966 				pat_ref_add(ref, key->str, value->str, NULL);
3967 
3968 			free_trash_chunk(key);
3969 			free_trash_chunk(value);
3970 			break;
3971 			}
3972 
3973 		case ACT_HTTP_REDIR:
3974 			if (!http_apply_redirect_rule(rule->arg.redir, s, txn))
3975 				return HTTP_RULE_RES_BADREQ;
3976 			return HTTP_RULE_RES_DONE;
3977 
3978 		case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX:
3979 			/* Note: only the first valid tracking parameter of each
3980 			 * applies.
3981 			 */
3982 
3983 			if (stkctr_entry(&s->stkctr[http_trk_idx(rule->action)]) == NULL) {
3984 				struct stktable *t;
3985 				struct stksess *ts;
3986 				struct stktable_key *key;
3987 				void *ptr;
3988 
3989 				t = rule->arg.trk_ctr.table.t;
3990 				key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_RES | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL);
3991 
3992 				if (key && (ts = stktable_get_entry(t, key))) {
3993 					stream_track_stkctr(&s->stkctr[http_trk_idx(rule->action)], t, ts);
3994 
3995 					/* let's count a new HTTP request as it's the first time we do it */
3996 					ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT);
3997 					if (ptr)
3998 						stktable_data_cast(ptr, http_req_cnt)++;
3999 
4000 					ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE);
4001 					if (ptr)
4002 						update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
4003 											   t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1);
4004 
4005 					stkctr_set_flags(&s->stkctr[http_trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
4006 					if (sess->fe != s->be)
4007 						stkctr_set_flags(&s->stkctr[http_trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
4008 
4009 					/* When the client triggers a 4xx from the server, it's most often due
4010 					 * to a missing object or permission. These events should be tracked
4011 					 * because if they happen often, it may indicate a brute force or a
4012 					 * vulnerability scan. Normally this is done when receiving the response
4013 					 * but here we're tracking after this ought to have been done so we have
4014 					 * to do it on purpose.
4015 					 */
4016 					if ((unsigned)(txn->status - 400) < 100) {
4017 						ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_CNT);
4018 						if (ptr)
4019 							stktable_data_cast(ptr, http_err_cnt)++;
4020 
4021 						ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_RATE);
4022 						if (ptr)
4023 							update_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate),
4024 									       t->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u, 1);
4025 					}
4026 				}
4027 			}
4028 			break;
4029 
4030 		case ACT_CUSTOM:
4031 			if ((px->options & PR_O_ABRT_CLOSE) && (s->req.flags & (CF_SHUTR|CF_READ_NULL|CF_READ_ERROR)))
4032 				act_flags |= ACT_FLAG_FINAL;
4033 
4034 			switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) {
4035 			case ACT_RET_ERR:
4036 			case ACT_RET_CONT:
4037 				break;
4038 			case ACT_RET_STOP:
4039 				return HTTP_RULE_RES_STOP;
4040 			case ACT_RET_YIELD:
4041 				s->current_rule = rule;
4042 				return HTTP_RULE_RES_YIELD;
4043 			}
4044 			break;
4045 
4046 		/* other flags exists, but normaly, they never be matched. */
4047 		default:
4048 			break;
4049 		}
4050 	}
4051 
4052 	/* we reached the end of the rules, nothing to report */
4053 	return HTTP_RULE_RES_CONT;
4054 }
4055 
4056 
4057 /* Perform an HTTP redirect based on the information in <rule>. The function
4058  * returns non-zero on success, or zero in case of a, irrecoverable error such
4059  * as too large a request to build a valid response.
4060  */
http_apply_redirect_rule(struct redirect_rule * rule,struct stream * s,struct http_txn * txn)4061 static int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn)
4062 {
4063 	struct http_msg *req = &txn->req;
4064 	struct http_msg *res = &txn->rsp;
4065 	const char *msg_fmt;
4066 	struct chunk *chunk;
4067 	int ret = 0;
4068 
4069 	chunk = alloc_trash_chunk();
4070 	if (!chunk)
4071 		goto leave;
4072 
4073 	/* build redirect message */
4074 	switch(rule->code) {
4075 	case 308:
4076 		msg_fmt = HTTP_308;
4077 		break;
4078 	case 307:
4079 		msg_fmt = HTTP_307;
4080 		break;
4081 	case 303:
4082 		msg_fmt = HTTP_303;
4083 		break;
4084 	case 301:
4085 		msg_fmt = HTTP_301;
4086 		break;
4087 	case 302:
4088 	default:
4089 		msg_fmt = HTTP_302;
4090 		break;
4091 	}
4092 
4093 	if (unlikely(!chunk_strcpy(chunk, msg_fmt)))
4094 		goto leave;
4095 
4096 	switch(rule->type) {
4097 	case REDIRECT_TYPE_SCHEME: {
4098 		const char *path;
4099 		const char *host;
4100 		struct hdr_ctx ctx;
4101 		int pathlen;
4102 		int hostlen;
4103 
4104 		host = "";
4105 		hostlen = 0;
4106 		ctx.idx = 0;
4107 		if (http_find_header2("Host", 4, req->chn->buf->p, &txn->hdr_idx, &ctx)) {
4108 			host = ctx.line + ctx.val;
4109 			hostlen = ctx.vlen;
4110 		}
4111 
4112 		path = http_get_path(txn);
4113 		/* build message using path */
4114 		if (path) {
4115 			pathlen = req->sl.rq.u_l + (req->chn->buf->p + req->sl.rq.u) - path;
4116 			if (rule->flags & REDIRECT_FLAG_DROP_QS) {
4117 				int qs = 0;
4118 				while (qs < pathlen) {
4119 					if (path[qs] == '?') {
4120 						pathlen = qs;
4121 						break;
4122 					}
4123 					qs++;
4124 				}
4125 			}
4126 		} else {
4127 			path = "/";
4128 			pathlen = 1;
4129 		}
4130 
4131 		if (rule->rdr_str) { /* this is an old "redirect" rule */
4132 			/* check if we can add scheme + "://" + host + path */
4133 			if (chunk->len + rule->rdr_len + 3 + hostlen + pathlen > chunk->size - 4)
4134 				goto leave;
4135 
4136 			/* add scheme */
4137 			memcpy(chunk->str + chunk->len, rule->rdr_str, rule->rdr_len);
4138 			chunk->len += rule->rdr_len;
4139 		}
4140 		else {
4141 			/* add scheme with executing log format */
4142 			chunk->len += build_logline(s, chunk->str + chunk->len, chunk->size - chunk->len, &rule->rdr_fmt);
4143 
4144 			/* check if we can add scheme + "://" + host + path */
4145 			if (chunk->len + 3 + hostlen + pathlen > chunk->size - 4)
4146 				goto leave;
4147 		}
4148 		/* add "://" */
4149 		memcpy(chunk->str + chunk->len, "://", 3);
4150 		chunk->len += 3;
4151 
4152 		/* add host */
4153 		memcpy(chunk->str + chunk->len, host, hostlen);
4154 		chunk->len += hostlen;
4155 
4156 		/* add path */
4157 		memcpy(chunk->str + chunk->len, path, pathlen);
4158 		chunk->len += pathlen;
4159 
4160 		/* append a slash at the end of the location if needed and missing */
4161 		if (chunk->len && chunk->str[chunk->len - 1] != '/' &&
4162 		    (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) {
4163 			if (chunk->len > chunk->size - 5)
4164 				goto leave;
4165 			chunk->str[chunk->len] = '/';
4166 			chunk->len++;
4167 		}
4168 
4169 		break;
4170 	}
4171 	case REDIRECT_TYPE_PREFIX: {
4172 		const char *path;
4173 		int pathlen;
4174 
4175 		path = http_get_path(txn);
4176 		/* build message using path */
4177 		if (path) {
4178 			pathlen = req->sl.rq.u_l + (req->chn->buf->p + req->sl.rq.u) - path;
4179 			if (rule->flags & REDIRECT_FLAG_DROP_QS) {
4180 				int qs = 0;
4181 				while (qs < pathlen) {
4182 					if (path[qs] == '?') {
4183 						pathlen = qs;
4184 						break;
4185 					}
4186 					qs++;
4187 				}
4188 			}
4189 		} else {
4190 			path = "/";
4191 			pathlen = 1;
4192 		}
4193 
4194 		if (rule->rdr_str) { /* this is an old "redirect" rule */
4195 			if (chunk->len + rule->rdr_len + pathlen > chunk->size - 4)
4196 				goto leave;
4197 
4198 			/* add prefix. Note that if prefix == "/", we don't want to
4199 			 * add anything, otherwise it makes it hard for the user to
4200 			 * configure a self-redirection.
4201 			 */
4202 			if (rule->rdr_len != 1 || *rule->rdr_str != '/') {
4203 				memcpy(chunk->str + chunk->len, rule->rdr_str, rule->rdr_len);
4204 				chunk->len += rule->rdr_len;
4205 			}
4206 		}
4207 		else {
4208 			/* add prefix with executing log format */
4209 			chunk->len += build_logline(s, chunk->str + chunk->len, chunk->size - chunk->len, &rule->rdr_fmt);
4210 
4211 			/* Check length */
4212 			if (chunk->len + pathlen > chunk->size - 4)
4213 				goto leave;
4214 		}
4215 
4216 		/* add path */
4217 		memcpy(chunk->str + chunk->len, path, pathlen);
4218 		chunk->len += pathlen;
4219 
4220 		/* append a slash at the end of the location if needed and missing */
4221 		if (chunk->len && chunk->str[chunk->len - 1] != '/' &&
4222 		    (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) {
4223 			if (chunk->len > chunk->size - 5)
4224 				goto leave;
4225 			chunk->str[chunk->len] = '/';
4226 			chunk->len++;
4227 		}
4228 
4229 		break;
4230 	}
4231 	case REDIRECT_TYPE_LOCATION:
4232 	default:
4233 		if (rule->rdr_str) { /* this is an old "redirect" rule */
4234 			if (chunk->len + rule->rdr_len > chunk->size - 4)
4235 				goto leave;
4236 
4237 			/* add location */
4238 			memcpy(chunk->str + chunk->len, rule->rdr_str, rule->rdr_len);
4239 			chunk->len += rule->rdr_len;
4240 		}
4241 		else {
4242 			/* add location with executing log format */
4243 			chunk->len += build_logline(s, chunk->str + chunk->len, chunk->size - chunk->len, &rule->rdr_fmt);
4244 
4245 			/* Check left length */
4246 			if (chunk->len > chunk->size - 4)
4247 				goto leave;
4248 		}
4249 		break;
4250 	}
4251 
4252 	if (rule->cookie_len) {
4253 		memcpy(chunk->str + chunk->len, "\r\nSet-Cookie: ", 14);
4254 		chunk->len += 14;
4255 		memcpy(chunk->str + chunk->len, rule->cookie_str, rule->cookie_len);
4256 		chunk->len += rule->cookie_len;
4257 	}
4258 
4259 	/* add end of headers and the keep-alive/close status. */
4260 	txn->status = rule->code;
4261 
4262 	if ((req->flags & HTTP_MSGF_XFER_LEN) &&
4263 	    ((!(req->flags & HTTP_MSGF_TE_CHNK) && !req->body_len) || (req->msg_state == HTTP_MSG_DONE)) &&
4264 	    ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL ||
4265 	     (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) {
4266 		/* keep-alive possible */
4267 		if (!(req->flags & HTTP_MSGF_VER_11)) {
4268 			if (unlikely(txn->flags & TX_USE_PX_CONN)) {
4269 				memcpy(chunk->str + chunk->len, "\r\nProxy-Connection: keep-alive", 30);
4270 				chunk->len += 30;
4271 			} else {
4272 				memcpy(chunk->str + chunk->len, "\r\nConnection: keep-alive", 24);
4273 				chunk->len += 24;
4274 			}
4275 		}
4276 		memcpy(chunk->str + chunk->len, "\r\n\r\n", 4);
4277 		chunk->len += 4;
4278 		FLT_STRM_CB(s, flt_http_reply(s, txn->status, chunk));
4279 		bo_inject(res->chn, chunk->str, chunk->len);
4280 		/* "eat" the request */
4281 		bi_fast_delete(req->chn->buf, req->sov);
4282 		req->next -= req->sov;
4283 		req->sov = 0;
4284 		s->req.analysers = AN_REQ_HTTP_XFER_BODY | (s->req.analysers & AN_REQ_FLT_END);
4285 		s->res.analysers = AN_RES_HTTP_XFER_BODY | (s->res.analysers & AN_RES_FLT_END);
4286 		req->msg_state = HTTP_MSG_CLOSED;
4287 		res->msg_state = HTTP_MSG_DONE;
4288 		/* Trim any possible response */
4289 		res->chn->buf->i = 0;
4290 		res->next = res->sov = 0;
4291 		/* let the server side turn to SI_ST_CLO */
4292 		channel_shutw_now(req->chn);
4293 		channel_dont_connect(req->chn);
4294 
4295 		if (rule->flags & REDIRECT_FLAG_FROM_REQ) {
4296 			/* let's log the request time */
4297 			s->logs.tv_request = now;
4298 		}
4299 	} else {
4300 		/* keep-alive not possible */
4301 		if (unlikely(txn->flags & TX_USE_PX_CONN)) {
4302 			memcpy(chunk->str + chunk->len, "\r\nProxy-Connection: close\r\n\r\n", 29);
4303 			chunk->len += 29;
4304 		} else {
4305 			memcpy(chunk->str + chunk->len, "\r\nConnection: close\r\n\r\n", 23);
4306 			chunk->len += 23;
4307 		}
4308 		http_reply_and_close(s, txn->status, chunk);
4309 
4310 		if (rule->flags & REDIRECT_FLAG_FROM_REQ) {
4311 			/* let's log the request time */
4312 			s->logs.tv_request = now;
4313 			req->chn->analysers &= AN_REQ_FLT_END;
4314 			if (s->sess->fe == s->be) /* report it if the request was intercepted by the frontend */
4315 				s->sess->fe->fe_counters.intercepted_req++;
4316 
4317 		}
4318 	}
4319 
4320 	if (!(s->flags & SF_ERR_MASK))
4321 		s->flags |= SF_ERR_LOCAL;
4322 	if (!(s->flags & SF_FINST_MASK))
4323 		s->flags |= ((rule->flags & REDIRECT_FLAG_FROM_REQ) ? SF_FINST_R : SF_FINST_H);
4324 
4325 	ret = 1;
4326  leave:
4327 	free_trash_chunk(chunk);
4328 	return ret;
4329 }
4330 
4331 /* This stream analyser runs all HTTP request processing which is common to
4332  * frontends and backends, which means blocking ACLs, filters, connection-close,
4333  * reqadd, stats and redirects. This is performed for the designated proxy.
4334  * It returns 1 if the processing can continue on next analysers, or zero if it
4335  * either needs more data or wants to immediately abort the request (eg: deny,
4336  * error, ...).
4337  */
http_process_req_common(struct stream * s,struct channel * req,int an_bit,struct proxy * px)4338 int http_process_req_common(struct stream *s, struct channel *req, int an_bit, struct proxy *px)
4339 {
4340 	struct session *sess = s->sess;
4341 	struct http_txn *txn = s->txn;
4342 	struct http_msg *msg = &txn->req;
4343 	struct redirect_rule *rule;
4344 	struct cond_wordlist *wl;
4345 	enum rule_result verdict;
4346 	int deny_status = HTTP_ERR_403;
4347 
4348 	if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
4349 		/* we need more data */
4350 		goto return_prx_yield;
4351 	}
4352 
4353 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
4354 		now_ms, __FUNCTION__,
4355 		s,
4356 		req,
4357 		req->rex, req->wex,
4358 		req->flags,
4359 		req->buf->i,
4360 		req->analysers);
4361 
4362 	/* just in case we have some per-backend tracking. Only called the first
4363 	 * execution of the analyser. */
4364 	if (!s->current_rule || s->current_rule_list != &px->http_req_rules)
4365 		stream_inc_be_http_req_ctr(s);
4366 
4367 	/* evaluate http-request rules */
4368 	if (!LIST_ISEMPTY(&px->http_req_rules)) {
4369 		verdict = http_req_get_intercept_rule(px, &px->http_req_rules, s, &deny_status);
4370 
4371 		switch (verdict) {
4372 		case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */
4373 			goto return_prx_yield;
4374 
4375 		case HTTP_RULE_RES_CONT:
4376 		case HTTP_RULE_RES_STOP: /* nothing to do */
4377 			break;
4378 
4379 		case HTTP_RULE_RES_DENY: /* deny or tarpit */
4380 			if (txn->flags & TX_CLTARPIT)
4381 				goto tarpit;
4382 			goto deny;
4383 
4384 		case HTTP_RULE_RES_ABRT: /* abort request, response already sent. Eg: auth */
4385 			goto return_prx_cond;
4386 
4387 		case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */
4388 			goto done;
4389 
4390 		case HTTP_RULE_RES_BADREQ: /* failed with a bad request */
4391 			goto return_bad_req;
4392 		}
4393 	}
4394 
4395 	/* OK at this stage, we know that the request was accepted according to
4396 	 * the http-request rules, we can check for the stats. Note that the
4397 	 * URI is detected *before* the req* rules in order not to be affected
4398 	 * by a possible reqrep, while they are processed *after* so that a
4399 	 * reqdeny can still block them. This clearly needs to change in 1.6!
4400 	 */
4401 	if (stats_check_uri(&s->si[1], txn, px)) {
4402 		s->target = &http_stats_applet.obj_type;
4403 		if (unlikely(!stream_int_register_handler(&s->si[1], objt_applet(s->target)))) {
4404 			txn->status = 500;
4405 			s->logs.tv_request = now;
4406 			http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_500));
4407 
4408 			if (!(s->flags & SF_ERR_MASK))
4409 				s->flags |= SF_ERR_RESOURCE;
4410 			goto return_prx_cond;
4411 		}
4412 
4413 		/* parse the whole stats request and extract the relevant information */
4414 		http_handle_stats(s, req);
4415 		verdict = http_req_get_intercept_rule(px, &px->uri_auth->http_req_rules, s, &deny_status);
4416 		/* not all actions implemented: deny, allow, auth */
4417 
4418 		if (verdict == HTTP_RULE_RES_DENY) /* stats http-request deny */
4419 			goto deny;
4420 
4421 		if (verdict == HTTP_RULE_RES_ABRT) /* stats auth / stats http-request auth */
4422 			goto return_prx_cond;
4423 	}
4424 
4425 	/* evaluate the req* rules except reqadd */
4426 	if (px->req_exp != NULL) {
4427 		if (apply_filters_to_request(s, req, px) < 0)
4428 			goto return_bad_req;
4429 
4430 		if (txn->flags & TX_CLDENY)
4431 			goto deny;
4432 
4433 		if (txn->flags & TX_CLTARPIT)
4434 			goto tarpit;
4435 	}
4436 
4437 	/* add request headers from the rule sets in the same order */
4438 	list_for_each_entry(wl, &px->req_add, list) {
4439 		if (wl->cond) {
4440 			int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
4441 			ret = acl_pass(ret);
4442 			if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS)
4443 				ret = !ret;
4444 			if (!ret)
4445 				continue;
4446 		}
4447 
4448 		if (unlikely(http_header_add_tail(&txn->req, &txn->hdr_idx, wl->s) < 0))
4449 			goto return_bad_req;
4450 	}
4451 
4452 
4453 	/* Proceed with the stats now. */
4454 	if (unlikely(objt_applet(s->target) == &http_stats_applet)) {
4455 		/* process the stats request now */
4456 		if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
4457 			sess->fe->fe_counters.intercepted_req++;
4458 
4459 		if (!(s->flags & SF_ERR_MASK))      // this is not really an error but it is
4460 			s->flags |= SF_ERR_LOCAL;   // to mark that it comes from the proxy
4461 		if (!(s->flags & SF_FINST_MASK))
4462 			s->flags |= SF_FINST_R;
4463 
4464 		/* enable the minimally required analyzers to handle keep-alive and compression on the HTTP response */
4465 		req->analysers &= (AN_REQ_HTTP_BODY | AN_REQ_FLT_HTTP_HDRS | AN_REQ_FLT_END);
4466 		req->analysers &= ~AN_REQ_FLT_XFER_DATA;
4467 		req->analysers |= AN_REQ_HTTP_XFER_BODY;
4468 		goto done;
4469 	}
4470 
4471 	/* check whether we have some ACLs set to redirect this request */
4472 	list_for_each_entry(rule, &px->redirect_rules, list) {
4473 		if (rule->cond) {
4474 			int ret;
4475 
4476 			ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
4477 			ret = acl_pass(ret);
4478 			if (rule->cond->pol == ACL_COND_UNLESS)
4479 				ret = !ret;
4480 			if (!ret)
4481 				continue;
4482 		}
4483 		if (!http_apply_redirect_rule(rule, s, txn))
4484 			goto return_bad_req;
4485 		goto done;
4486 	}
4487 
4488 	/* POST requests may be accompanied with an "Expect: 100-Continue" header.
4489 	 * If this happens, then the data will not come immediately, so we must
4490 	 * send all what we have without waiting. Note that due to the small gain
4491 	 * in waiting for the body of the request, it's easier to simply put the
4492 	 * CF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove
4493 	 * itself once used.
4494 	 */
4495 	req->flags |= CF_SEND_DONTWAIT;
4496 
4497  done:	/* done with this analyser, continue with next ones that the calling
4498 	 * points will have set, if any.
4499 	 */
4500 	req->analyse_exp = TICK_ETERNITY;
4501  done_without_exp: /* done with this analyser, but dont reset the analyse_exp. */
4502 	req->analysers &= ~an_bit;
4503 	return 1;
4504 
4505  tarpit:
4506 	/* Allow cookie logging
4507 	 */
4508 	if (s->be->cookie_name || sess->fe->capture_name)
4509 		manage_client_side_cookies(s, req);
4510 
4511 	/* When a connection is tarpitted, we use the tarpit timeout,
4512 	 * which may be the same as the connect timeout if unspecified.
4513 	 * If unset, then set it to zero because we really want it to
4514 	 * eventually expire. We build the tarpit as an analyser.
4515 	 */
4516 	channel_erase(&s->req);
4517 
4518 	/* wipe the request out so that we can drop the connection early
4519 	 * if the client closes first.
4520 	 */
4521 	channel_dont_connect(req);
4522 
4523 	req->analysers &= AN_REQ_FLT_END; /* remove switching rules etc... */
4524 	req->analysers |= AN_REQ_HTTP_TARPIT;
4525 	req->analyse_exp = tick_add_ifset(now_ms,  s->be->timeout.tarpit);
4526 	if (!req->analyse_exp)
4527 		req->analyse_exp = tick_add(now_ms, 0);
4528 	stream_inc_http_err_ctr(s);
4529 	sess->fe->fe_counters.denied_req++;
4530 	if (sess->fe != s->be)
4531 		s->be->be_counters.denied_req++;
4532 	if (sess->listener->counters)
4533 		sess->listener->counters->denied_req++;
4534 	goto done_without_exp;
4535 
4536  deny:	/* this request was blocked (denied) */
4537 
4538 	/* Allow cookie logging
4539 	 */
4540 	if (s->be->cookie_name || sess->fe->capture_name)
4541 		manage_client_side_cookies(s, req);
4542 
4543 	txn->flags |= TX_CLDENY;
4544 	txn->status = http_err_codes[deny_status];
4545 	s->logs.tv_request = now;
4546 	http_reply_and_close(s, txn->status, http_error_message(s, deny_status));
4547 	stream_inc_http_err_ctr(s);
4548 	sess->fe->fe_counters.denied_req++;
4549 	if (sess->fe != s->be)
4550 		s->be->be_counters.denied_req++;
4551 	if (sess->listener->counters)
4552 		sess->listener->counters->denied_req++;
4553 	goto return_prx_cond;
4554 
4555  return_bad_req:
4556 	/* We centralize bad requests processing here */
4557 	if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
4558 		/* we detected a parsing error. We want to archive this request
4559 		 * in the dedicated proxy area for later troubleshooting.
4560 		 */
4561 		http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
4562 	}
4563 
4564 	txn->req.err_state = txn->req.msg_state;
4565 	txn->req.msg_state = HTTP_MSG_ERROR;
4566 	txn->status = 400;
4567 	http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400));
4568 
4569 	sess->fe->fe_counters.failed_req++;
4570 	if (sess->listener->counters)
4571 		sess->listener->counters->failed_req++;
4572 
4573  return_prx_cond:
4574 	if (!(s->flags & SF_ERR_MASK))
4575 		s->flags |= SF_ERR_PRXCOND;
4576 	if (!(s->flags & SF_FINST_MASK))
4577 		s->flags |= SF_FINST_R;
4578 
4579 	req->analysers &= AN_REQ_FLT_END;
4580 	req->analyse_exp = TICK_ETERNITY;
4581 	return 0;
4582 
4583  return_prx_yield:
4584 	channel_dont_connect(req);
4585 	return 0;
4586 }
4587 
4588 /* This function performs all the processing enabled for the current request.
4589  * It returns 1 if the processing can continue on next analysers, or zero if it
4590  * needs more data, encounters an error, or wants to immediately abort the
4591  * request. It relies on buffers flags, and updates s->req.analysers.
4592  */
http_process_request(struct stream * s,struct channel * req,int an_bit)4593 int http_process_request(struct stream *s, struct channel *req, int an_bit)
4594 {
4595 	struct session *sess = s->sess;
4596 	struct http_txn *txn = s->txn;
4597 	struct http_msg *msg = &txn->req;
4598 	struct connection *cli_conn = objt_conn(strm_sess(s)->origin);
4599 
4600 	if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
4601 		/* we need more data */
4602 		channel_dont_connect(req);
4603 		return 0;
4604 	}
4605 
4606 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
4607 		now_ms, __FUNCTION__,
4608 		s,
4609 		req,
4610 		req->rex, req->wex,
4611 		req->flags,
4612 		req->buf->i,
4613 		req->analysers);
4614 
4615 	/*
4616 	 * Right now, we know that we have processed the entire headers
4617 	 * and that unwanted requests have been filtered out. We can do
4618 	 * whatever we want with the remaining request. Also, now we
4619 	 * may have separate values for ->fe, ->be.
4620 	 */
4621 
4622 	/*
4623 	 * If HTTP PROXY is set we simply get remote server address parsing
4624 	 * incoming request. Note that this requires that a connection is
4625 	 * allocated on the server side.
4626 	 */
4627 	if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SF_ADDR_SET)) {
4628 		struct connection *conn;
4629 		char *path;
4630 
4631 		/* Note that for now we don't reuse existing proxy connections */
4632 		if (unlikely((conn = si_alloc_conn(&s->si[1])) == NULL)) {
4633 			txn->req.err_state = txn->req.msg_state;
4634 			txn->req.msg_state = HTTP_MSG_ERROR;
4635 			txn->status = 500;
4636 			req->analysers &= AN_REQ_FLT_END;
4637 			http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_500));
4638 
4639 			if (!(s->flags & SF_ERR_MASK))
4640 				s->flags |= SF_ERR_RESOURCE;
4641 			if (!(s->flags & SF_FINST_MASK))
4642 				s->flags |= SF_FINST_R;
4643 
4644 			return 0;
4645 		}
4646 
4647 		path = http_get_path(txn);
4648 		if (url2sa(req->buf->p + msg->sl.rq.u,
4649 			   path ? path - (req->buf->p + msg->sl.rq.u) : msg->sl.rq.u_l,
4650 			   &conn->addr.to, NULL) == -1)
4651 			goto return_bad_req;
4652 
4653 		/* if the path was found, we have to remove everything between
4654 		 * req->buf->p + msg->sl.rq.u and path (excluded). If it was not
4655 		 * found, we need to replace from req->buf->p + msg->sl.rq.u for
4656 		 * u_l characters by a single "/".
4657 		 */
4658 		if (path) {
4659 			char *cur_ptr = req->buf->p;
4660 			char *cur_end = cur_ptr + txn->req.sl.rq.l;
4661 			int delta;
4662 
4663 			delta = buffer_replace2(req->buf, req->buf->p + msg->sl.rq.u, path, NULL, 0);
4664 			http_msg_move_end(&txn->req, delta);
4665 			cur_end += delta;
4666 			if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH,  cur_ptr, cur_end + 1, NULL, NULL) == NULL)
4667 				goto return_bad_req;
4668 		}
4669 		else {
4670 			char *cur_ptr = req->buf->p;
4671 			char *cur_end = cur_ptr + txn->req.sl.rq.l;
4672 			int delta;
4673 
4674 			delta = buffer_replace2(req->buf, req->buf->p + msg->sl.rq.u,
4675 						req->buf->p + msg->sl.rq.u + msg->sl.rq.u_l, "/", 1);
4676 			http_msg_move_end(&txn->req, delta);
4677 			cur_end += delta;
4678 			if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH,  cur_ptr, cur_end + 1, NULL, NULL) == NULL)
4679 				goto return_bad_req;
4680 		}
4681 	}
4682 
4683 	/*
4684 	 * 7: Now we can work with the cookies.
4685 	 * Note that doing so might move headers in the request, but
4686 	 * the fields will stay coherent and the URI will not move.
4687 	 * This should only be performed in the backend.
4688 	 */
4689 	if (s->be->cookie_name || sess->fe->capture_name)
4690 		manage_client_side_cookies(s, req);
4691 
4692 	/* add unique-id if "header-unique-id" is specified */
4693 
4694 	if (!LIST_ISEMPTY(&sess->fe->format_unique_id) && !s->unique_id) {
4695 		if ((s->unique_id = pool_alloc2(pool2_uniqueid)) == NULL)
4696 			goto return_bad_req;
4697 		s->unique_id[0] = '\0';
4698 		build_logline(s, s->unique_id, UNIQUEID_LEN, &sess->fe->format_unique_id);
4699 	}
4700 
4701 	if (sess->fe->header_unique_id && s->unique_id) {
4702 		chunk_printf(&trash, "%s: %s", sess->fe->header_unique_id, s->unique_id);
4703 		if (trash.len < 0)
4704 			goto return_bad_req;
4705 		if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, trash.len) < 0))
4706 		   goto return_bad_req;
4707 	}
4708 
4709 	/*
4710 	 * 9: add X-Forwarded-For if either the frontend or the backend
4711 	 * asks for it.
4712 	 */
4713 	if ((sess->fe->options | s->be->options) & PR_O_FWDFOR) {
4714 		struct hdr_ctx ctx = { .idx = 0 };
4715 		if (!((sess->fe->options | s->be->options) & PR_O_FF_ALWAYS) &&
4716 			http_find_header2(s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_name : sess->fe->fwdfor_hdr_name,
4717 			                  s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_len : sess->fe->fwdfor_hdr_len,
4718 			                  req->buf->p, &txn->hdr_idx, &ctx)) {
4719 			/* The header is set to be added only if none is present
4720 			 * and we found it, so don't do anything.
4721 			 */
4722 		}
4723 		else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) {
4724 			/* Add an X-Forwarded-For header unless the source IP is
4725 			 * in the 'except' network range.
4726 			 */
4727 			if ((!sess->fe->except_mask.s_addr ||
4728 			     (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & sess->fe->except_mask.s_addr)
4729 			     != sess->fe->except_net.s_addr) &&
4730 			    (!s->be->except_mask.s_addr ||
4731 			     (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & s->be->except_mask.s_addr)
4732 			     != s->be->except_net.s_addr)) {
4733 				int len;
4734 				unsigned char *pn;
4735 				pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr;
4736 
4737 				/* Note: we rely on the backend to get the header name to be used for
4738 				 * x-forwarded-for, because the header is really meant for the backends.
4739 				 * However, if the backend did not specify any option, we have to rely
4740 				 * on the frontend's header name.
4741 				 */
4742 				if (s->be->fwdfor_hdr_len) {
4743 					len = s->be->fwdfor_hdr_len;
4744 					memcpy(trash.str, s->be->fwdfor_hdr_name, len);
4745 				} else {
4746 					len = sess->fe->fwdfor_hdr_len;
4747 					memcpy(trash.str, sess->fe->fwdfor_hdr_name, len);
4748 				}
4749 				len += snprintf(trash.str + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
4750 
4751 				if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0))
4752 					goto return_bad_req;
4753 			}
4754 		}
4755 		else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET6) {
4756 			/* FIXME: for the sake of completeness, we should also support
4757 			 * 'except' here, although it is mostly useless in this case.
4758 			 */
4759 			int len;
4760 			char pn[INET6_ADDRSTRLEN];
4761 			inet_ntop(AF_INET6,
4762 				  (const void *)&((struct sockaddr_in6 *)(&cli_conn->addr.from))->sin6_addr,
4763 				  pn, sizeof(pn));
4764 
4765 			/* Note: we rely on the backend to get the header name to be used for
4766 			 * x-forwarded-for, because the header is really meant for the backends.
4767 			 * However, if the backend did not specify any option, we have to rely
4768 			 * on the frontend's header name.
4769 			 */
4770 			if (s->be->fwdfor_hdr_len) {
4771 				len = s->be->fwdfor_hdr_len;
4772 				memcpy(trash.str, s->be->fwdfor_hdr_name, len);
4773 			} else {
4774 				len = sess->fe->fwdfor_hdr_len;
4775 				memcpy(trash.str, sess->fe->fwdfor_hdr_name, len);
4776 			}
4777 			len += snprintf(trash.str + len, trash.size - len, ": %s", pn);
4778 
4779 			if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0))
4780 				goto return_bad_req;
4781 		}
4782 	}
4783 
4784 	/*
4785 	 * 10: add X-Original-To if either the frontend or the backend
4786 	 * asks for it.
4787 	 */
4788 	if ((sess->fe->options | s->be->options) & PR_O_ORGTO) {
4789 
4790 		/* FIXME: don't know if IPv6 can handle that case too. */
4791 		if (cli_conn && cli_conn->addr.to.ss_family == AF_INET) {
4792 			/* Add an X-Original-To header unless the destination IP is
4793 			 * in the 'except' network range.
4794 			 */
4795 			conn_get_to_addr(cli_conn);
4796 
4797 			if (cli_conn->addr.to.ss_family == AF_INET &&
4798 			    ((!sess->fe->except_mask_to.s_addr ||
4799 			      (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & sess->fe->except_mask_to.s_addr)
4800 			      != sess->fe->except_to.s_addr) &&
4801 			     (!s->be->except_mask_to.s_addr ||
4802 			      (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & s->be->except_mask_to.s_addr)
4803 			      != s->be->except_to.s_addr))) {
4804 				int len;
4805 				unsigned char *pn;
4806 				pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr;
4807 
4808 				/* Note: we rely on the backend to get the header name to be used for
4809 				 * x-original-to, because the header is really meant for the backends.
4810 				 * However, if the backend did not specify any option, we have to rely
4811 				 * on the frontend's header name.
4812 				 */
4813 				if (s->be->orgto_hdr_len) {
4814 					len = s->be->orgto_hdr_len;
4815 					memcpy(trash.str, s->be->orgto_hdr_name, len);
4816 				} else {
4817 					len = sess->fe->orgto_hdr_len;
4818 					memcpy(trash.str, sess->fe->orgto_hdr_name, len);
4819 				}
4820 				len += snprintf(trash.str + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
4821 
4822 				if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0))
4823 					goto return_bad_req;
4824 			}
4825 		}
4826 	}
4827 
4828 	/* 11: add "Connection: close" or "Connection: keep-alive" if needed and not yet set.
4829 	 * If an "Upgrade" token is found, the header is left untouched in order not to have
4830 	 * to deal with some servers bugs : some of them fail an Upgrade if anything but
4831 	 * "Upgrade" is present in the Connection header.
4832 	 */
4833 	if (!(txn->flags & TX_HDR_CONN_UPG) &&
4834 	    (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) ||
4835 	     ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
4836 	      (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
4837 		unsigned int want_flags = 0;
4838 
4839 		if (msg->flags & HTTP_MSGF_VER_11) {
4840 			if (((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL ||
4841 			     ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
4842 			      (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)) &&
4843 			    !((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA))
4844 				want_flags |= TX_CON_CLO_SET;
4845 		} else {
4846 			if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL &&
4847 			     ((sess->fe->options & PR_O_HTTP_MODE) != PR_O_HTTP_PCL &&
4848 			      (s->be->options & PR_O_HTTP_MODE) != PR_O_HTTP_PCL)) ||
4849 			    ((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA))
4850 				want_flags |= TX_CON_KAL_SET;
4851 		}
4852 
4853 		if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
4854 			http_change_connection_header(txn, msg, want_flags);
4855 	}
4856 
4857 
4858 	/* If we have no server assigned yet and we're balancing on url_param
4859 	 * with a POST request, we may be interested in checking the body for
4860 	 * that parameter. This will be done in another analyser.
4861 	 */
4862 	if (!(s->flags & (SF_ASSIGNED|SF_DIRECT)) &&
4863 	    s->txn->meth == HTTP_METH_POST &&
4864 	    (s->be->lbprm.algo & BE_LB_ALGO) == BE_LB_ALGO_PH &&
4865 	    (msg->flags & (HTTP_MSGF_CNT_LEN|HTTP_MSGF_TE_CHNK))) {
4866 		channel_dont_connect(req);
4867 		req->analysers |= AN_REQ_HTTP_BODY;
4868 	}
4869 
4870 	if (msg->flags & HTTP_MSGF_XFER_LEN) {
4871 		req->analysers &= ~AN_REQ_FLT_XFER_DATA;
4872 		req->analysers |= AN_REQ_HTTP_XFER_BODY;
4873 #ifdef TCP_QUICKACK
4874 		/* We expect some data from the client. Unless we know for sure
4875 		 * we already have a full request, we have to re-enable quick-ack
4876 		 * in case we previously disabled it, otherwise we might cause
4877 		 * the client to delay further data.
4878 		 */
4879 		if ((sess->listener->options & LI_O_NOQUICKACK) &&
4880 		    cli_conn && conn_ctrl_ready(cli_conn) &&
4881 		    ((msg->flags & HTTP_MSGF_TE_CHNK) ||
4882 		     (msg->body_len > req->buf->i - txn->req.eoh - 2)))
4883 			setsockopt(cli_conn->t.sock.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));
4884 #endif
4885 	}
4886 
4887 	/*************************************************************
4888 	 * OK, that's finished for the headers. We have done what we *
4889 	 * could. Let's switch to the DATA state.                    *
4890 	 ************************************************************/
4891 	req->analyse_exp = TICK_ETERNITY;
4892 	req->analysers &= ~an_bit;
4893 
4894 	/* if the server closes the connection, we want to immediately react
4895 	 * and close the socket to save packets and syscalls.
4896 	 */
4897 	if (!(req->analysers & AN_REQ_HTTP_XFER_BODY))
4898 		s->si[1].flags |= SI_FL_NOHALF;
4899 
4900 	s->logs.tv_request = now;
4901 	/* OK let's go on with the BODY now */
4902 	return 1;
4903 
4904  return_bad_req: /* let's centralize all bad requests */
4905 	if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
4906 		/* we detected a parsing error. We want to archive this request
4907 		 * in the dedicated proxy area for later troubleshooting.
4908 		 */
4909 		http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
4910 	}
4911 
4912 	txn->req.err_state = txn->req.msg_state;
4913 	txn->req.msg_state = HTTP_MSG_ERROR;
4914 	txn->status = 400;
4915 	req->analysers &= AN_REQ_FLT_END;
4916 	http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400));
4917 
4918 	sess->fe->fe_counters.failed_req++;
4919 	if (sess->listener->counters)
4920 		sess->listener->counters->failed_req++;
4921 
4922 	if (!(s->flags & SF_ERR_MASK))
4923 		s->flags |= SF_ERR_PRXCOND;
4924 	if (!(s->flags & SF_FINST_MASK))
4925 		s->flags |= SF_FINST_R;
4926 	return 0;
4927 }
4928 
4929 /* This function is an analyser which processes the HTTP tarpit. It always
4930  * returns zero, at the beginning because it prevents any other processing
4931  * from occurring, and at the end because it terminates the request.
4932  */
http_process_tarpit(struct stream * s,struct channel * req,int an_bit)4933 int http_process_tarpit(struct stream *s, struct channel *req, int an_bit)
4934 {
4935 	struct http_txn *txn = s->txn;
4936 
4937 	/* This connection is being tarpitted. The CLIENT side has
4938 	 * already set the connect expiration date to the right
4939 	 * timeout. We just have to check that the client is still
4940 	 * there and that the timeout has not expired.
4941 	 */
4942 	channel_dont_connect(req);
4943 	if ((req->flags & (CF_SHUTR|CF_READ_ERROR)) == 0 &&
4944 	    !tick_is_expired(req->analyse_exp, now_ms))
4945 		return 0;
4946 
4947 	/* We will set the queue timer to the time spent, just for
4948 	 * logging purposes. We fake a 500 server error, so that the
4949 	 * attacker will not suspect his connection has been tarpitted.
4950 	 * It will not cause trouble to the logs because we can exclude
4951 	 * the tarpitted connections by filtering on the 'PT' status flags.
4952 	 */
4953 	s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
4954 
4955 	txn->status = 500;
4956 	if (!(req->flags & CF_READ_ERROR))
4957 		http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_500));
4958 
4959 	req->analysers &= AN_REQ_FLT_END;
4960 	req->analyse_exp = TICK_ETERNITY;
4961 
4962 	if (!(s->flags & SF_ERR_MASK))
4963 		s->flags |= SF_ERR_PRXCOND;
4964 	if (!(s->flags & SF_FINST_MASK))
4965 		s->flags |= SF_FINST_T;
4966 	return 0;
4967 }
4968 
4969 /* This function is an analyser which waits for the HTTP request body. It waits
4970  * for either the buffer to be full, or the full advertised contents to have
4971  * reached the buffer. It must only be called after the standard HTTP request
4972  * processing has occurred, because it expects the request to be parsed and will
4973  * look for the Expect header. It may send a 100-Continue interim response. It
4974  * takes in input any state starting from HTTP_MSG_BODY and leaves with one of
4975  * HTTP_MSG_CHK_SIZE, HTTP_MSG_DATA or HTTP_MSG_TRAILERS. It returns zero if it
4976  * needs to read more data, or 1 once it has completed its analysis.
4977  */
http_wait_for_request_body(struct stream * s,struct channel * req,int an_bit)4978 int http_wait_for_request_body(struct stream *s, struct channel *req, int an_bit)
4979 {
4980 	struct session *sess = s->sess;
4981 	struct http_txn *txn = s->txn;
4982 	struct http_msg *msg = &s->txn->req;
4983 
4984 	/* We have to parse the HTTP request body to find any required data.
4985 	 * "balance url_param check_post" should have been the only way to get
4986 	 * into this. We were brought here after HTTP header analysis, so all
4987 	 * related structures are ready.
4988 	 */
4989 
4990 	if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) {
4991 		/* This is the first call */
4992 		if (msg->msg_state < HTTP_MSG_BODY)
4993 			goto missing_data;
4994 
4995 		if (msg->msg_state < HTTP_MSG_100_SENT) {
4996 			/* If we have HTTP/1.1 and Expect: 100-continue, then we must
4997 			 * send an HTTP/1.1 100 Continue intermediate response.
4998 			 */
4999 			if (msg->flags & HTTP_MSGF_VER_11) {
5000 				struct hdr_ctx ctx;
5001 				ctx.idx = 0;
5002 				/* Expect is allowed in 1.1, look for it */
5003 				if (http_find_header2("Expect", 6, req->buf->p, &txn->hdr_idx, &ctx) &&
5004 				    unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) {
5005 					bo_inject(&s->res, http_100_chunk.str, http_100_chunk.len);
5006 					http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
5007 				}
5008 			}
5009 			msg->msg_state = HTTP_MSG_100_SENT;
5010 		}
5011 
5012 		/* we have msg->sov which points to the first byte of message body.
5013 		 * req->buf->p still points to the beginning of the message. We
5014 		 * must save the body in msg->next because it survives buffer
5015 		 * re-alignments.
5016 		 */
5017 		msg->next = msg->sov;
5018 
5019 		if (msg->flags & HTTP_MSGF_TE_CHNK)
5020 			msg->msg_state = HTTP_MSG_CHUNK_SIZE;
5021 		else
5022 			msg->msg_state = HTTP_MSG_DATA;
5023 	}
5024 
5025 	if (!(msg->flags & HTTP_MSGF_TE_CHNK)) {
5026 		/* We're in content-length mode, we just have to wait for enough data. */
5027 		if (http_body_bytes(msg) < msg->body_len)
5028 			goto missing_data;
5029 
5030 		/* OK we have everything we need now */
5031 		goto http_end;
5032 	}
5033 
5034 	/* OK here we're parsing a chunked-encoded message */
5035 
5036 	if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) {
5037 		/* read the chunk size and assign it to ->chunk_len, then
5038 		 * set ->sov and ->next to point to the body and switch to DATA or
5039 		 * TRAILERS state.
5040 		 */
5041 		int ret = http_parse_chunk_size(msg);
5042 
5043 		if (!ret)
5044 			goto missing_data;
5045 		else if (ret < 0) {
5046 			stream_inc_http_err_ctr(s);
5047 			goto return_bad_req;
5048 		}
5049 		msg->next += ret;
5050 		msg->msg_state = msg->chunk_len ? HTTP_MSG_DATA : HTTP_MSG_TRAILERS;
5051 	}
5052 
5053 	/* Now we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state.
5054 	 * We have the first data byte is in msg->sov + msg->sol. We're waiting
5055 	 * for at least a whole chunk or the whole content length bytes after
5056 	 * msg->sov + msg->sol.
5057 	 */
5058 	if (msg->msg_state == HTTP_MSG_TRAILERS)
5059 		goto http_end;
5060 
5061 	if (http_body_bytes(msg) >= msg->body_len)   /* we have enough bytes now */
5062 		goto http_end;
5063 
5064  missing_data:
5065 	/* we get here if we need to wait for more data. If the buffer is full,
5066 	 * we have the maximum we can expect.
5067 	 */
5068 	if (buffer_full(req->buf, global.tune.maxrewrite))
5069 		goto http_end;
5070 
5071 	if ((req->flags & CF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) {
5072 		txn->status = 408;
5073 		http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_408));
5074 
5075 		if (!(s->flags & SF_ERR_MASK))
5076 			s->flags |= SF_ERR_CLITO;
5077 		if (!(s->flags & SF_FINST_MASK))
5078 			s->flags |= SF_FINST_D;
5079 		goto return_err_msg;
5080 	}
5081 
5082 	/* we get here if we need to wait for more data */
5083 	if (!(req->flags & (CF_SHUTR | CF_READ_ERROR))) {
5084 		/* Not enough data. We'll re-use the http-request
5085 		 * timeout here. Ideally, we should set the timeout
5086 		 * relative to the accept() date. We just set the
5087 		 * request timeout once at the beginning of the
5088 		 * request.
5089 		 */
5090 		channel_dont_connect(req);
5091 		if (!tick_isset(req->analyse_exp))
5092 			req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
5093 		return 0;
5094 	}
5095 
5096  http_end:
5097 	/* The situation will not evolve, so let's give up on the analysis. */
5098 	s->logs.tv_request = now;  /* update the request timer to reflect full request */
5099 	req->analysers &= ~an_bit;
5100 	req->analyse_exp = TICK_ETERNITY;
5101 	return 1;
5102 
5103  return_bad_req: /* let's centralize all bad requests */
5104 	txn->req.err_state = txn->req.msg_state;
5105 	txn->req.msg_state = HTTP_MSG_ERROR;
5106 	txn->status = 400;
5107 	http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400));
5108 
5109 	if (!(s->flags & SF_ERR_MASK))
5110 		s->flags |= SF_ERR_PRXCOND;
5111 	if (!(s->flags & SF_FINST_MASK))
5112 		s->flags |= SF_FINST_R;
5113 
5114  return_err_msg:
5115 	req->analysers &= AN_REQ_FLT_END;
5116 	sess->fe->fe_counters.failed_req++;
5117 	if (sess->listener->counters)
5118 		sess->listener->counters->failed_req++;
5119 	return 0;
5120 }
5121 
5122 /* send a server's name with an outgoing request over an established connection.
5123  * Note: this function is designed to be called once the request has been scheduled
5124  * for being forwarded. This is the reason why it rewinds the buffer before
5125  * proceeding.
5126  */
http_send_name_header(struct http_txn * txn,struct proxy * be,const char * srv_name)5127 int http_send_name_header(struct http_txn *txn, struct proxy* be, const char* srv_name) {
5128 
5129 	struct hdr_ctx ctx;
5130 
5131 	char *hdr_name = be->server_id_hdr_name;
5132 	int hdr_name_len = be->server_id_hdr_len;
5133 	struct channel *chn = txn->req.chn;
5134 	char *hdr_val;
5135 	unsigned int old_o, old_i;
5136 
5137 	ctx.idx = 0;
5138 
5139 	old_o = http_hdr_rewind(&txn->req);
5140 	if (old_o) {
5141 		/* The request was already skipped, let's restore it */
5142 		b_rew(chn->buf, old_o);
5143 		txn->req.next += old_o;
5144 		txn->req.sov += old_o;
5145 	}
5146 
5147 	old_i = chn->buf->i;
5148 	while (http_find_header2(hdr_name, hdr_name_len, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
5149 		/* remove any existing values from the header */
5150 	        http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
5151 	}
5152 
5153 	/* Add the new header requested with the server value */
5154 	hdr_val = trash.str;
5155 	memcpy(hdr_val, hdr_name, hdr_name_len);
5156 	hdr_val += hdr_name_len;
5157 	*hdr_val++ = ':';
5158 	*hdr_val++ = ' ';
5159 	hdr_val += strlcpy2(hdr_val, srv_name, trash.str + trash.size - hdr_val);
5160 	http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, hdr_val - trash.str);
5161 
5162 	if (old_o) {
5163 		/* If this was a forwarded request, we must readjust the amount of
5164 		 * data to be forwarded in order to take into account the size
5165 		 * variations. Note that the current state is >= HTTP_MSG_BODY,
5166 		 * so we don't have to adjust ->sol.
5167 		 */
5168 		old_o += chn->buf->i - old_i;
5169 		b_adv(chn->buf, old_o);
5170 		txn->req.next -= old_o;
5171 		txn->req.sov  -= old_o;
5172 	}
5173 
5174 	return 0;
5175 }
5176 
5177 /* Terminate current transaction and prepare a new one. This is very tricky
5178  * right now but it works.
5179  */
http_end_txn_clean_session(struct stream * s)5180 void http_end_txn_clean_session(struct stream *s)
5181 {
5182 	int prev_status = s->txn->status;
5183 	struct proxy *fe = strm_fe(s);
5184 	struct proxy *be = s->be;
5185 	struct connection *srv_conn;
5186 	struct server *srv;
5187 	unsigned int prev_flags = s->txn->flags;
5188 
5189 	/* FIXME: We need a more portable way of releasing a backend's and a
5190 	 * server's connections. We need a safer way to reinitialize buffer
5191 	 * flags. We also need a more accurate method for computing per-request
5192 	 * data.
5193 	 */
5194 	srv_conn = objt_conn(s->si[1].end);
5195 
5196 	/* unless we're doing keep-alive, we want to quickly close the connection
5197 	 * to the server.
5198 	 */
5199 	if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) ||
5200 	    !si_conn_ready(&s->si[1])) {
5201 		s->si[1].flags |= SI_FL_NOLINGER | SI_FL_NOHALF;
5202 		si_shutr(&s->si[1]);
5203 		si_shutw(&s->si[1]);
5204 	}
5205 
5206 	if (s->flags & SF_BE_ASSIGNED) {
5207 		be->beconn--;
5208 		if (unlikely(s->srv_conn))
5209 			sess_change_server(s, NULL);
5210 	}
5211 
5212 	s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
5213 	stream_process_counters(s);
5214 
5215 	if (s->txn->status) {
5216 		int n;
5217 
5218 		n = s->txn->status / 100;
5219 		if (n < 1 || n > 5)
5220 			n = 0;
5221 
5222 		if (fe->mode == PR_MODE_HTTP) {
5223 			fe->fe_counters.p.http.rsp[n]++;
5224 		}
5225 		if ((s->flags & SF_BE_ASSIGNED) &&
5226 		    (be->mode == PR_MODE_HTTP)) {
5227 			be->be_counters.p.http.rsp[n]++;
5228 			be->be_counters.p.http.cum_req++;
5229 		}
5230 	}
5231 
5232 	/* don't count other requests' data */
5233 	s->logs.bytes_in  -= s->req.buf->i;
5234 	s->logs.bytes_out -= s->res.buf->i;
5235 
5236 	/* let's do a final log if we need it */
5237 	if (!LIST_ISEMPTY(&fe->logformat) && s->logs.logwait &&
5238 	    !(s->flags & SF_MONITOR) &&
5239 	    (!(fe->options & PR_O_NULLNOLOG) || s->req.total)) {
5240 		s->do_log(s);
5241 	}
5242 
5243 	/* stop tracking content-based counters */
5244 	stream_stop_content_counters(s);
5245 	stream_update_time_stats(s);
5246 
5247 	s->logs.accept_date = date; /* user-visible date for logging */
5248 	s->logs.tv_accept = now;  /* corrected date for internal use */
5249 	s->logs.t_handshake = 0; /* There are no handshake in keep alive connection. */
5250 	s->logs.t_idle = -1;
5251 	tv_zero(&s->logs.tv_request);
5252 	s->logs.t_queue = -1;
5253 	s->logs.t_connect = -1;
5254 	s->logs.t_data = -1;
5255 	s->logs.t_close = 0;
5256 	s->logs.prx_queue_size = 0;  /* we get the number of pending conns before us */
5257 	s->logs.srv_queue_size = 0; /* we will get this number soon */
5258 
5259 	s->logs.bytes_in = s->req.total = s->req.buf->i;
5260 	s->logs.bytes_out = s->res.total = s->res.buf->i;
5261 
5262 	if (s->pend_pos)
5263 		pendconn_free(s->pend_pos);
5264 
5265 	if (objt_server(s->target)) {
5266 		if (s->flags & SF_CURR_SESS) {
5267 			s->flags &= ~SF_CURR_SESS;
5268 			objt_server(s->target)->cur_sess--;
5269 		}
5270 		if (may_dequeue_tasks(objt_server(s->target), be))
5271 			process_srv_queue(objt_server(s->target));
5272 	}
5273 
5274 	s->target = NULL;
5275 
5276 	/* only release our endpoint if we don't intend to reuse the
5277 	 * connection.
5278 	 */
5279 	if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) ||
5280 	    !si_conn_ready(&s->si[1])) {
5281 		si_release_endpoint(&s->si[1]);
5282 		srv_conn = NULL;
5283 	}
5284 
5285 	s->si[1].state     = s->si[1].prev_state = SI_ST_INI;
5286 	s->si[1].err_type  = SI_ET_NONE;
5287 	s->si[1].conn_retries = 0;  /* used for logging too */
5288 	s->si[1].exp       = TICK_ETERNITY;
5289 	s->si[1].flags    &= SI_FL_ISBACK | SI_FL_DONT_WAKE; /* we're in the context of process_stream */
5290 	s->req.flags &= ~(CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CONNECT|CF_WRITE_ERROR|CF_STREAMER|CF_STREAMER_FAST|CF_NEVER_WAIT|CF_WAKE_CONNECT|CF_WROTE_DATA);
5291 	s->res.flags &= ~(CF_SHUTR|CF_SHUTR_NOW|CF_READ_ATTACHED|CF_READ_ERROR|CF_READ_NOEXP|CF_STREAMER|CF_STREAMER_FAST|CF_WRITE_PARTIAL|CF_NEVER_WAIT|CF_WROTE_DATA|CF_WRITE_EVENT);
5292 	s->flags &= ~(SF_DIRECT|SF_ASSIGNED|SF_ADDR_SET|SF_BE_ASSIGNED|SF_FORCE_PRST|SF_IGNORE_PRST);
5293 	s->flags &= ~(SF_CURR_SESS|SF_REDIRECTABLE|SF_SRV_REUSED);
5294 	s->flags &= ~(SF_ERR_MASK|SF_FINST_MASK|SF_REDISP);
5295 
5296 	hlua_ctx_destroy(&s->hlua);
5297 
5298 	/* cleanup and reinit capture arrays, if any */
5299 	if (s->req_cap) {
5300 		struct cap_hdr *h;
5301 		for (h = fe->req_cap; h; h = h->next)
5302 			pool_free2(h->pool, s->req_cap[h->index]);
5303 		memset(s->req_cap, 0, fe->nb_req_cap * sizeof(void *));
5304 	}
5305 
5306 	if (s->res_cap) {
5307 		struct cap_hdr *h;
5308 		for (h = fe->rsp_cap; h; h = h->next)
5309 			pool_free2(h->pool, s->res_cap[h->index]);
5310 		memset(s->res_cap, 0, fe->nb_rsp_cap * sizeof(void *));
5311 	}
5312 
5313 	s->txn->meth = 0;
5314 	http_reset_txn(s);
5315 	s->txn->flags |= TX_NOT_FIRST | TX_WAIT_NEXT_RQ;
5316 
5317 	if (prev_status == 401 || prev_status == 407) {
5318 		/* In HTTP keep-alive mode, if we receive a 401, we still have
5319 		 * a chance of being able to send the visitor again to the same
5320 		 * server over the same connection. This is required by some
5321 		 * broken protocols such as NTLM, and anyway whenever there is
5322 		 * an opportunity for sending the challenge to the proper place,
5323 		 * it's better to do it (at least it helps with debugging).
5324 		 */
5325 		s->txn->flags |= TX_PREFER_LAST;
5326 		if (srv_conn)
5327 			srv_conn->flags |= CO_FL_PRIVATE;
5328 	}
5329 
5330 	/* Never ever allow to reuse a connection from a non-reuse backend */
5331 	if (srv_conn && (be->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR)
5332 		srv_conn->flags |= CO_FL_PRIVATE;
5333 
5334 	if (fe->options2 & PR_O2_INDEPSTR)
5335 		s->si[1].flags |= SI_FL_INDEP_STR;
5336 
5337 	if (fe->options2 & PR_O2_NODELAY) {
5338 		s->req.flags |= CF_NEVER_WAIT;
5339 		s->res.flags |= CF_NEVER_WAIT;
5340 	}
5341 
5342 	/* we're removing the analysers, we MUST re-enable events detection.
5343 	 * We don't enable close on the response channel since it's either
5344 	 * already closed, or in keep-alive with an idle connection handler.
5345 	 */
5346 	channel_auto_read(&s->req);
5347 	channel_auto_close(&s->req);
5348 	channel_auto_read(&s->res);
5349 
5350 	/* we're in keep-alive with an idle connection, monitor it if not already done */
5351 	if (srv_conn && LIST_ISEMPTY(&srv_conn->list)) {
5352 		srv = objt_server(srv_conn->target);
5353 		if (!srv)
5354 			si_idle_conn(&s->si[1], NULL);
5355 		else if (srv_conn->flags & CO_FL_PRIVATE)
5356 			si_idle_conn(&s->si[1], &srv->priv_conns);
5357 		else if (prev_flags & TX_NOT_FIRST)
5358 			/* note: we check the request, not the connection, but
5359 			 * this is valid for strategies SAFE and AGGR, and in
5360 			 * case of ALWS, we don't care anyway.
5361 			 */
5362 			si_idle_conn(&s->si[1], &srv->safe_conns);
5363 		else
5364 			si_idle_conn(&s->si[1], &srv->idle_conns);
5365 	}
5366 	s->req.analysers = strm_li(s) ? strm_li(s)->analysers : 0;
5367 	s->res.analysers = 0;
5368 }
5369 
5370 
5371 /* This function updates the request state machine according to the response
5372  * state machine and buffer flags. It returns 1 if it changes anything (flag
5373  * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as
5374  * it is only used to find when a request/response couple is complete. Both
5375  * this function and its equivalent should loop until both return zero. It
5376  * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR.
5377  */
http_sync_req_state(struct stream * s)5378 int http_sync_req_state(struct stream *s)
5379 {
5380 	struct channel *chn = &s->req;
5381 	struct http_txn *txn = s->txn;
5382 	unsigned int old_flags = chn->flags;
5383 	unsigned int old_state = txn->req.msg_state;
5384 
5385 	if (unlikely(txn->req.msg_state < HTTP_MSG_DONE))
5386 		return 0;
5387 
5388 	if (txn->req.msg_state == HTTP_MSG_DONE) {
5389 		/* No need to read anymore, the request was completely parsed.
5390 		 * We can shut the read side unless we want to abort_on_close,
5391 		 * or we have a POST request. The issue with POST requests is
5392 		 * that some browsers still send a CRLF after the request, and
5393 		 * this CRLF must be read so that it does not remain in the kernel
5394 		 * buffers, otherwise a close could cause an RST on some systems
5395 		 * (eg: Linux).
5396 		 * Note that if we're using keep-alive on the client side, we'd
5397 		 * rather poll now and keep the polling enabled for the whole
5398 		 * stream's life than enabling/disabling it between each
5399 		 * response and next request.
5400 		 */
5401 		if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) &&
5402 		    ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) &&
5403 		    !(s->be->options & PR_O_ABRT_CLOSE) &&
5404 		    txn->meth != HTTP_METH_POST)
5405 			channel_dont_read(chn);
5406 
5407 		/* if the server closes the connection, we want to immediately react
5408 		 * and close the socket to save packets and syscalls.
5409 		 */
5410 		s->si[1].flags |= SI_FL_NOHALF;
5411 
5412 		/* In any case we've finished parsing the request so we must
5413 		 * disable Nagle when sending data because 1) we're not going
5414 		 * to shut this side, and 2) the server is waiting for us to
5415 		 * send pending data.
5416 		 */
5417 		chn->flags |= CF_NEVER_WAIT;
5418 
5419 		if (txn->rsp.msg_state == HTTP_MSG_ERROR)
5420 			goto wait_other_side;
5421 
5422 		if (txn->rsp.msg_state < HTTP_MSG_DONE) {
5423 			/* The server has not finished to respond, so we
5424 			 * don't want to move in order not to upset it.
5425 			 */
5426 			goto wait_other_side;
5427 		}
5428 
5429 		/* When we get here, it means that both the request and the
5430 		 * response have finished receiving. Depending on the connection
5431 		 * mode, we'll have to wait for the last bytes to leave in either
5432 		 * direction, and sometimes for a close to be effective.
5433 		 */
5434 
5435 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
5436 			/* Server-close mode : queue a connection close to the server */
5437 			if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW)))
5438 				channel_shutw_now(chn);
5439 		}
5440 		else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
5441 			/* Option forceclose is set, or either side wants to close,
5442 			 * let's enforce it now that we're not expecting any new
5443 			 * data to come. The caller knows the stream is complete
5444 			 * once both states are CLOSED.
5445 			 *
5446 			 *  However, there is an exception if the response
5447 			 *  length is undefined. In this case, we need to wait
5448 			 *  the close from the server. The response will be
5449 			 *  switched in TUNNEL mode until the end.
5450 			 */
5451 			if (!(txn->rsp.flags & HTTP_MSGF_XFER_LEN) &&
5452 			    txn->rsp.msg_state != HTTP_MSG_CLOSED)
5453 				goto check_channel_flags;
5454 
5455 			if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
5456 				channel_shutr_now(chn);
5457 				channel_shutw_now(chn);
5458 			}
5459 		}
5460 		else {
5461 			/* The last possible modes are keep-alive and tunnel. Tunnel mode
5462 			 * will not have any analyser so it needs to poll for reads.
5463 			 */
5464 			if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) {
5465 				channel_auto_read(chn);
5466 				txn->req.msg_state = HTTP_MSG_TUNNEL;
5467 			}
5468 		}
5469 
5470 		goto check_channel_flags;
5471 	}
5472 
5473 	if (txn->req.msg_state == HTTP_MSG_CLOSING) {
5474 	http_msg_closing:
5475 		/* nothing else to forward, just waiting for the output buffer
5476 		 * to be empty and for the shutw_now to take effect.
5477 		 */
5478 		if (channel_is_empty(chn)) {
5479 			txn->req.msg_state = HTTP_MSG_CLOSED;
5480 			goto http_msg_closed;
5481 		}
5482 		else if (chn->flags & CF_SHUTW) {
5483 			txn->req.err_state = txn->req.msg_state;
5484 			txn->req.msg_state = HTTP_MSG_ERROR;
5485 		}
5486 		goto wait_other_side;
5487 	}
5488 
5489 	if (txn->req.msg_state == HTTP_MSG_CLOSED) {
5490 	http_msg_closed:
5491 		/* if we don't know whether the server will close, we need to hard close */
5492 		if (txn->rsp.flags & HTTP_MSGF_XFER_LEN)
5493 			s->si[1].flags |= SI_FL_NOLINGER;  /* we want to close ASAP */
5494 
5495 		/* see above in MSG_DONE why we only do this in these states */
5496 		if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) &&
5497 		    ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) &&
5498 		    !(s->be->options & PR_O_ABRT_CLOSE))
5499 			channel_dont_read(chn);
5500 		goto wait_other_side;
5501 	}
5502 
5503  check_channel_flags:
5504 	/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
5505 	if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
5506 		/* if we've just closed an output, let's switch */
5507 		txn->req.msg_state = HTTP_MSG_CLOSING;
5508 		goto http_msg_closing;
5509 	}
5510 
5511 
5512  wait_other_side:
5513 	return txn->req.msg_state != old_state || chn->flags != old_flags;
5514 }
5515 
5516 
5517 /* This function updates the response state machine according to the request
5518  * state machine and buffer flags. It returns 1 if it changes anything (flag
5519  * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as
5520  * it is only used to find when a request/response couple is complete. Both
5521  * this function and its equivalent should loop until both return zero. It
5522  * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR.
5523  */
http_sync_res_state(struct stream * s)5524 int http_sync_res_state(struct stream *s)
5525 {
5526 	struct channel *chn = &s->res;
5527 	struct http_txn *txn = s->txn;
5528 	unsigned int old_flags = chn->flags;
5529 	unsigned int old_state = txn->rsp.msg_state;
5530 
5531 	if (unlikely(txn->rsp.msg_state < HTTP_MSG_DONE))
5532 		return 0;
5533 
5534 	if (txn->rsp.msg_state == HTTP_MSG_DONE) {
5535 		/* In theory, we don't need to read anymore, but we must
5536 		 * still monitor the server connection for a possible close
5537 		 * while the request is being uploaded, so we don't disable
5538 		 * reading.
5539 		 */
5540 		/* channel_dont_read(chn); */
5541 
5542 		if (txn->req.msg_state == HTTP_MSG_ERROR)
5543 			goto wait_other_side;
5544 
5545 		if (txn->req.msg_state < HTTP_MSG_DONE) {
5546 			/* The client seems to still be sending data, probably
5547 			 * because we got an error response during an upload.
5548 			 * We have the choice of either breaking the connection
5549 			 * or letting it pass through. Let's do the later.
5550 			 */
5551 			goto wait_other_side;
5552 		}
5553 
5554 		/* When we get here, it means that both the request and the
5555 		 * response have finished receiving. Depending on the connection
5556 		 * mode, we'll have to wait for the last bytes to leave in either
5557 		 * direction, and sometimes for a close to be effective.
5558 		 */
5559 
5560 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
5561 			/* Server-close mode : shut read and wait for the request
5562 			 * side to close its output buffer. The caller will detect
5563 			 * when we're in DONE and the other is in CLOSED and will
5564 			 * catch that for the final cleanup.
5565 			 */
5566 			if (!(chn->flags & (CF_SHUTR|CF_SHUTR_NOW)))
5567 				channel_shutr_now(chn);
5568 		}
5569 		else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
5570 			/* Option forceclose is set, or either side wants to close,
5571 			 * let's enforce it now that we're not expecting any new
5572 			 * data to come. The caller knows the stream is complete
5573 			 * once both states are CLOSED.
5574 			 */
5575 			if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
5576 				channel_shutr_now(chn);
5577 				channel_shutw_now(chn);
5578 			}
5579 		}
5580 		else {
5581 			/* The last possible modes are keep-alive and tunnel. Tunnel will
5582 			 * need to forward remaining data. Keep-alive will need to monitor
5583 			 * for connection closing.
5584 			 */
5585 			channel_auto_read(chn);
5586 			chn->flags |= CF_NEVER_WAIT;
5587 			if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN)
5588 				txn->rsp.msg_state = HTTP_MSG_TUNNEL;
5589 		}
5590 
5591 		goto check_channel_flags;
5592 	}
5593 
5594 	if (txn->rsp.msg_state == HTTP_MSG_CLOSING) {
5595 	http_msg_closing:
5596 		/* nothing else to forward, just waiting for the output buffer
5597 		 * to be empty and for the shutw_now to take effect.
5598 		 */
5599 		if (channel_is_empty(chn)) {
5600 			txn->rsp.msg_state = HTTP_MSG_CLOSED;
5601 			goto http_msg_closed;
5602 		}
5603 		else if (chn->flags & CF_SHUTW) {
5604 			txn->rsp.err_state = txn->rsp.msg_state;
5605 			txn->rsp.msg_state = HTTP_MSG_ERROR;
5606 			s->be->be_counters.cli_aborts++;
5607 			if (objt_server(s->target))
5608 				objt_server(s->target)->counters.cli_aborts++;
5609 		}
5610 		goto wait_other_side;
5611 	}
5612 
5613 	if (txn->rsp.msg_state == HTTP_MSG_CLOSED) {
5614 	http_msg_closed:
5615 		/* drop any pending data */
5616 		channel_truncate(chn);
5617 		channel_auto_close(chn);
5618 		channel_auto_read(chn);
5619 		goto wait_other_side;
5620 	}
5621 
5622  check_channel_flags:
5623 	/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
5624 	if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
5625 		/* if we've just closed an output, let's switch */
5626 		txn->rsp.msg_state = HTTP_MSG_CLOSING;
5627 		goto http_msg_closing;
5628 	}
5629 
5630  wait_other_side:
5631 	/* We force the response to leave immediately if we're waiting for the
5632 	 * other side, since there is no pending shutdown to push it out.
5633 	 */
5634 	if (!channel_is_empty(chn))
5635 		chn->flags |= CF_SEND_DONTWAIT;
5636 	return txn->rsp.msg_state != old_state || chn->flags != old_flags;
5637 }
5638 
5639 
5640 /* Resync the request and response state machines. Return 1 if either state
5641  * changes.
5642  */
http_resync_states(struct stream * s)5643 int http_resync_states(struct stream *s)
5644 {
5645 	struct http_txn *txn = s->txn;
5646 	int old_req_state = txn->req.msg_state;
5647 	int old_res_state = txn->rsp.msg_state;
5648 
5649 	http_sync_req_state(s);
5650 	while (1) {
5651 		if (!http_sync_res_state(s))
5652 			break;
5653 		if (!http_sync_req_state(s))
5654 			break;
5655 	}
5656 
5657 	/* OK, both state machines agree on a compatible state.
5658 	 * There are a few cases we're interested in :
5659 	 *  - HTTP_MSG_CLOSED on both sides means we've reached the end in both
5660 	 *    directions, so let's simply disable both analysers.
5661 	 *  - HTTP_MSG_CLOSED on the response only or HTTP_MSG_ERROR on either
5662 	 *    means we must abort the request.
5663 	 *  - HTTP_MSG_TUNNEL on either means we have to disable analyser on
5664 	 *    corresponding channel.
5665 	 *  - HTTP_MSG_DONE or HTTP_MSG_CLOSED on the request and HTTP_MSG_DONE
5666 	 *    on the response with server-close mode means we've completed one
5667 	 *    request and we must re-initialize the server connection.
5668 	 */
5669 	if (txn->req.msg_state == HTTP_MSG_CLOSED &&
5670 	    txn->rsp.msg_state == HTTP_MSG_CLOSED) {
5671 		s->req.analysers &= AN_REQ_FLT_END;
5672 		channel_auto_close(&s->req);
5673 		channel_auto_read(&s->req);
5674 		s->res.analysers &= AN_RES_FLT_END;
5675 		channel_auto_close(&s->res);
5676 		channel_auto_read(&s->res);
5677 	}
5678 	else if (txn->rsp.msg_state == HTTP_MSG_CLOSED ||
5679 		 txn->rsp.msg_state == HTTP_MSG_ERROR  ||
5680 		 txn->req.msg_state == HTTP_MSG_ERROR) {
5681 		s->res.analysers &= AN_RES_FLT_END;
5682 		channel_auto_close(&s->res);
5683 		channel_auto_read(&s->res);
5684 		s->req.analysers &= AN_REQ_FLT_END;
5685 		channel_abort(&s->req);
5686 		channel_auto_close(&s->req);
5687 		channel_auto_read(&s->req);
5688 		channel_truncate(&s->req);
5689 	}
5690 	else if (txn->req.msg_state == HTTP_MSG_TUNNEL ||
5691 		 txn->rsp.msg_state == HTTP_MSG_TUNNEL) {
5692 		if (txn->req.msg_state == HTTP_MSG_TUNNEL) {
5693 			s->req.analysers &= AN_REQ_FLT_END;
5694 			if (HAS_REQ_DATA_FILTERS(s))
5695 				s->req.analysers |= AN_REQ_FLT_XFER_DATA;
5696 		}
5697 		if (txn->rsp.msg_state == HTTP_MSG_TUNNEL) {
5698 			s->res.analysers &= AN_RES_FLT_END;
5699 			if (HAS_RSP_DATA_FILTERS(s))
5700 				s->res.analysers |= AN_RES_FLT_XFER_DATA;
5701 		}
5702 		channel_auto_close(&s->req);
5703 		channel_auto_read(&s->req);
5704 		channel_auto_close(&s->res);
5705 		channel_auto_read(&s->res);
5706 	}
5707 	else if ((txn->req.msg_state == HTTP_MSG_DONE ||
5708 		  txn->req.msg_state == HTTP_MSG_CLOSED) &&
5709 		 txn->rsp.msg_state == HTTP_MSG_DONE &&
5710 		 ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL ||
5711 		  (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) {
5712 		/* server-close/keep-alive: terminate this transaction,
5713 		 * possibly killing the server connection and reinitialize
5714 		 * a fresh-new transaction, but only once we're sure there's
5715 		 * enough room in the request and response buffer to process
5716 		 * another request. They must not hold any pending output data
5717 		 * and the response buffer must realigned
5718 		 * (realign is done is http_end_txn_clean_session).
5719 		 */
5720 		if (s->req.buf->o) {
5721 			s->req.flags |= CF_WAKE_WRITE;
5722 			return 0;
5723 		}
5724 		else if (s->res.buf->o) {
5725 			s->res.flags |= CF_WAKE_WRITE;
5726 			return 0;
5727 		}
5728 		s->req.analysers = AN_REQ_FLT_END;
5729 		s->res.analysers = AN_RES_FLT_END;
5730 		txn->flags |= TX_WAIT_CLEANUP;
5731 		return 1;
5732 	}
5733 
5734 	return txn->req.msg_state != old_req_state ||
5735 		txn->rsp.msg_state != old_res_state;
5736 }
5737 
5738 /* This function is an analyser which forwards request body (including chunk
5739  * sizes if any). It is called as soon as we must forward, even if we forward
5740  * zero byte. The only situation where it must not be called is when we're in
5741  * tunnel mode and we want to forward till the close. It's used both to forward
5742  * remaining data and to resync after end of body. It expects the msg_state to
5743  * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
5744  * read more data, or 1 once we can go on with next request or end the stream.
5745  * When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len
5746  * bytes of pending data + the headers if not already done.
5747  */
http_request_forward_body(struct stream * s,struct channel * req,int an_bit)5748 int http_request_forward_body(struct stream *s, struct channel *req, int an_bit)
5749 {
5750 	struct session *sess = s->sess;
5751 	struct http_txn *txn = s->txn;
5752 	struct http_msg *msg = &s->txn->req;
5753 	int ret;
5754 
5755 	if (unlikely(msg->msg_state < HTTP_MSG_BODY))
5756 		return 0;
5757 
5758 	if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
5759 	    ((req->flags & CF_SHUTW) && (req->to_forward || req->buf->o))) {
5760 		/* Output closed while we were sending data. We must abort and
5761 		 * wake the other side up.
5762 		 */
5763 		msg->err_state = msg->msg_state;
5764 		msg->msg_state = HTTP_MSG_ERROR;
5765 		http_resync_states(s);
5766 		return 1;
5767 	}
5768 
5769 	/* Note that we don't have to send 100-continue back because we don't
5770 	 * need the data to complete our job, and it's up to the server to
5771 	 * decide whether to return 100, 417 or anything else in return of
5772 	 * an "Expect: 100-continue" header.
5773 	 */
5774 	if (msg->msg_state == HTTP_MSG_BODY) {
5775 		msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK)
5776 				  ? HTTP_MSG_CHUNK_SIZE
5777 				  : HTTP_MSG_DATA);
5778 
5779 		/* TODO/filters: when http-buffer-request option is set or if a
5780 		 * rule on url_param exists, the first chunk size could be
5781 		 * already parsed. In that case, msg->next is after the chunk
5782 		 * size (including the CRLF after the size). So this case should
5783 		 * be handled to */
5784 	}
5785 
5786 	/* Some post-connect processing might want us to refrain from starting to
5787 	 * forward data. Currently, the only reason for this is "balance url_param"
5788 	 * whichs need to parse/process the request after we've enabled forwarding.
5789 	 */
5790 	if (unlikely(msg->flags & HTTP_MSGF_WAIT_CONN)) {
5791 		if (!(s->res.flags & CF_READ_ATTACHED)) {
5792 			channel_auto_connect(req);
5793 			req->flags |= CF_WAKE_CONNECT;
5794 			goto missing_data_or_waiting;
5795 		}
5796 		msg->flags &= ~HTTP_MSGF_WAIT_CONN;
5797 	}
5798 
5799 	/* in most states, we should abort in case of early close */
5800 	channel_auto_close(req);
5801 
5802 	if (req->to_forward) {
5803 		/* We can't process the buffer's contents yet */
5804 		req->flags |= CF_WAKE_WRITE;
5805 		goto missing_data_or_waiting;
5806 	}
5807 
5808 	if (msg->msg_state < HTTP_MSG_DONE) {
5809 		ret = ((msg->flags & HTTP_MSGF_TE_CHNK)
5810 		       ? http_msg_forward_chunked_body(s, msg)
5811 		       : http_msg_forward_body(s, msg));
5812 		if (!ret)
5813 			goto missing_data_or_waiting;
5814 		if (ret < 0)
5815 			goto return_bad_req;
5816 	}
5817 
5818 	/* other states, DONE...TUNNEL */
5819 	/* we don't want to forward closes on DONE except in tunnel mode. */
5820 	if ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)
5821 		channel_dont_close(req);
5822 
5823 	if (http_resync_states(s)) {
5824 		/* some state changes occurred, maybe the analyser
5825 		 * was disabled too. */
5826 		if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
5827 			if (req->flags & CF_SHUTW) {
5828 				/* request errors are most likely due to the
5829 				 * server aborting the transfer. */
5830 				goto aborted_xfer;
5831 			}
5832 			if (msg->err_pos >= 0)
5833 				http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->err_state, s->be);
5834 			goto return_bad_req;
5835 		}
5836 		return 1;
5837 	}
5838 
5839 	/* If "option abortonclose" is set on the backend, we want to monitor
5840 	 * the client's connection and forward any shutdown notification to the
5841 	 * server, which will decide whether to close or to go on processing the
5842 	 * request. We only do that in tunnel mode, and not in other modes since
5843 	 * it can be abused to exhaust source ports. */
5844 	if (s->be->options & PR_O_ABRT_CLOSE) {
5845 		channel_auto_read(req);
5846 		if ((req->flags & (CF_SHUTR|CF_READ_NULL)) &&
5847 		    ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN))
5848 			s->si[1].flags |= SI_FL_NOLINGER;
5849 		channel_auto_close(req);
5850 	}
5851 	else if (s->txn->meth == HTTP_METH_POST) {
5852 		/* POST requests may require to read extra CRLF sent by broken
5853 		 * browsers and which could cause an RST to be sent upon close
5854 		 * on some systems (eg: Linux). */
5855 		channel_auto_read(req);
5856 	}
5857 	return 0;
5858 
5859  missing_data_or_waiting:
5860 	/* stop waiting for data if the input is closed before the end */
5861 	if (msg->msg_state < HTTP_MSG_ENDING && req->flags & CF_SHUTR) {
5862 		if (!(s->flags & SF_ERR_MASK))
5863 			s->flags |= SF_ERR_CLICL;
5864 		if (!(s->flags & SF_FINST_MASK)) {
5865 			if (txn->rsp.msg_state < HTTP_MSG_ERROR)
5866 				s->flags |= SF_FINST_H;
5867 			else
5868 				s->flags |= SF_FINST_D;
5869 		}
5870 
5871 		sess->fe->fe_counters.cli_aborts++;
5872 		s->be->be_counters.cli_aborts++;
5873 		if (objt_server(s->target))
5874 			objt_server(s->target)->counters.cli_aborts++;
5875 
5876 		goto return_bad_req_stats_ok;
5877 	}
5878 
5879 	/* waiting for the last bits to leave the buffer */
5880 	if (req->flags & CF_SHUTW)
5881 		goto aborted_xfer;
5882 
5883 	/* When TE: chunked is used, we need to get there again to parse remaining
5884 	 * chunks even if the client has closed, so we don't want to set CF_DONTCLOSE.
5885 	 * And when content-length is used, we never want to let the possible
5886 	 * shutdown be forwarded to the other side, as the state machine will
5887 	 * take care of it once the client responds. It's also important to
5888 	 * prevent TIME_WAITs from accumulating on the backend side, and for
5889 	 * HTTP/2 where the last frame comes with a shutdown.
5890 	 */
5891 	if (msg->flags & (HTTP_MSGF_TE_CHNK|HTTP_MSGF_CNT_LEN))
5892 		channel_dont_close(req);
5893 
5894 	/* We know that more data are expected, but we couldn't send more that
5895 	 * what we did. So we always set the CF_EXPECT_MORE flag so that the
5896 	 * system knows it must not set a PUSH on this first part. Interactive
5897 	 * modes are already handled by the stream sock layer. We must not do
5898 	 * this in content-length mode because it could present the MSG_MORE
5899 	 * flag with the last block of forwarded data, which would cause an
5900 	 * additional delay to be observed by the receiver.
5901 	 */
5902 	if (msg->flags & HTTP_MSGF_TE_CHNK)
5903 		req->flags |= CF_EXPECT_MORE;
5904 
5905 	return 0;
5906 
5907  return_bad_req: /* let's centralize all bad requests */
5908 	sess->fe->fe_counters.failed_req++;
5909 	if (sess->listener->counters)
5910 		sess->listener->counters->failed_req++;
5911 
5912  return_bad_req_stats_ok:
5913 	txn->req.err_state = txn->req.msg_state;
5914 	txn->req.msg_state = HTTP_MSG_ERROR;
5915 	if (txn->status) {
5916 		/* Note: we don't send any error if some data were already sent */
5917 		http_reply_and_close(s, txn->status, NULL);
5918 	} else {
5919 		txn->status = 400;
5920 		http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400));
5921 	}
5922 	req->analysers   &= AN_REQ_FLT_END;
5923 	s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */
5924 
5925 	if (!(s->flags & SF_ERR_MASK))
5926 		s->flags |= SF_ERR_PRXCOND;
5927 	if (!(s->flags & SF_FINST_MASK)) {
5928 		if (txn->rsp.msg_state < HTTP_MSG_ERROR)
5929 			s->flags |= SF_FINST_H;
5930 		else
5931 			s->flags |= SF_FINST_D;
5932 	}
5933 	return 0;
5934 
5935  aborted_xfer:
5936 	txn->req.err_state = txn->req.msg_state;
5937 	txn->req.msg_state = HTTP_MSG_ERROR;
5938 	if (txn->status) {
5939 		/* Note: we don't send any error if some data were already sent */
5940 		http_reply_and_close(s, txn->status, NULL);
5941 	} else {
5942 		txn->status = 502;
5943 		http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502));
5944 	}
5945 	req->analysers   &= AN_REQ_FLT_END;
5946 	s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */
5947 
5948 	sess->fe->fe_counters.srv_aborts++;
5949 	s->be->be_counters.srv_aborts++;
5950 	if (objt_server(s->target))
5951 		objt_server(s->target)->counters.srv_aborts++;
5952 
5953 	if (!(s->flags & SF_ERR_MASK))
5954 		s->flags |= SF_ERR_SRVCL;
5955 	if (!(s->flags & SF_FINST_MASK)) {
5956 		if (txn->rsp.msg_state < HTTP_MSG_ERROR)
5957 			s->flags |= SF_FINST_H;
5958 		else
5959 			s->flags |= SF_FINST_D;
5960 	}
5961 	return 0;
5962 }
5963 
5964 /* This stream analyser waits for a complete HTTP response. It returns 1 if the
5965  * processing can continue on next analysers, or zero if it either needs more
5966  * data or wants to immediately abort the response (eg: timeout, error, ...). It
5967  * is tied to AN_RES_WAIT_HTTP and may may remove itself from s->res.analysers
5968  * when it has nothing left to do, and may remove any analyser when it wants to
5969  * abort.
5970  */
http_wait_for_response(struct stream * s,struct channel * rep,int an_bit)5971 int http_wait_for_response(struct stream *s, struct channel *rep, int an_bit)
5972 {
5973 	struct session *sess = s->sess;
5974 	struct http_txn *txn = s->txn;
5975 	struct http_msg *msg = &txn->rsp;
5976 	struct hdr_ctx ctx;
5977 	int use_close_only;
5978 	int cur_idx;
5979 	int n;
5980 
5981 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
5982 		now_ms, __FUNCTION__,
5983 		s,
5984 		rep,
5985 		rep->rex, rep->wex,
5986 		rep->flags,
5987 		rep->buf->i,
5988 		rep->analysers);
5989 
5990 	/*
5991 	 * Now parse the partial (or complete) lines.
5992 	 * We will check the response syntax, and also join multi-line
5993 	 * headers. An index of all the lines will be elaborated while
5994 	 * parsing.
5995 	 *
5996 	 * For the parsing, we use a 28 states FSM.
5997 	 *
5998 	 * Here is the information we currently have :
5999 	 *   rep->buf->p             = beginning of response
6000 	 *   rep->buf->p + msg->eoh  = end of processed headers / start of current one
6001 	 *   rep->buf->p + rep->buf->i    = end of input data
6002 	 *   msg->eol           = end of current header or line (LF or CRLF)
6003 	 *   msg->next          = first non-visited byte
6004 	 */
6005 
6006  next_one:
6007 	/* There's a protected area at the end of the buffer for rewriting
6008 	 * purposes. We don't want to start to parse the request if the
6009 	 * protected area is affected, because we may have to move processed
6010 	 * data later, which is much more complicated.
6011 	 */
6012 	if (buffer_not_empty(rep->buf) && msg->msg_state < HTTP_MSG_ERROR) {
6013 		if (unlikely(!channel_is_rewritable(rep) && rep->buf->o)) {
6014 			/* some data has still not left the buffer, wake us once that's done */
6015 			if (rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT))
6016 				goto abort_response;
6017 			channel_dont_close(rep);
6018 			rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
6019 			rep->flags |= CF_WAKE_WRITE;
6020 			return 0;
6021 		}
6022 
6023 		if (unlikely(bi_end(rep->buf) < b_ptr(rep->buf, msg->next) ||
6024 		             bi_end(rep->buf) > rep->buf->data + rep->buf->size - global.tune.maxrewrite))
6025 			buffer_slow_realign(rep->buf);
6026 
6027 		if (likely(msg->next < rep->buf->i))
6028 			http_msg_analyzer(msg, &txn->hdr_idx);
6029 	}
6030 
6031 	/* 1: we might have to print this header in debug mode */
6032 	if (unlikely((global.mode & MODE_DEBUG) &&
6033 		     (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
6034 		     msg->msg_state >= HTTP_MSG_BODY)) {
6035 		char *eol, *sol;
6036 
6037 		sol = rep->buf->p;
6038 		eol = sol + (msg->sl.st.l ? msg->sl.st.l : rep->buf->i);
6039 		debug_hdr("srvrep", s, sol, eol);
6040 
6041 		sol += hdr_idx_first_pos(&txn->hdr_idx);
6042 		cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
6043 
6044 		while (cur_idx) {
6045 			eol = sol + txn->hdr_idx.v[cur_idx].len;
6046 			debug_hdr("srvhdr", s, sol, eol);
6047 			sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
6048 			cur_idx = txn->hdr_idx.v[cur_idx].next;
6049 		}
6050 	}
6051 
6052 	/*
6053 	 * Now we quickly check if we have found a full valid response.
6054 	 * If not so, we check the FD and buffer states before leaving.
6055 	 * A full response is indicated by the fact that we have seen
6056 	 * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
6057 	 * responses are checked first.
6058 	 *
6059 	 * Depending on whether the client is still there or not, we
6060 	 * may send an error response back or not. Note that normally
6061 	 * we should only check for HTTP status there, and check I/O
6062 	 * errors somewhere else.
6063 	 */
6064 
6065 	if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
6066 		/* Invalid response */
6067 		if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
6068 			/* we detected a parsing error. We want to archive this response
6069 			 * in the dedicated proxy area for later troubleshooting.
6070 			 */
6071 		hdr_response_bad:
6072 			if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0)
6073 				http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
6074 
6075 			s->be->be_counters.failed_resp++;
6076 			if (objt_server(s->target)) {
6077 				objt_server(s->target)->counters.failed_resp++;
6078 				health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP);
6079 			}
6080 		abort_response:
6081 			channel_auto_close(rep);
6082 			rep->analysers &= AN_RES_FLT_END;
6083 			s->req.analysers &= AN_REQ_FLT_END;
6084 			rep->analyse_exp = TICK_ETERNITY;
6085 			txn->status = 502;
6086 			s->si[1].flags |= SI_FL_NOLINGER;
6087 			channel_truncate(rep);
6088 			http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502));
6089 
6090 			if (!(s->flags & SF_ERR_MASK))
6091 				s->flags |= SF_ERR_PRXCOND;
6092 			if (!(s->flags & SF_FINST_MASK))
6093 				s->flags |= SF_FINST_H;
6094 
6095 			return 0;
6096 		}
6097 
6098 		/* too large response does not fit in buffer. */
6099 		else if (buffer_full(rep->buf, global.tune.maxrewrite)) {
6100 			if (msg->err_pos < 0)
6101 				msg->err_pos = rep->buf->i;
6102 			goto hdr_response_bad;
6103 		}
6104 
6105 		/* read error */
6106 		else if (rep->flags & CF_READ_ERROR) {
6107 			if (msg->err_pos >= 0)
6108 				http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
6109 			else if (txn->flags & TX_NOT_FIRST)
6110 				goto abort_keep_alive;
6111 
6112 			s->be->be_counters.failed_resp++;
6113 			if (objt_server(s->target)) {
6114 				objt_server(s->target)->counters.failed_resp++;
6115 				health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR);
6116 			}
6117 
6118 			channel_auto_close(rep);
6119 			rep->analysers &= AN_RES_FLT_END;
6120 			s->req.analysers &= AN_REQ_FLT_END;
6121 			rep->analyse_exp = TICK_ETERNITY;
6122 			txn->status = 502;
6123 			s->si[1].flags |= SI_FL_NOLINGER;
6124 			channel_truncate(rep);
6125 			http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502));
6126 
6127 			if (!(s->flags & SF_ERR_MASK))
6128 				s->flags |= SF_ERR_SRVCL;
6129 			if (!(s->flags & SF_FINST_MASK))
6130 				s->flags |= SF_FINST_H;
6131 			return 0;
6132 		}
6133 
6134 		/* read timeout : return a 504 to the client. */
6135 		else if (rep->flags & CF_READ_TIMEOUT) {
6136 			if (msg->err_pos >= 0)
6137 				http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
6138 
6139 			s->be->be_counters.failed_resp++;
6140 			if (objt_server(s->target)) {
6141 				objt_server(s->target)->counters.failed_resp++;
6142 				health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT);
6143 			}
6144 
6145 			channel_auto_close(rep);
6146 			rep->analysers &= AN_RES_FLT_END;
6147 			s->req.analysers &= AN_REQ_FLT_END;
6148 			rep->analyse_exp = TICK_ETERNITY;
6149 			txn->status = 504;
6150 			s->si[1].flags |= SI_FL_NOLINGER;
6151 			channel_truncate(rep);
6152 			http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_504));
6153 
6154 			if (!(s->flags & SF_ERR_MASK))
6155 				s->flags |= SF_ERR_SRVTO;
6156 			if (!(s->flags & SF_FINST_MASK))
6157 				s->flags |= SF_FINST_H;
6158 			return 0;
6159 		}
6160 
6161 		/* client abort with an abortonclose */
6162 		else if ((rep->flags & CF_SHUTR) && ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) {
6163 			sess->fe->fe_counters.cli_aborts++;
6164 			s->be->be_counters.cli_aborts++;
6165 			if (objt_server(s->target))
6166 				objt_server(s->target)->counters.cli_aborts++;
6167 
6168 			rep->analysers &= AN_RES_FLT_END;
6169 			s->req.analysers &= AN_REQ_FLT_END;
6170 			rep->analyse_exp = TICK_ETERNITY;
6171 			channel_auto_close(rep);
6172 
6173 			txn->status = 400;
6174 			channel_truncate(rep);
6175 			http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400));
6176 
6177 			if (!(s->flags & SF_ERR_MASK))
6178 				s->flags |= SF_ERR_CLICL;
6179 			if (!(s->flags & SF_FINST_MASK))
6180 				s->flags |= SF_FINST_H;
6181 
6182 			/* process_stream() will take care of the error */
6183 			return 0;
6184 		}
6185 
6186 		/* close from server, capture the response if the server has started to respond */
6187 		else if (rep->flags & CF_SHUTR) {
6188 			if (msg->msg_state >= HTTP_MSG_RPVER || msg->err_pos >= 0)
6189 				http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
6190 			else if (txn->flags & TX_NOT_FIRST)
6191 				goto abort_keep_alive;
6192 
6193 			s->be->be_counters.failed_resp++;
6194 			if (objt_server(s->target)) {
6195 				objt_server(s->target)->counters.failed_resp++;
6196 				health_adjust(objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE);
6197 			}
6198 
6199 			channel_auto_close(rep);
6200 			rep->analysers &= AN_RES_FLT_END;
6201 			s->req.analysers &= AN_REQ_FLT_END;
6202 			rep->analyse_exp = TICK_ETERNITY;
6203 			txn->status = 502;
6204 			s->si[1].flags |= SI_FL_NOLINGER;
6205 			channel_truncate(rep);
6206 			http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502));
6207 
6208 			if (!(s->flags & SF_ERR_MASK))
6209 				s->flags |= SF_ERR_SRVCL;
6210 			if (!(s->flags & SF_FINST_MASK))
6211 				s->flags |= SF_FINST_H;
6212 			return 0;
6213 		}
6214 
6215 		/* write error to client (we don't send any message then) */
6216 		else if (rep->flags & CF_WRITE_ERROR) {
6217 			if (msg->err_pos >= 0)
6218 				http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
6219 			else if (txn->flags & TX_NOT_FIRST)
6220 				goto abort_keep_alive;
6221 
6222 			s->be->be_counters.failed_resp++;
6223 			rep->analysers &= AN_RES_FLT_END;
6224 			s->req.analysers &= AN_REQ_FLT_END;
6225 			rep->analyse_exp = TICK_ETERNITY;
6226 			channel_auto_close(rep);
6227 
6228 			if (!(s->flags & SF_ERR_MASK))
6229 				s->flags |= SF_ERR_CLICL;
6230 			if (!(s->flags & SF_FINST_MASK))
6231 				s->flags |= SF_FINST_H;
6232 
6233 			/* process_stream() will take care of the error */
6234 			return 0;
6235 		}
6236 
6237 		channel_dont_close(rep);
6238 		rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
6239 		return 0;
6240 	}
6241 
6242 	/* More interesting part now : we know that we have a complete
6243 	 * response which at least looks like HTTP. We have an indicator
6244 	 * of each header's length, so we can parse them quickly.
6245 	 */
6246 
6247 	if (unlikely(msg->err_pos >= 0))
6248 		http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
6249 
6250 	/*
6251 	 * 1: get the status code
6252 	 */
6253 	n = rep->buf->p[msg->sl.st.c] - '0';
6254 	if (n < 1 || n > 5)
6255 		n = 0;
6256 	/* when the client triggers a 4xx from the server, it's most often due
6257 	 * to a missing object or permission. These events should be tracked
6258 	 * because if they happen often, it may indicate a brute force or a
6259 	 * vulnerability scan.
6260 	 */
6261 	if (n == 4)
6262 		stream_inc_http_err_ctr(s);
6263 
6264 	if (objt_server(s->target))
6265 		objt_server(s->target)->counters.p.http.rsp[n]++;
6266 
6267 	/* RFC7230#2.6 has enforced the format of the HTTP version string to be
6268 	 * exactly one digit "." one digit. This check may be disabled using
6269 	 * option accept-invalid-http-response.
6270 	 */
6271 	if (!(s->be->options2 & PR_O2_RSPBUG_OK)) {
6272 		if (msg->sl.st.v_l != 8) {
6273 			msg->err_pos = 0;
6274 			goto hdr_response_bad;
6275 		}
6276 
6277 		if (rep->buf->p[4] != '/' ||
6278 		    !isdigit((unsigned char)rep->buf->p[5]) ||
6279 		    rep->buf->p[6] != '.' ||
6280 		    !isdigit((unsigned char)rep->buf->p[7])) {
6281 			msg->err_pos = 4;
6282 			goto hdr_response_bad;
6283 		}
6284 	}
6285 
6286 	/* check if the response is HTTP/1.1 or above */
6287 	if ((msg->sl.st.v_l == 8) &&
6288 	    ((rep->buf->p[5] > '1') ||
6289 	     ((rep->buf->p[5] == '1') && (rep->buf->p[7] >= '1'))))
6290 		msg->flags |= HTTP_MSGF_VER_11;
6291 
6292 	/* "connection" has not been parsed yet */
6293 	txn->flags &= ~(TX_HDR_CONN_PRS|TX_HDR_CONN_CLO|TX_HDR_CONN_KAL|TX_HDR_CONN_UPG|TX_CON_CLO_SET|TX_CON_KAL_SET);
6294 
6295 	/* transfer length unknown*/
6296 	msg->flags &= ~HTTP_MSGF_XFER_LEN;
6297 
6298 	txn->status = strl2ui(rep->buf->p + msg->sl.st.c, msg->sl.st.c_l);
6299 
6300 	/* Adjust server's health based on status code. Note: status codes 501
6301 	 * and 505 are triggered on demand by client request, so we must not
6302 	 * count them as server failures.
6303 	 */
6304 	if (objt_server(s->target)) {
6305 		if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505))
6306 			health_adjust(objt_server(s->target), HANA_STATUS_HTTP_OK);
6307 		else
6308 			health_adjust(objt_server(s->target), HANA_STATUS_HTTP_STS);
6309 	}
6310 
6311 	/*
6312 	 * We may be facing a 100-continue response, or any other informational
6313 	 * 1xx response which is non-final, in which case this is not the right
6314 	 * response, and we're waiting for the next one. Let's allow this response
6315 	 * to go to the client and wait for the next one. There's an exception for
6316 	 * 101 which is used later in the code to switch protocols.
6317 	 */
6318 	if (txn->status < 200 &&
6319 	    (txn->status == 100 || txn->status >= 102)) {
6320 		hdr_idx_init(&txn->hdr_idx);
6321 		msg->next -= channel_forward(rep, msg->next);
6322 		msg->msg_state = HTTP_MSG_RPBEFORE;
6323 		txn->status = 0;
6324 		s->logs.t_data = -1; /* was not a response yet */
6325 		FLT_STRM_CB(s, flt_http_reset(s, msg));
6326 		goto next_one;
6327 	}
6328 
6329 	/*
6330 	 * 2: check for cacheability.
6331 	 */
6332 
6333 	switch (txn->status) {
6334 	case 200:
6335 	case 203:
6336 	case 206:
6337 	case 300:
6338 	case 301:
6339 	case 410:
6340 		/* RFC2616 @13.4:
6341 		 *   "A response received with a status code of
6342 		 *    200, 203, 206, 300, 301 or 410 MAY be stored
6343 		 *    by a cache (...) unless a cache-control
6344 		 *    directive prohibits caching."
6345 		 *
6346 		 * RFC2616 @9.5: POST method :
6347 		 *   "Responses to this method are not cacheable,
6348 		 *    unless the response includes appropriate
6349 		 *    Cache-Control or Expires header fields."
6350 		 */
6351 		if (likely(txn->meth != HTTP_METH_POST) &&
6352 		    ((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC)))
6353 			txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
6354 		break;
6355 	default:
6356 		break;
6357 	}
6358 
6359 	/*
6360 	 * 3: we may need to capture headers
6361 	 */
6362 	s->logs.logwait &= ~LW_RESP;
6363 	if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap))
6364 		capture_headers(rep->buf->p, &txn->hdr_idx,
6365 				s->res_cap, sess->fe->rsp_cap);
6366 
6367 	/* 4: determine the transfer-length according to RFC2616 #4.4, updated
6368 	 * by RFC7230#3.3.3 :
6369 	 *
6370 	 * The length of a message body is determined by one of the following
6371 	 *   (in order of precedence):
6372 	 *
6373 	 *   1.  Any 2xx (Successful) response to a CONNECT request implies that
6374 	 *       the connection will become a tunnel immediately after the empty
6375 	 *       line that concludes the header fields.  A client MUST ignore
6376 	 *       any Content-Length or Transfer-Encoding header fields received
6377 	 *       in such a message. Any 101 response (Switching Protocols) is
6378 	 *       managed in the same manner.
6379 	 *
6380 	 *   2.  Any response to a HEAD request and any response with a 1xx
6381 	 *       (Informational), 204 (No Content), or 304 (Not Modified) status
6382 	 *       code is always terminated by the first empty line after the
6383 	 *       header fields, regardless of the header fields present in the
6384 	 *       message, and thus cannot contain a message body.
6385 	 *
6386 	 *   3.  If a Transfer-Encoding header field is present and the chunked
6387 	 *       transfer coding (Section 4.1) is the final encoding, the message
6388 	 *       body length is determined by reading and decoding the chunked
6389 	 *       data until the transfer coding indicates the data is complete.
6390 	 *
6391 	 *       If a Transfer-Encoding header field is present in a response and
6392 	 *       the chunked transfer coding is not the final encoding, the
6393 	 *       message body length is determined by reading the connection until
6394 	 *       it is closed by the server.  If a Transfer-Encoding header field
6395 	 *       is present in a request and the chunked transfer coding is not
6396 	 *       the final encoding, the message body length cannot be determined
6397 	 *       reliably; the server MUST respond with the 400 (Bad Request)
6398 	 *       status code and then close the connection.
6399 	 *
6400 	 *       If a message is received with both a Transfer-Encoding and a
6401 	 *       Content-Length header field, the Transfer-Encoding overrides the
6402 	 *       Content-Length.  Such a message might indicate an attempt to
6403 	 *       perform request smuggling (Section 9.5) or response splitting
6404 	 *       (Section 9.4) and ought to be handled as an error.  A sender MUST
6405 	 *       remove the received Content-Length field prior to forwarding such
6406 	 *       a message downstream.
6407 	 *
6408 	 *   4.  If a message is received without Transfer-Encoding and with
6409 	 *       either multiple Content-Length header fields having differing
6410 	 *       field-values or a single Content-Length header field having an
6411 	 *       invalid value, then the message framing is invalid and the
6412 	 *       recipient MUST treat it as an unrecoverable error.  If this is a
6413 	 *       request message, the server MUST respond with a 400 (Bad Request)
6414 	 *       status code and then close the connection.  If this is a response
6415 	 *       message received by a proxy, the proxy MUST close the connection
6416 	 *       to the server, discard the received response, and send a 502 (Bad
6417 	 *       Gateway) response to the client.  If this is a response message
6418 	 *       received by a user agent, the user agent MUST close the
6419 	 *       connection to the server and discard the received response.
6420 	 *
6421 	 *   5.  If a valid Content-Length header field is present without
6422 	 *       Transfer-Encoding, its decimal value defines the expected message
6423 	 *       body length in octets.  If the sender closes the connection or
6424 	 *       the recipient times out before the indicated number of octets are
6425 	 *       received, the recipient MUST consider the message to be
6426 	 *       incomplete and close the connection.
6427 	 *
6428 	 *   6.  If this is a request message and none of the above are true, then
6429 	 *       the message body length is zero (no message body is present).
6430 	 *
6431 	 *   7.  Otherwise, this is a response message without a declared message
6432 	 *       body length, so the message body length is determined by the
6433 	 *       number of octets received prior to the server closing the
6434 	 *       connection.
6435 	 */
6436 
6437 	/* Skip parsing if no content length is possible. The response flags
6438 	 * remain 0 as well as the chunk_len, which may or may not mirror
6439 	 * the real header value, and we note that we know the response's length.
6440 	 * FIXME: should we parse anyway and return an error on chunked encoding ?
6441 	 */
6442 	if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) ||
6443 		     txn->status == 101)) {
6444 		/* Either we've established an explicit tunnel, or we're
6445 		 * switching the protocol. In both cases, we're very unlikely
6446 		 * to understand the next protocols. We have to switch to tunnel
6447 		 * mode, so that we transfer the request and responses then let
6448 		 * this protocol pass unmodified. When we later implement specific
6449 		 * parsers for such protocols, we'll want to check the Upgrade
6450 		 * header which contains information about that protocol for
6451 		 * responses with status 101 (eg: see RFC2817 about TLS).
6452 		 */
6453 		txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN;
6454 		msg->flags |= HTTP_MSGF_XFER_LEN;
6455 		goto end;
6456 	}
6457 
6458 	if (txn->meth == HTTP_METH_HEAD ||
6459 	    (txn->status >= 100 && txn->status < 200) ||
6460 	    txn->status == 204 || txn->status == 304) {
6461 		msg->flags |= HTTP_MSGF_XFER_LEN;
6462 		goto skip_content_length;
6463 	}
6464 
6465 	use_close_only = 0;
6466 	ctx.idx = 0;
6467 	while (http_find_header2("Transfer-Encoding", 17, rep->buf->p, &txn->hdr_idx, &ctx)) {
6468 		if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
6469 			msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
6470 		else if (msg->flags & HTTP_MSGF_TE_CHNK) {
6471 			/* bad transfer-encoding (chunked followed by something else) */
6472 			use_close_only = 1;
6473 			msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
6474 			break;
6475 		}
6476 	}
6477 
6478 	/* "chunked" mandatory if transfer-encoding is used */
6479 	if (ctx.idx && !(msg->flags & HTTP_MSGF_TE_CHNK)) {
6480 		use_close_only = 1;
6481 		msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
6482 	}
6483 
6484 	/* Chunked responses must have their content-length removed */
6485 	ctx.idx = 0;
6486 	if (use_close_only || (msg->flags & HTTP_MSGF_TE_CHNK)) {
6487 		while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx))
6488 			http_remove_header2(msg, &txn->hdr_idx, &ctx);
6489 	}
6490 	else while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx)) {
6491 		signed long long cl;
6492 
6493 		if (!ctx.vlen) {
6494 			msg->err_pos = ctx.line + ctx.val - rep->buf->p;
6495 			goto hdr_response_bad;
6496 		}
6497 
6498 		if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
6499 			msg->err_pos = ctx.line + ctx.val - rep->buf->p;
6500 			goto hdr_response_bad; /* parse failure */
6501 		}
6502 
6503 		if (cl < 0) {
6504 			msg->err_pos = ctx.line + ctx.val - rep->buf->p;
6505 			goto hdr_response_bad;
6506 		}
6507 
6508 		if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
6509 			msg->err_pos = ctx.line + ctx.val - rep->buf->p;
6510 			goto hdr_response_bad; /* already specified, was different */
6511 		}
6512 
6513 		msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN;
6514 		msg->body_len = msg->chunk_len = cl;
6515 	}
6516 
6517  skip_content_length:
6518 	/* Now we have to check if we need to modify the Connection header.
6519 	 * This is more difficult on the response than it is on the request,
6520 	 * because we can have two different HTTP versions and we don't know
6521 	 * how the client will interprete a response. For instance, let's say
6522 	 * that the client sends a keep-alive request in HTTP/1.0 and gets an
6523 	 * HTTP/1.1 response without any header. Maybe it will bound itself to
6524 	 * HTTP/1.0 because it only knows about it, and will consider the lack
6525 	 * of header as a close, or maybe it knows HTTP/1.1 and can consider
6526 	 * the lack of header as a keep-alive. Thus we will use two flags
6527 	 * indicating how a request MAY be understood by the client. In case
6528 	 * of multiple possibilities, we'll fix the header to be explicit. If
6529 	 * ambiguous cases such as both close and keepalive are seen, then we
6530 	 * will fall back to explicit close. Note that we won't take risks with
6531 	 * HTTP/1.0 clients which may not necessarily understand keep-alive.
6532 	 * See doc/internals/connection-header.txt for the complete matrix.
6533 	 */
6534 	if ((txn->status >= 200) && !(txn->flags & TX_HDR_CONN_PRS) &&
6535 	    ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN ||
6536 	     ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
6537 	      (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
6538 		int to_del = 0;
6539 
6540 		/* this situation happens when combining pretend-keepalive with httpclose. */
6541 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL &&
6542 		    ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
6543 		     (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))
6544 			txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
6545 
6546 		/* on unknown transfer length, we must close */
6547 		if (!(msg->flags & HTTP_MSGF_XFER_LEN) &&
6548 		    (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)
6549 			txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
6550 
6551 		/* now adjust header transformations depending on current state */
6552 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN ||
6553 		    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
6554 			to_del |= 2; /* remove "keep-alive" on any response */
6555 			if (!(msg->flags & HTTP_MSGF_VER_11))
6556 				to_del |= 1; /* remove "close" for HTTP/1.0 responses */
6557 		}
6558 		else { /* SCL / KAL */
6559 			to_del |= 1; /* remove "close" on any response */
6560 			if (txn->req.flags & msg->flags & HTTP_MSGF_VER_11)
6561 				to_del |= 2; /* remove "keep-alive" on pure 1.1 responses */
6562 		}
6563 
6564 		/* Parse and remove some headers from the connection header */
6565 		http_parse_connection_header(txn, msg, to_del);
6566 
6567 		/* Some keep-alive responses are converted to Server-close if
6568 		 * the server wants to close.
6569 		 */
6570 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL) {
6571 			if ((txn->flags & TX_HDR_CONN_CLO) ||
6572 			    (!(txn->flags & TX_HDR_CONN_KAL) && !(msg->flags & HTTP_MSGF_VER_11)))
6573 				txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_SCL;
6574 		}
6575 	}
6576 
6577  end:
6578 	/* we want to have the response time before we start processing it */
6579 	s->logs.t_data = tv_ms_elapsed(&s->logs.tv_accept, &now);
6580 
6581 	/* end of job, return OK */
6582 	rep->analysers &= ~an_bit;
6583 	rep->analyse_exp = TICK_ETERNITY;
6584 	channel_auto_close(rep);
6585 	return 1;
6586 
6587  abort_keep_alive:
6588 	/* A keep-alive request to the server failed on a network error.
6589 	 * The client is required to retry. We need to close without returning
6590 	 * any other information so that the client retries.
6591 	 */
6592 	txn->status = 0;
6593 	rep->analysers   &= AN_RES_FLT_END;
6594 	s->req.analysers &= AN_REQ_FLT_END;
6595 	rep->analyse_exp = TICK_ETERNITY;
6596 	channel_auto_close(rep);
6597 	s->logs.logwait = 0;
6598 	s->logs.level = 0;
6599 	s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
6600 	channel_truncate(rep);
6601 	http_reply_and_close(s, txn->status, NULL);
6602 	return 0;
6603 }
6604 
6605 /* This function performs all the processing enabled for the current response.
6606  * It normally returns 1 unless it wants to break. It relies on buffers flags,
6607  * and updates s->res.analysers. It might make sense to explode it into several
6608  * other functions. It works like process_request (see indications above).
6609  */
http_process_res_common(struct stream * s,struct channel * rep,int an_bit,struct proxy * px)6610 int http_process_res_common(struct stream *s, struct channel *rep, int an_bit, struct proxy *px)
6611 {
6612 	struct session *sess = s->sess;
6613 	struct http_txn *txn = s->txn;
6614 	struct http_msg *msg = &txn->rsp;
6615 	struct proxy *cur_proxy;
6616 	struct cond_wordlist *wl;
6617 	enum rule_result ret = HTTP_RULE_RES_CONT;
6618 
6619 	DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
6620 		now_ms, __FUNCTION__,
6621 		s,
6622 		rep,
6623 		rep->rex, rep->wex,
6624 		rep->flags,
6625 		rep->buf->i,
6626 		rep->analysers);
6627 
6628 	if (unlikely(msg->msg_state < HTTP_MSG_BODY))	/* we need more data */
6629 		return 0;
6630 
6631 	/* The stats applet needs to adjust the Connection header but we don't
6632 	 * apply any filter there.
6633 	 */
6634 	if (unlikely(objt_applet(s->target) == &http_stats_applet)) {
6635 		rep->analysers &= ~an_bit;
6636 		rep->analyse_exp = TICK_ETERNITY;
6637 		goto skip_filters;
6638 	}
6639 
6640 	/*
6641 	 * We will have to evaluate the filters.
6642 	 * As opposed to version 1.2, now they will be evaluated in the
6643 	 * filters order and not in the header order. This means that
6644 	 * each filter has to be validated among all headers.
6645 	 *
6646 	 * Filters are tried with ->be first, then with ->fe if it is
6647 	 * different from ->be.
6648 	 *
6649 	 * Maybe we are in resume condiion. In this case I choose the
6650 	 * "struct proxy" which contains the rule list matching the resume
6651 	 * pointer. If none of theses "struct proxy" match, I initialise
6652 	 * the process with the first one.
6653 	 *
6654 	 * In fact, I check only correspondance betwwen the current list
6655 	 * pointer and the ->fe rule list. If it doesn't match, I initialize
6656 	 * the loop with the ->be.
6657 	 */
6658 	if (s->current_rule_list == &sess->fe->http_res_rules)
6659 		cur_proxy = sess->fe;
6660 	else
6661 		cur_proxy = s->be;
6662 	while (1) {
6663 		struct proxy *rule_set = cur_proxy;
6664 
6665 		/* evaluate http-response rules */
6666 		if (ret == HTTP_RULE_RES_CONT) {
6667 			ret = http_res_get_intercept_rule(cur_proxy, &cur_proxy->http_res_rules, s);
6668 
6669 			if (ret == HTTP_RULE_RES_BADREQ)
6670 				goto return_srv_prx_502;
6671 
6672 			if (ret == HTTP_RULE_RES_DONE) {
6673 				rep->analysers &= ~an_bit;
6674 				rep->analyse_exp = TICK_ETERNITY;
6675 				return 1;
6676 			}
6677 		}
6678 
6679 		/* we need to be called again. */
6680 		if (ret == HTTP_RULE_RES_YIELD) {
6681 			channel_dont_close(rep);
6682 			return 0;
6683 		}
6684 
6685 		/* try headers filters */
6686 		if (rule_set->rsp_exp != NULL) {
6687 			if (apply_filters_to_response(s, rep, rule_set) < 0) {
6688 			return_bad_resp:
6689 				if (objt_server(s->target)) {
6690 					objt_server(s->target)->counters.failed_resp++;
6691 					health_adjust(objt_server(s->target), HANA_STATUS_HTTP_RSP);
6692 				}
6693 				s->be->be_counters.failed_resp++;
6694 			return_srv_prx_502:
6695 				rep->analysers &= AN_RES_FLT_END;
6696 				s->req.analysers &= AN_REQ_FLT_END;
6697 				rep->analyse_exp = TICK_ETERNITY;
6698 				txn->status = 502;
6699 				s->logs.t_data = -1; /* was not a valid response */
6700 				s->si[1].flags |= SI_FL_NOLINGER;
6701 				channel_truncate(rep);
6702 				http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502));
6703 				if (!(s->flags & SF_ERR_MASK))
6704 					s->flags |= SF_ERR_PRXCOND;
6705 				if (!(s->flags & SF_FINST_MASK))
6706 					s->flags |= SF_FINST_H;
6707 				return 0;
6708 			}
6709 		}
6710 
6711 		/* has the response been denied ? */
6712 		if (txn->flags & TX_SVDENY) {
6713 			if (objt_server(s->target))
6714 				objt_server(s->target)->counters.failed_secu++;
6715 
6716 			s->be->be_counters.denied_resp++;
6717 			sess->fe->fe_counters.denied_resp++;
6718 			if (sess->listener->counters)
6719 				sess->listener->counters->denied_resp++;
6720 
6721 			goto return_srv_prx_502;
6722 		}
6723 
6724 		/* add response headers from the rule sets in the same order */
6725 		list_for_each_entry(wl, &rule_set->rsp_add, list) {
6726 			if (txn->status < 200 && txn->status != 101)
6727 				break;
6728 			if (wl->cond) {
6729 				int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
6730 				ret = acl_pass(ret);
6731 				if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS)
6732 					ret = !ret;
6733 				if (!ret)
6734 					continue;
6735 			}
6736 			if (unlikely(http_header_add_tail(&txn->rsp, &txn->hdr_idx, wl->s) < 0))
6737 				goto return_bad_resp;
6738 		}
6739 
6740 		/* check whether we're already working on the frontend */
6741 		if (cur_proxy == sess->fe)
6742 			break;
6743 		cur_proxy = sess->fe;
6744 	}
6745 
6746 	/* After this point, this anayzer can't return yield, so we can
6747 	 * remove the bit corresponding to this analyzer from the list.
6748 	 *
6749 	 * Note that the intermediate returns and goto found previously
6750 	 * reset the analyzers.
6751 	 */
6752 	rep->analysers &= ~an_bit;
6753 	rep->analyse_exp = TICK_ETERNITY;
6754 
6755 	/* OK that's all we can do for 1xx responses */
6756 	if (unlikely(txn->status < 200 && txn->status != 101))
6757 		goto skip_header_mangling;
6758 
6759 	/*
6760 	 * Now check for a server cookie.
6761 	 */
6762 	if (s->be->cookie_name || sess->fe->capture_name || (s->be->options & PR_O_CHK_CACHE))
6763 		manage_server_side_cookies(s, rep);
6764 
6765 	/*
6766 	 * Check for cache-control or pragma headers if required.
6767 	 */
6768 	if (((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC)) && txn->status != 101)
6769 		check_response_for_cacheability(s, rep);
6770 
6771 	/*
6772 	 * Add server cookie in the response if needed
6773 	 */
6774 	if (objt_server(s->target) && (s->be->ck_opts & PR_CK_INS) &&
6775 	    !((txn->flags & TX_SCK_FOUND) && (s->be->ck_opts & PR_CK_PSV)) &&
6776 	    (!(s->flags & SF_DIRECT) ||
6777 	     ((s->be->cookie_maxidle || txn->cookie_last_date) &&
6778 	      (!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) ||
6779 	     (s->be->cookie_maxlife && !txn->cookie_first_date) ||  // set the first_date
6780 	     (!s->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date
6781 	    (!(s->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) &&
6782 	    !(s->flags & SF_IGNORE_PRST)) {
6783 		/* the server is known, it's not the one the client requested, or the
6784 		 * cookie's last seen date needs to be refreshed. We have to
6785 		 * insert a set-cookie here, except if we want to insert only on POST
6786 		 * requests and this one isn't. Note that servers which don't have cookies
6787 		 * (eg: some backup servers) will return a full cookie removal request.
6788 		 */
6789 		if (!objt_server(s->target)->cookie) {
6790 			chunk_printf(&trash,
6791 				     "Set-Cookie: %s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/",
6792 				     s->be->cookie_name);
6793 		}
6794 		else {
6795 			chunk_printf(&trash, "Set-Cookie: %s=%s", s->be->cookie_name, objt_server(s->target)->cookie);
6796 
6797 			if (s->be->cookie_maxidle || s->be->cookie_maxlife) {
6798 				/* emit last_date, which is mandatory */
6799 				trash.str[trash.len++] = COOKIE_DELIM_DATE;
6800 				s30tob64((date.tv_sec+3) >> 2, trash.str + trash.len);
6801 				trash.len += 5;
6802 
6803 				if (s->be->cookie_maxlife) {
6804 					/* emit first_date, which is either the original one or
6805 					 * the current date.
6806 					 */
6807 					trash.str[trash.len++] = COOKIE_DELIM_DATE;
6808 					s30tob64(txn->cookie_first_date ?
6809 						 txn->cookie_first_date >> 2 :
6810 						 (date.tv_sec+3) >> 2, trash.str + trash.len);
6811 					trash.len += 5;
6812 				}
6813 			}
6814 			chunk_appendf(&trash, "; path=/");
6815 		}
6816 
6817 		if (s->be->cookie_domain)
6818 			chunk_appendf(&trash, "; domain=%s", s->be->cookie_domain);
6819 
6820 		if (s->be->ck_opts & PR_CK_HTTPONLY)
6821 			chunk_appendf(&trash, "; HttpOnly");
6822 
6823 		if (s->be->ck_opts & PR_CK_SECURE)
6824 			chunk_appendf(&trash, "; Secure");
6825 
6826 		if (s->be->cookie_attrs)
6827 			chunk_appendf(&trash, "; %s", s->be->cookie_attrs);
6828 
6829 		if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.str, trash.len) < 0))
6830 			goto return_bad_resp;
6831 
6832 		txn->flags &= ~TX_SCK_MASK;
6833 		if (objt_server(s->target)->cookie && (s->flags & SF_DIRECT))
6834 			/* the server did not change, only the date was updated */
6835 			txn->flags |= TX_SCK_UPDATED;
6836 		else
6837 			txn->flags |= TX_SCK_INSERTED;
6838 
6839 		/* Here, we will tell an eventual cache on the client side that we don't
6840 		 * want it to cache this reply because HTTP/1.0 caches also cache cookies !
6841 		 * Some caches understand the correct form: 'no-cache="set-cookie"', but
6842 		 * others don't (eg: apache <= 1.3.26). So we use 'private' instead.
6843 		 */
6844 		if ((s->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) {
6845 
6846 			txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
6847 
6848 			if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx,
6849 			                                   "Cache-control: private", 22) < 0))
6850 				goto return_bad_resp;
6851 		}
6852 	}
6853 
6854 	/*
6855 	 * Check if result will be cacheable with a cookie.
6856 	 * We'll block the response if security checks have caught
6857 	 * nasty things such as a cacheable cookie.
6858 	 */
6859 	if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) ==
6860 	     (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) &&
6861 	    (s->be->options & PR_O_CHK_CACHE)) {
6862 		/* we're in presence of a cacheable response containing
6863 		 * a set-cookie header. We'll block it as requested by
6864 		 * the 'checkcache' option, and send an alert.
6865 		 */
6866 		if (objt_server(s->target))
6867 			objt_server(s->target)->counters.failed_secu++;
6868 
6869 		s->be->be_counters.denied_resp++;
6870 		sess->fe->fe_counters.denied_resp++;
6871 		if (sess->listener->counters)
6872 			sess->listener->counters->denied_resp++;
6873 
6874 		Alert("Blocking cacheable cookie in response from instance %s, server %s.\n",
6875 		      s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>");
6876 		send_log(s->be, LOG_ALERT,
6877 			 "Blocking cacheable cookie in response from instance %s, server %s.\n",
6878 			 s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>");
6879 		goto return_srv_prx_502;
6880 	}
6881 
6882  skip_filters:
6883 	/*
6884 	 * Adjust "Connection: close" or "Connection: keep-alive" if needed.
6885 	 * If an "Upgrade" token is found, the header is left untouched in order
6886 	 * not to have to deal with some client bugs : some of them fail an upgrade
6887 	 * if anything but "Upgrade" is present in the Connection header. We don't
6888 	 * want to touch any 101 response either since it's switching to another
6889 	 * protocol.
6890 	 */
6891 	if ((txn->status != 101) && !(txn->flags & TX_HDR_CONN_UPG) &&
6892 	    (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) ||
6893 	     ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
6894 	      (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
6895 		unsigned int want_flags = 0;
6896 
6897 		if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
6898 		    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
6899 			/* we want a keep-alive response here. Keep-alive header
6900 			 * required if either side is not 1.1.
6901 			 */
6902 			if (!(txn->req.flags & msg->flags & HTTP_MSGF_VER_11))
6903 				want_flags |= TX_CON_KAL_SET;
6904 		}
6905 		else {
6906 			/* we want a close response here. Close header required if
6907 			 * the server is 1.1, regardless of the client.
6908 			 */
6909 			if (msg->flags & HTTP_MSGF_VER_11)
6910 				want_flags |= TX_CON_CLO_SET;
6911 		}
6912 
6913 		if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET)))
6914 			http_change_connection_header(txn, msg, want_flags);
6915 	}
6916 
6917  skip_header_mangling:
6918 	/* Always enter in the body analyzer */
6919 	rep->analysers &= ~AN_RES_FLT_XFER_DATA;
6920 	rep->analysers |= AN_RES_HTTP_XFER_BODY;
6921 
6922 	/* if the user wants to log as soon as possible, without counting
6923 	 * bytes from the server, then this is the right moment. We have
6924 	 * to temporarily assign bytes_out to log what we currently have.
6925 	 */
6926 	if (!LIST_ISEMPTY(&sess->fe->logformat) && !(s->logs.logwait & LW_BYTES)) {
6927 		s->logs.t_close = s->logs.t_data; /* to get a valid end date */
6928 		s->logs.bytes_out = txn->rsp.eoh;
6929 		s->do_log(s);
6930 		s->logs.bytes_out = 0;
6931 	}
6932 	return 1;
6933 }
6934 
6935 /* This function is an analyser which forwards response body (including chunk
6936  * sizes if any). It is called as soon as we must forward, even if we forward
6937  * zero byte. The only situation where it must not be called is when we're in
6938  * tunnel mode and we want to forward till the close. It's used both to forward
6939  * remaining data and to resync after end of body. It expects the msg_state to
6940  * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
6941  * read more data, or 1 once we can go on with next request or end the stream.
6942  *
6943  * It is capable of compressing response data both in content-length mode and
6944  * in chunked mode. The state machines follows different flows depending on
6945  * whether content-length and chunked modes are used, since there are no
6946  * trailers in content-length :
6947  *
6948  *       chk-mode        cl-mode
6949  *          ,----- BODY -----.
6950  *         /                  \
6951  *        V     size > 0       V    chk-mode
6952  *  .--> SIZE -------------> DATA -------------> CRLF
6953  *  |     | size == 0          | last byte         |
6954  *  |     v      final crlf    v inspected         |
6955  *  |  TRAILERS -----------> DONE                  |
6956  *  |                                              |
6957  *  `----------------------------------------------'
6958  *
6959  * Compression only happens in the DATA state, and must be flushed in final
6960  * states (TRAILERS/DONE) or when leaving on missing data. Normal forwarding
6961  * is performed at once on final states for all bytes parsed, or when leaving
6962  * on missing data.
6963  */
http_response_forward_body(struct stream * s,struct channel * res,int an_bit)6964 int http_response_forward_body(struct stream *s, struct channel *res, int an_bit)
6965 {
6966 	struct session *sess = s->sess;
6967 	struct http_txn *txn = s->txn;
6968 	struct http_msg *msg = &s->txn->rsp;
6969 	int ret;
6970 
6971 	if (unlikely(msg->msg_state < HTTP_MSG_BODY))
6972 		return 0;
6973 
6974 	if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
6975 	    ((res->flags & CF_SHUTW) && (res->to_forward || res->buf->o)) ||
6976 	     !s->req.analysers) {
6977 		/* Output closed while we were sending data. We must abort and
6978 		 * wake the other side up.
6979 		 */
6980 		msg->err_state = msg->msg_state;
6981 		msg->msg_state = HTTP_MSG_ERROR;
6982 		http_resync_states(s);
6983 		return 1;
6984 	}
6985 
6986 	/* in most states, we should abort in case of early close */
6987 	channel_auto_close(res);
6988 
6989 	if (msg->msg_state == HTTP_MSG_BODY) {
6990 		msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK)
6991 				  ? HTTP_MSG_CHUNK_SIZE
6992 				  : HTTP_MSG_DATA);
6993 	}
6994 
6995 	if (res->to_forward) {
6996                 /* We can't process the buffer's contents yet */
6997 		res->flags |= CF_WAKE_WRITE;
6998 		goto missing_data_or_waiting;
6999 	}
7000 
7001 	if (msg->msg_state < HTTP_MSG_DONE) {
7002 		ret = ((msg->flags & HTTP_MSGF_TE_CHNK)
7003 		       ? http_msg_forward_chunked_body(s, msg)
7004 		       : http_msg_forward_body(s, msg));
7005 		if (!ret)
7006 			goto missing_data_or_waiting;
7007 		if (ret < 0)
7008 			goto return_bad_res;
7009 	}
7010 
7011 	/* other states, DONE...TUNNEL */
7012 	/* for keep-alive we don't want to forward closes on DONE */
7013 	if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
7014 	    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
7015 		channel_dont_close(res);
7016 
7017 	if (http_resync_states(s)) {
7018 		/* some state changes occurred, maybe the analyser was disabled
7019 		 * too. */
7020 		if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
7021 			if (res->flags & CF_SHUTW) {
7022 				/* response errors are most likely due to the
7023 				 * client aborting the transfer. */
7024 				goto aborted_xfer;
7025 			}
7026 			if (msg->err_pos >= 0)
7027 				http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->err_state, strm_fe(s));
7028 			goto return_bad_res;
7029 		}
7030 		return 1;
7031 	}
7032 	return 0;
7033 
7034   missing_data_or_waiting:
7035 	if (res->flags & CF_SHUTW)
7036 		goto aborted_xfer;
7037 
7038 	/* stop waiting for data if the input is closed before the end. If the
7039 	 * client side was already closed, it means that the client has aborted,
7040 	 * so we don't want to count this as a server abort. Otherwise it's a
7041 	 * server abort.
7042 	 */
7043 	if (msg->msg_state < HTTP_MSG_ENDING && res->flags & CF_SHUTR) {
7044 		if ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))
7045 			goto aborted_xfer;
7046 		/* If we have some pending data, we continue the processing */
7047 		if (!buffer_pending(res->buf)) {
7048 			if (!(s->flags & SF_ERR_MASK))
7049 				s->flags |= SF_ERR_SRVCL;
7050 			sess->fe->fe_counters.srv_aborts++;
7051 			s->be->be_counters.srv_aborts++;
7052 			if (objt_server(s->target))
7053 				objt_server(s->target)->counters.srv_aborts++;
7054 			goto return_bad_res_stats_ok;
7055 		}
7056 	}
7057 
7058 	/* we need to obey the req analyser, so if it leaves, we must too */
7059 	if (!s->req.analysers)
7060 		goto return_bad_res;
7061 
7062 	/* When TE: chunked is used, we need to get there again to parse
7063 	 * remaining chunks even if the server has closed, so we don't want to
7064 	 * set CF_DONTCLOSE. Similarly, if keep-alive is set on the client side
7065 	 * or if there are filters registered on the stream, we don't want to
7066 	 * forward a close
7067 	 */
7068 	if ((msg->flags & HTTP_MSGF_TE_CHNK) ||
7069 	    HAS_DATA_FILTERS(s, res) ||
7070 	    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
7071 	    (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
7072 		channel_dont_close(res);
7073 
7074 	/* We know that more data are expected, but we couldn't send more that
7075 	 * what we did. So we always set the CF_EXPECT_MORE flag so that the
7076 	 * system knows it must not set a PUSH on this first part. Interactive
7077 	 * modes are already handled by the stream sock layer. We must not do
7078 	 * this in content-length mode because it could present the MSG_MORE
7079 	 * flag with the last block of forwarded data, which would cause an
7080 	 * additional delay to be observed by the receiver.
7081 	 */
7082 	if ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->flags & HTTP_MSGF_COMPRESSING))
7083 		res->flags |= CF_EXPECT_MORE;
7084 
7085 	/* the stream handler will take care of timeouts and errors */
7086 	return 0;
7087 
7088  return_bad_res: /* let's centralize all bad responses */
7089 	s->be->be_counters.failed_resp++;
7090 	if (objt_server(s->target))
7091 		objt_server(s->target)->counters.failed_resp++;
7092 
7093  return_bad_res_stats_ok:
7094 	txn->rsp.err_state = txn->rsp.msg_state;
7095 	txn->rsp.msg_state = HTTP_MSG_ERROR;
7096 	/* don't send any error message as we're in the body */
7097 	http_reply_and_close(s, txn->status, NULL);
7098 	res->analysers   &= AN_RES_FLT_END;
7099 	s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */
7100 	if (objt_server(s->target))
7101 		health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP);
7102 
7103 	if (!(s->flags & SF_ERR_MASK))
7104 		s->flags |= SF_ERR_PRXCOND;
7105 	if (!(s->flags & SF_FINST_MASK))
7106 		s->flags |= SF_FINST_D;
7107 	return 0;
7108 
7109  aborted_xfer:
7110 	txn->rsp.err_state = txn->rsp.msg_state;
7111 	txn->rsp.msg_state = HTTP_MSG_ERROR;
7112 	/* don't send any error message as we're in the body */
7113 	http_reply_and_close(s, txn->status, NULL);
7114 	res->analysers   &= AN_RES_FLT_END;
7115 	s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */
7116 
7117 	sess->fe->fe_counters.cli_aborts++;
7118 	s->be->be_counters.cli_aborts++;
7119 	if (objt_server(s->target))
7120 		objt_server(s->target)->counters.cli_aborts++;
7121 
7122 	if (!(s->flags & SF_ERR_MASK))
7123 		s->flags |= SF_ERR_CLICL;
7124 	if (!(s->flags & SF_FINST_MASK))
7125 		s->flags |= SF_FINST_D;
7126 	return 0;
7127 }
7128 
7129 
7130 static inline int
http_msg_forward_body(struct stream * s,struct http_msg * msg)7131 http_msg_forward_body(struct stream *s, struct http_msg *msg)
7132 {
7133 	struct channel *chn = msg->chn;
7134 	int ret;
7135 
7136 	/* Here we have the guarantee to be in HTTP_MSG_DATA or HTTP_MSG_ENDING state */
7137 
7138 	if (msg->msg_state == HTTP_MSG_ENDING)
7139 		goto ending;
7140 
7141 	/* Neither content-length, nor transfer-encoding was found, so we must
7142 	 * read the body until the server connection is closed. In that case, we
7143 	 * eat data as they come. Of course, this happens for response only. */
7144 	if (!(msg->flags & HTTP_MSGF_XFER_LEN)) {
7145 		unsigned long long len = (chn->buf->i - msg->next);
7146 		msg->chunk_len += len;
7147 		msg->body_len  += len;
7148 	}
7149 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg),
7150 			       /* default_ret */ MIN(msg->chunk_len, chn->buf->i - msg->next),
7151 			       /* on_error    */ goto error);
7152 	msg->next     += ret;
7153 	msg->chunk_len -= ret;
7154 	if (msg->chunk_len) {
7155 		/* input empty or output full */
7156 		if (chn->buf->i > msg->next)
7157 			chn->flags |= CF_WAKE_WRITE;
7158 		goto missing_data_or_waiting;
7159 	}
7160 
7161 	/* This check can only be true for a response. HTTP_MSGF_XFER_LEN is
7162 	 * always set for a request. */
7163 	if (!(msg->flags & HTTP_MSGF_XFER_LEN)) {
7164 		/* The server still sending data that should be filtered */
7165 		if (!(chn->flags & CF_SHUTR) && HAS_DATA_FILTERS(s, chn))
7166 			goto missing_data_or_waiting;
7167 		msg->msg_state = HTTP_MSG_TUNNEL;
7168 		goto ending;
7169 	}
7170 
7171 	msg->msg_state = HTTP_MSG_ENDING;
7172 
7173   ending:
7174 	/* we may have some pending data starting at res->buf->p such as a last
7175 	 * chunk of data or trailers. */
7176 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
7177 			       /* default_ret */ msg->next,
7178 			       /* on_error    */ goto error);
7179 	b_adv(chn->buf, ret);
7180 	msg->next -= ret;
7181 	if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0))
7182 		msg->sov -= ret;
7183 	if (msg->next)
7184 		goto waiting;
7185 
7186 	FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg),
7187 			 /* default_ret */ 1,
7188 			 /* on_error    */ goto error,
7189 			 /* on_wait     */ goto waiting);
7190 	if (msg->msg_state == HTTP_MSG_ENDING)
7191 		msg->msg_state = HTTP_MSG_DONE;
7192 	return 1;
7193 
7194   missing_data_or_waiting:
7195 	/* we may have some pending data starting at chn->buf->p */
7196 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
7197 			       /* default_ret */ msg->next,
7198 			       /* on_error    */ goto error);
7199 	b_adv(chn->buf, ret);
7200 	msg->next -= ret;
7201 	if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)
7202 		msg->sov -= ret;
7203 	if (!HAS_DATA_FILTERS(s, chn))
7204 		msg->chunk_len -= channel_forward(chn, msg->chunk_len);
7205   waiting:
7206 	return 0;
7207   error:
7208 	return -1;
7209 }
7210 
7211 static inline int
http_msg_forward_chunked_body(struct stream * s,struct http_msg * msg)7212 http_msg_forward_chunked_body(struct stream *s, struct http_msg *msg)
7213 {
7214 	struct channel *chn = msg->chn;
7215 	int ret;
7216 
7217 	/* Here we have the guarantee to be in one of the following state:
7218 	 * HTTP_MSG_DATA, HTTP_MSG_CHUNK_SIZE, HTTP_MSG_CHUNK_CRLF,
7219 	 * HTTP_MSG_TRAILERS or HTTP_MSG_ENDING. */
7220 
7221   switch_states:
7222 	switch (msg->msg_state) {
7223 		case HTTP_MSG_DATA:
7224 			ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg),
7225 					       /* default_ret */ MIN(msg->chunk_len, chn->buf->i - msg->next),
7226 					       /* on_error    */ goto error);
7227 			msg->next      += ret;
7228 			msg->chunk_len -= ret;
7229 			if (msg->chunk_len) {
7230 				/* input empty or output full */
7231 				if (chn->buf->i > msg->next)
7232 					chn->flags |= CF_WAKE_WRITE;
7233 				goto missing_data_or_waiting;
7234 			}
7235 
7236 			/* nothing left to forward for this chunk*/
7237 			msg->msg_state = HTTP_MSG_CHUNK_CRLF;
7238 			/* fall through for HTTP_MSG_CHUNK_CRLF */
7239 
7240 		case HTTP_MSG_CHUNK_CRLF:
7241 			/* we want the CRLF after the data */
7242 			ret = http_skip_chunk_crlf(msg);
7243 			if (ret == 0)
7244 				goto missing_data_or_waiting;
7245 			if (ret < 0)
7246 				goto chunk_parsing_error;
7247 			msg->next += ret;
7248 			msg->msg_state = HTTP_MSG_CHUNK_SIZE;
7249 			/* fall through for HTTP_MSG_CHUNK_SIZE */
7250 
7251 		case HTTP_MSG_CHUNK_SIZE:
7252 			/* read the chunk size and assign it to ->chunk_len,
7253 			 * then set ->next to point to the body and switch to
7254 			 * DATA or TRAILERS state.
7255 			 */
7256 			ret = http_parse_chunk_size(msg);
7257 			if (ret == 0)
7258 				goto missing_data_or_waiting;
7259 			if (ret < 0)
7260 				goto chunk_parsing_error;
7261 			msg->next += ret;
7262 			if (msg->chunk_len) {
7263 				msg->msg_state = HTTP_MSG_DATA;
7264 				goto switch_states;
7265 			}
7266 			msg->msg_state = HTTP_MSG_TRAILERS;
7267 			/* fall through for HTTP_MSG_TRAILERS */
7268 
7269 		case HTTP_MSG_TRAILERS:
7270 			ret = http_forward_trailers(msg);
7271 			if (ret < 0)
7272 				goto chunk_parsing_error;
7273 			FLT_STRM_DATA_CB(s, chn, flt_http_chunk_trailers(s, msg),
7274 					 /* default_ret */ 1,
7275 					 /* on_error    */ goto error);
7276 			msg->next += msg->sol;
7277 			if (!ret)
7278 				goto missing_data_or_waiting;
7279 			break;
7280 
7281 		case HTTP_MSG_ENDING:
7282 			goto ending;
7283 
7284 		default:
7285 			/* This should no happen in this function */
7286 			goto error;
7287 	}
7288 
7289 	msg->msg_state = HTTP_MSG_ENDING;
7290   ending:
7291 	/* we may have some pending data starting at res->buf->p such as a last
7292 	 * chunk of data or trailers. */
7293 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
7294 			  /* default_ret */ msg->next,
7295 			  /* on_error    */ goto error);
7296 	b_adv(chn->buf, ret);
7297 	msg->next -= ret;
7298 	if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0))
7299 		msg->sov -= ret;
7300 	if (msg->next)
7301 		goto waiting;
7302 
7303 	FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg),
7304 		    /* default_ret */ 1,
7305 		    /* on_error    */ goto error,
7306 		    /* on_wait     */ goto waiting);
7307 	msg->msg_state = HTTP_MSG_DONE;
7308 	return 1;
7309 
7310   missing_data_or_waiting:
7311 	/* we may have some pending data starting at chn->buf->p */
7312 	ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next),
7313 			  /* default_ret */ msg->next,
7314 			  /* on_error    */ goto error);
7315 	b_adv(chn->buf, ret);
7316 	msg->next -= ret;
7317 	if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)
7318 		msg->sov -= ret;
7319 	if (!HAS_DATA_FILTERS(s, chn))
7320 		msg->chunk_len -= channel_forward(chn, msg->chunk_len);
7321   waiting:
7322 	return 0;
7323 
7324   chunk_parsing_error:
7325 	if (msg->err_pos >= 0) {
7326 		if (chn->flags & CF_ISRESP)
7327 			http_capture_bad_message(&s->be->invalid_rep, s, msg,
7328 						 msg->msg_state, strm_fe(s));
7329 		else
7330 			http_capture_bad_message(&strm_fe(s)->invalid_req, s,
7331 						 msg, msg->msg_state, s->be);
7332 	}
7333   error:
7334 	return -1;
7335 }
7336 
7337 
7338 /* Iterate the same filter through all request headers.
7339  * Returns 1 if this filter can be stopped upon return, otherwise 0.
7340  * Since it can manage the switch to another backend, it updates the per-proxy
7341  * DENY stats.
7342  */
apply_filter_to_req_headers(struct stream * s,struct channel * req,struct hdr_exp * exp)7343 int apply_filter_to_req_headers(struct stream *s, struct channel *req, struct hdr_exp *exp)
7344 {
7345 	char *cur_ptr, *cur_end, *cur_next;
7346 	int cur_idx, old_idx, last_hdr;
7347 	struct http_txn *txn = s->txn;
7348 	struct hdr_idx_elem *cur_hdr;
7349 	int delta;
7350 
7351 	last_hdr = 0;
7352 
7353 	cur_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
7354 	old_idx = 0;
7355 
7356 	while (!last_hdr) {
7357 		if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
7358 			return 1;
7359 		else if (unlikely(txn->flags & TX_CLALLOW) &&
7360 			 (exp->action == ACT_ALLOW ||
7361 			  exp->action == ACT_DENY ||
7362 			  exp->action == ACT_TARPIT))
7363 			return 0;
7364 
7365 		cur_idx = txn->hdr_idx.v[old_idx].next;
7366 		if (!cur_idx)
7367 			break;
7368 
7369 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
7370 		cur_ptr  = cur_next;
7371 		cur_end  = cur_ptr + cur_hdr->len;
7372 		cur_next = cur_end + cur_hdr->cr + 1;
7373 
7374 		/* Now we have one header between cur_ptr and cur_end,
7375 		 * and the next header starts at cur_next.
7376 		 */
7377 
7378 		if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
7379 			switch (exp->action) {
7380 			case ACT_ALLOW:
7381 				txn->flags |= TX_CLALLOW;
7382 				last_hdr = 1;
7383 				break;
7384 
7385 			case ACT_DENY:
7386 				txn->flags |= TX_CLDENY;
7387 				last_hdr = 1;
7388 				break;
7389 
7390 			case ACT_TARPIT:
7391 				txn->flags |= TX_CLTARPIT;
7392 				last_hdr = 1;
7393 				break;
7394 
7395 			case ACT_REPLACE:
7396 				trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
7397 				if (trash.len < 0)
7398 					return -1;
7399 
7400 				delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len);
7401 				/* FIXME: if the user adds a newline in the replacement, the
7402 				 * index will not be recalculated for now, and the new line
7403 				 * will not be counted as a new header.
7404 				 */
7405 
7406 				cur_end += delta;
7407 				cur_next += delta;
7408 				cur_hdr->len += delta;
7409 				http_msg_move_end(&txn->req, delta);
7410 				break;
7411 
7412 			case ACT_REMOVE:
7413 				delta = buffer_replace2(req->buf, cur_ptr, cur_next, NULL, 0);
7414 				cur_next += delta;
7415 
7416 				http_msg_move_end(&txn->req, delta);
7417 				txn->hdr_idx.v[old_idx].next = cur_hdr->next;
7418 				txn->hdr_idx.used--;
7419 				cur_hdr->len = 0;
7420 				cur_end = NULL; /* null-term has been rewritten */
7421 				cur_idx = old_idx;
7422 				break;
7423 
7424 			}
7425 		}
7426 
7427 		/* keep the link from this header to next one in case of later
7428 		 * removal of next header.
7429 		 */
7430 		old_idx = cur_idx;
7431 	}
7432 	return 0;
7433 }
7434 
7435 
7436 /* Apply the filter to the request line.
7437  * Returns 0 if nothing has been done, 1 if the filter has been applied,
7438  * or -1 if a replacement resulted in an invalid request line.
7439  * Since it can manage the switch to another backend, it updates the per-proxy
7440  * DENY stats.
7441  */
apply_filter_to_req_line(struct stream * s,struct channel * req,struct hdr_exp * exp)7442 int apply_filter_to_req_line(struct stream *s, struct channel *req, struct hdr_exp *exp)
7443 {
7444 	char *cur_ptr, *cur_end;
7445 	int done;
7446 	struct http_txn *txn = s->txn;
7447 	int delta;
7448 
7449 	if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT)))
7450 		return 1;
7451 	else if (unlikely(txn->flags & TX_CLALLOW) &&
7452 		 (exp->action == ACT_ALLOW ||
7453 		  exp->action == ACT_DENY ||
7454 		  exp->action == ACT_TARPIT))
7455 		return 0;
7456 	else if (exp->action == ACT_REMOVE)
7457 		return 0;
7458 
7459 	done = 0;
7460 
7461 	cur_ptr = req->buf->p;
7462 	cur_end = cur_ptr + txn->req.sl.rq.l;
7463 
7464 	/* Now we have the request line between cur_ptr and cur_end */
7465 
7466 	if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
7467 		switch (exp->action) {
7468 		case ACT_ALLOW:
7469 			txn->flags |= TX_CLALLOW;
7470 			done = 1;
7471 			break;
7472 
7473 		case ACT_DENY:
7474 			txn->flags |= TX_CLDENY;
7475 			done = 1;
7476 			break;
7477 
7478 		case ACT_TARPIT:
7479 			txn->flags |= TX_CLTARPIT;
7480 			done = 1;
7481 			break;
7482 
7483 		case ACT_REPLACE:
7484 			trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
7485 			if (trash.len < 0)
7486 				return -1;
7487 
7488 			delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len);
7489 			/* FIXME: if the user adds a newline in the replacement, the
7490 			 * index will not be recalculated for now, and the new line
7491 			 * will not be counted as a new header.
7492 			 */
7493 
7494 			http_msg_move_end(&txn->req, delta);
7495 			cur_end += delta;
7496 			cur_end = (char *)http_parse_reqline(&txn->req,
7497 							     HTTP_MSG_RQMETH,
7498 							     cur_ptr, cur_end + 1,
7499 							     NULL, NULL);
7500 			if (unlikely(!cur_end))
7501 				return -1;
7502 
7503 			/* we have a full request and we know that we have either a CR
7504 			 * or an LF at <ptr>.
7505 			 */
7506 			txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l);
7507 			hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r');
7508 			/* there is no point trying this regex on headers */
7509 			return 1;
7510 		}
7511 	}
7512 	return done;
7513 }
7514 
7515 
7516 
7517 /*
7518  * Apply all the req filters of proxy <px> to all headers in buffer <req> of stream <s>.
7519  * Returns 0 if everything is alright, or -1 in case a replacement lead to an
7520  * unparsable request. Since it can manage the switch to another backend, it
7521  * updates the per-proxy DENY stats.
7522  */
apply_filters_to_request(struct stream * s,struct channel * req,struct proxy * px)7523 int apply_filters_to_request(struct stream *s, struct channel *req, struct proxy *px)
7524 {
7525 	struct session *sess = s->sess;
7526 	struct http_txn *txn = s->txn;
7527 	struct hdr_exp *exp;
7528 
7529 	for (exp = px->req_exp; exp; exp = exp->next) {
7530 		int ret;
7531 
7532 		/*
7533 		 * The interleaving of transformations and verdicts
7534 		 * makes it difficult to decide to continue or stop
7535 		 * the evaluation.
7536 		 */
7537 
7538 		if (txn->flags & (TX_CLDENY|TX_CLTARPIT))
7539 			break;
7540 
7541 		if ((txn->flags & TX_CLALLOW) &&
7542 		    (exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
7543 		     exp->action == ACT_TARPIT || exp->action == ACT_PASS))
7544 			continue;
7545 
7546 		/* if this filter had a condition, evaluate it now and skip to
7547 		 * next filter if the condition does not match.
7548 		 */
7549 		if (exp->cond) {
7550 			ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
7551 			ret = acl_pass(ret);
7552 			if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS)
7553 				ret = !ret;
7554 
7555 			if (!ret)
7556 				continue;
7557 		}
7558 
7559 		/* Apply the filter to the request line. */
7560 		ret = apply_filter_to_req_line(s, req, exp);
7561 		if (unlikely(ret < 0))
7562 			return -1;
7563 
7564 		if (likely(ret == 0)) {
7565 			/* The filter did not match the request, it can be
7566 			 * iterated through all headers.
7567 			 */
7568 			if (unlikely(apply_filter_to_req_headers(s, req, exp) < 0))
7569 				return -1;
7570 		}
7571 	}
7572 	return 0;
7573 }
7574 
7575 
7576 /* Find the end of a cookie value contained between <s> and <e>. It works the
7577  * same way as with headers above except that the semi-colon also ends a token.
7578  * See RFC2965 for more information. Note that it requires a valid header to
7579  * return a valid result.
7580  */
find_cookie_value_end(char * s,const char * e)7581 char *find_cookie_value_end(char *s, const char *e)
7582 {
7583 	int quoted, qdpair;
7584 
7585 	quoted = qdpair = 0;
7586 	for (; s < e; s++) {
7587 		if (qdpair)                    qdpair = 0;
7588 		else if (quoted) {
7589 			if (*s == '\\')        qdpair = 1;
7590 			else if (*s == '"')    quoted = 0;
7591 		}
7592 		else if (*s == '"')            quoted = 1;
7593 		else if (*s == ',' || *s == ';') return s;
7594 	}
7595 	return s;
7596 }
7597 
7598 /* Delete a value in a header between delimiters <from> and <next> in buffer
7599  * <buf>. The number of characters displaced is returned, and the pointer to
7600  * the first delimiter is updated if required. The function tries as much as
7601  * possible to respect the following principles :
7602  *  - replace <from> delimiter by the <next> one unless <from> points to a
7603  *    colon, in which case <next> is simply removed
7604  *  - set exactly one space character after the new first delimiter, unless
7605  *    there are not enough characters in the block being moved to do so.
7606  *  - remove unneeded spaces before the previous delimiter and after the new
7607  *    one.
7608  *
7609  * It is the caller's responsibility to ensure that :
7610  *   - <from> points to a valid delimiter or the colon ;
7611  *   - <next> points to a valid delimiter or the final CR/LF ;
7612  *   - there are non-space chars before <from> ;
7613  *   - there is a CR/LF at or after <next>.
7614  */
del_hdr_value(struct buffer * buf,char ** from,char * next)7615 int del_hdr_value(struct buffer *buf, char **from, char *next)
7616 {
7617 	char *prev = *from;
7618 
7619 	if (*prev == ':') {
7620 		/* We're removing the first value, preserve the colon and add a
7621 		 * space if possible.
7622 		 */
7623 		if (!HTTP_IS_CRLF(*next))
7624 			next++;
7625 		prev++;
7626 		if (prev < next)
7627 			*prev++ = ' ';
7628 
7629 		while (HTTP_IS_SPHT(*next))
7630 			next++;
7631 	} else {
7632 		/* Remove useless spaces before the old delimiter. */
7633 		while (HTTP_IS_SPHT(*(prev-1)))
7634 			prev--;
7635 		*from = prev;
7636 
7637 		/* copy the delimiter and if possible a space if we're
7638 		 * not at the end of the line.
7639 		 */
7640 		if (!HTTP_IS_CRLF(*next)) {
7641 			*prev++ = *next++;
7642 			if (prev + 1 < next)
7643 				*prev++ = ' ';
7644 			while (HTTP_IS_SPHT(*next))
7645 				next++;
7646 		}
7647 	}
7648 	return buffer_replace2(buf, prev, next, NULL, 0);
7649 }
7650 
7651 /*
7652  * Manage client-side cookie. It can impact performance by about 2% so it is
7653  * desirable to call it only when needed. This code is quite complex because
7654  * of the multiple very crappy and ambiguous syntaxes we have to support. it
7655  * highly recommended not to touch this part without a good reason !
7656  */
manage_client_side_cookies(struct stream * s,struct channel * req)7657 void manage_client_side_cookies(struct stream *s, struct channel *req)
7658 {
7659 	struct http_txn *txn = s->txn;
7660 	struct session *sess = s->sess;
7661 	int preserve_hdr;
7662 	int cur_idx, old_idx;
7663 	char *hdr_beg, *hdr_end, *hdr_next, *del_from;
7664 	char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
7665 
7666 	/* Iterate through the headers, we start with the start line. */
7667 	old_idx = 0;
7668 	hdr_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
7669 
7670 	while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
7671 		struct hdr_idx_elem *cur_hdr;
7672 		int val;
7673 
7674 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
7675 		hdr_beg  = hdr_next;
7676 		hdr_end  = hdr_beg + cur_hdr->len;
7677 		hdr_next = hdr_end + cur_hdr->cr + 1;
7678 
7679 		/* We have one full header between hdr_beg and hdr_end, and the
7680 		 * next header starts at hdr_next. We're only interested in
7681 		 * "Cookie:" headers.
7682 		 */
7683 
7684 		val = http_header_match2(hdr_beg, hdr_end, "Cookie", 6);
7685 		if (!val) {
7686 			old_idx = cur_idx;
7687 			continue;
7688 		}
7689 
7690 		del_from = NULL;  /* nothing to be deleted */
7691 		preserve_hdr = 0; /* assume we may kill the whole header */
7692 
7693 		/* Now look for cookies. Conforming to RFC2109, we have to support
7694 		 * attributes whose name begin with a '$', and associate them with
7695 		 * the right cookie, if we want to delete this cookie.
7696 		 * So there are 3 cases for each cookie read :
7697 		 * 1) it's a special attribute, beginning with a '$' : ignore it.
7698 		 * 2) it's a server id cookie that we *MAY* want to delete : save
7699 		 *    some pointers on it (last semi-colon, beginning of cookie...)
7700 		 * 3) it's an application cookie : we *MAY* have to delete a previous
7701 		 *    "special" cookie.
7702 		 * At the end of loop, if a "special" cookie remains, we may have to
7703 		 * remove it. If no application cookie persists in the header, we
7704 		 * *MUST* delete it.
7705 		 *
7706 		 * Note: RFC2965 is unclear about the processing of spaces around
7707 		 * the equal sign in the ATTR=VALUE form. A careful inspection of
7708 		 * the RFC explicitly allows spaces before it, and not within the
7709 		 * tokens (attrs or values). An inspection of RFC2109 allows that
7710 		 * too but section 10.1.3 lets one think that spaces may be allowed
7711 		 * after the equal sign too, resulting in some (rare) buggy
7712 		 * implementations trying to do that. So let's do what servers do.
7713 		 * Latest ietf draft forbids spaces all around. Also, earlier RFCs
7714 		 * allowed quoted strings in values, with any possible character
7715 		 * after a backslash, including control chars and delimitors, which
7716 		 * causes parsing to become ambiguous. Browsers also allow spaces
7717 		 * within values even without quotes.
7718 		 *
7719 		 * We have to keep multiple pointers in order to support cookie
7720 		 * removal at the beginning, middle or end of header without
7721 		 * corrupting the header. All of these headers are valid :
7722 		 *
7723 		 * Cookie:NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3\r\n
7724 		 * Cookie:NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3\r\n
7725 		 * Cookie:    NAME1  =  VALUE 1  ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n
7726 		 * |     |    |    | |  |      | |                                |
7727 		 * |     |    |    | |  |      | |                     hdr_end <--+
7728 		 * |     |    |    | |  |      | +--> next
7729 		 * |     |    |    | |  |      +----> val_end
7730 		 * |     |    |    | |  +-----------> val_beg
7731 		 * |     |    |    | +--------------> equal
7732 		 * |     |    |    +----------------> att_end
7733 		 * |     |    +---------------------> att_beg
7734 		 * |     +--------------------------> prev
7735 		 * +--------------------------------> hdr_beg
7736 		 */
7737 
7738 		for (prev = hdr_beg + 6; prev < hdr_end; prev = next) {
7739 			/* Iterate through all cookies on this line */
7740 
7741 			/* find att_beg */
7742 			att_beg = prev + 1;
7743 			while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
7744 				att_beg++;
7745 
7746 			/* find att_end : this is the first character after the last non
7747 			 * space before the equal. It may be equal to hdr_end.
7748 			 */
7749 			equal = att_end = att_beg;
7750 
7751 			while (equal < hdr_end) {
7752 				if (*equal == '=' || *equal == ',' || *equal == ';')
7753 					break;
7754 				if (HTTP_IS_SPHT(*equal++))
7755 					continue;
7756 				att_end = equal;
7757 			}
7758 
7759 			/* here, <equal> points to '=', a delimitor or the end. <att_end>
7760 			 * is between <att_beg> and <equal>, both may be identical.
7761 			 */
7762 
7763 			/* look for end of cookie if there is an equal sign */
7764 			if (equal < hdr_end && *equal == '=') {
7765 				/* look for the beginning of the value */
7766 				val_beg = equal + 1;
7767 				while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
7768 					val_beg++;
7769 
7770 				/* find the end of the value, respecting quotes */
7771 				next = find_cookie_value_end(val_beg, hdr_end);
7772 
7773 				/* make val_end point to the first white space or delimitor after the value */
7774 				val_end = next;
7775 				while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
7776 					val_end--;
7777 			} else {
7778 				val_beg = val_end = next = equal;
7779 			}
7780 
7781 			/* We have nothing to do with attributes beginning with '$'. However,
7782 			 * they will automatically be removed if a header before them is removed,
7783 			 * since they're supposed to be linked together.
7784 			 */
7785 			if (*att_beg == '$')
7786 				continue;
7787 
7788 			/* Ignore cookies with no equal sign */
7789 			if (equal == next) {
7790 				/* This is not our cookie, so we must preserve it. But if we already
7791 				 * scheduled another cookie for removal, we cannot remove the
7792 				 * complete header, but we can remove the previous block itself.
7793 				 */
7794 				preserve_hdr = 1;
7795 				if (del_from != NULL) {
7796 					int delta = del_hdr_value(req->buf, &del_from, prev);
7797 					val_end  += delta;
7798 					next     += delta;
7799 					hdr_end  += delta;
7800 					hdr_next += delta;
7801 					cur_hdr->len += delta;
7802 					http_msg_move_end(&txn->req, delta);
7803 					prev     = del_from;
7804 					del_from = NULL;
7805 				}
7806 				continue;
7807 			}
7808 
7809 			/* if there are spaces around the equal sign, we need to
7810 			 * strip them otherwise we'll get trouble for cookie captures,
7811 			 * or even for rewrites. Since this happens extremely rarely,
7812 			 * it does not hurt performance.
7813 			 */
7814 			if (unlikely(att_end != equal || val_beg > equal + 1)) {
7815 				int stripped_before = 0;
7816 				int stripped_after = 0;
7817 
7818 				if (att_end != equal) {
7819 					stripped_before = buffer_replace2(req->buf, att_end, equal, NULL, 0);
7820 					equal   += stripped_before;
7821 					val_beg += stripped_before;
7822 				}
7823 
7824 				if (val_beg > equal + 1) {
7825 					stripped_after = buffer_replace2(req->buf, equal + 1, val_beg, NULL, 0);
7826 					val_beg += stripped_after;
7827 					stripped_before += stripped_after;
7828 				}
7829 
7830 				val_end      += stripped_before;
7831 				next         += stripped_before;
7832 				hdr_end      += stripped_before;
7833 				hdr_next     += stripped_before;
7834 				cur_hdr->len += stripped_before;
7835 				http_msg_move_end(&txn->req, stripped_before);
7836 			}
7837 			/* now everything is as on the diagram above */
7838 
7839 			/* First, let's see if we want to capture this cookie. We check
7840 			 * that we don't already have a client side cookie, because we
7841 			 * can only capture one. Also as an optimisation, we ignore
7842 			 * cookies shorter than the declared name.
7843 			 */
7844 			if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL &&
7845 			    (val_end - att_beg >= sess->fe->capture_namelen) &&
7846 			    memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
7847 				int log_len = val_end - att_beg;
7848 
7849 				if ((txn->cli_cookie = pool_alloc2(pool2_capture)) == NULL) {
7850 					Alert("HTTP logging : out of memory.\n");
7851 				} else {
7852 					if (log_len > sess->fe->capture_len)
7853 						log_len = sess->fe->capture_len;
7854 					memcpy(txn->cli_cookie, att_beg, log_len);
7855 					txn->cli_cookie[log_len] = 0;
7856 				}
7857 			}
7858 
7859 			/* Persistence cookies in passive, rewrite or insert mode have the
7860 			 * following form :
7861 			 *
7862 			 *    Cookie: NAME=SRV[|<lastseen>[|<firstseen>]]
7863 			 *
7864 			 * For cookies in prefix mode, the form is :
7865 			 *
7866 			 *    Cookie: NAME=SRV~VALUE
7867 			 */
7868 			if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
7869 			    (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
7870 				struct server *srv = s->be->srv;
7871 				char *delim;
7872 
7873 				/* if we're in cookie prefix mode, we'll search the delimitor so that we
7874 				 * have the server ID between val_beg and delim, and the original cookie between
7875 				 * delim+1 and val_end. Otherwise, delim==val_end :
7876 				 *
7877 				 * Cookie: NAME=SRV;          # in all but prefix modes
7878 				 * Cookie: NAME=SRV~OPAQUE ;  # in prefix mode
7879 				 * |      ||   ||  |      |+-> next
7880 				 * |      ||   ||  |      +--> val_end
7881 				 * |      ||   ||  +---------> delim
7882 				 * |      ||   |+------------> val_beg
7883 				 * |      ||   +-------------> att_end = equal
7884 				 * |      |+-----------------> att_beg
7885 				 * |      +------------------> prev
7886 				 * +-------------------------> hdr_beg
7887 				 */
7888 
7889 				if (s->be->ck_opts & PR_CK_PFX) {
7890 					for (delim = val_beg; delim < val_end; delim++)
7891 						if (*delim == COOKIE_DELIM)
7892 							break;
7893 				} else {
7894 					char *vbar1;
7895 					delim = val_end;
7896 					/* Now check if the cookie contains a date field, which would
7897 					 * appear after a vertical bar ('|') just after the server name
7898 					 * and before the delimiter.
7899 					 */
7900 					vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg);
7901 					if (vbar1) {
7902 						/* OK, so left of the bar is the server's cookie and
7903 						 * right is the last seen date. It is a base64 encoded
7904 						 * 30-bit value representing the UNIX date since the
7905 						 * epoch in 4-second quantities.
7906 						 */
7907 						int val;
7908 						delim = vbar1++;
7909 						if (val_end - vbar1 >= 5) {
7910 							val = b64tos30(vbar1);
7911 							if (val > 0)
7912 								txn->cookie_last_date = val << 2;
7913 						}
7914 						/* look for a second vertical bar */
7915 						vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1);
7916 						if (vbar1 && (val_end - vbar1 > 5)) {
7917 							val = b64tos30(vbar1 + 1);
7918 							if (val > 0)
7919 								txn->cookie_first_date = val << 2;
7920 						}
7921 					}
7922 				}
7923 
7924 				/* if the cookie has an expiration date and the proxy wants to check
7925 				 * it, then we do that now. We first check if the cookie is too old,
7926 				 * then only if it has expired. We detect strict overflow because the
7927 				 * time resolution here is not great (4 seconds). Cookies with dates
7928 				 * in the future are ignored if their offset is beyond one day. This
7929 				 * allows an admin to fix timezone issues without expiring everyone
7930 				 * and at the same time avoids keeping unwanted side effects for too
7931 				 * long.
7932 				 */
7933 				if (txn->cookie_first_date && s->be->cookie_maxlife &&
7934 				    (((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) ||
7935 				     ((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) {
7936 					txn->flags &= ~TX_CK_MASK;
7937 					txn->flags |= TX_CK_OLD;
7938 					delim = val_beg; // let's pretend we have not found the cookie
7939 					txn->cookie_first_date = 0;
7940 					txn->cookie_last_date = 0;
7941 				}
7942 				else if (txn->cookie_last_date && s->be->cookie_maxidle &&
7943 					 (((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) ||
7944 					  ((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) {
7945 					txn->flags &= ~TX_CK_MASK;
7946 					txn->flags |= TX_CK_EXPIRED;
7947 					delim = val_beg; // let's pretend we have not found the cookie
7948 					txn->cookie_first_date = 0;
7949 					txn->cookie_last_date = 0;
7950 				}
7951 
7952 				/* Here, we'll look for the first running server which supports the cookie.
7953 				 * This allows to share a same cookie between several servers, for example
7954 				 * to dedicate backup servers to specific servers only.
7955 				 * However, to prevent clients from sticking to cookie-less backup server
7956 				 * when they have incidentely learned an empty cookie, we simply ignore
7957 				 * empty cookies and mark them as invalid.
7958 				 * The same behaviour is applied when persistence must be ignored.
7959 				 */
7960 				if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
7961 					srv = NULL;
7962 
7963 				while (srv) {
7964 					if (srv->cookie && (srv->cklen == delim - val_beg) &&
7965 					    !memcmp(val_beg, srv->cookie, delim - val_beg)) {
7966 						if ((srv->state != SRV_ST_STOPPED) ||
7967 						    (s->be->options & PR_O_PERSIST) ||
7968 						    (s->flags & SF_FORCE_PRST)) {
7969 							/* we found the server and we can use it */
7970 							txn->flags &= ~TX_CK_MASK;
7971 							txn->flags |= (srv->state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN;
7972 							s->flags |= SF_DIRECT | SF_ASSIGNED;
7973 							s->target = &srv->obj_type;
7974 							break;
7975 						} else {
7976 							/* we found a server, but it's down,
7977 							 * mark it as such and go on in case
7978 							 * another one is available.
7979 							 */
7980 							txn->flags &= ~TX_CK_MASK;
7981 							txn->flags |= TX_CK_DOWN;
7982 						}
7983 					}
7984 					srv = srv->next;
7985 				}
7986 
7987 				if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) {
7988 					/* no server matched this cookie or we deliberately skipped it */
7989 					txn->flags &= ~TX_CK_MASK;
7990 					if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
7991 						txn->flags |= TX_CK_UNUSED;
7992 					else
7993 						txn->flags |= TX_CK_INVALID;
7994 				}
7995 
7996 				/* depending on the cookie mode, we may have to either :
7997 				 * - delete the complete cookie if we're in insert+indirect mode, so that
7998 				 *   the server never sees it ;
7999 				 * - remove the server id from the cookie value, and tag the cookie as an
8000 				 *   application cookie so that it does not get accidentely removed later,
8001 				 *   if we're in cookie prefix mode
8002 				 */
8003 				if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) {
8004 					int delta; /* negative */
8005 
8006 					delta = buffer_replace2(req->buf, val_beg, delim + 1, NULL, 0);
8007 					val_end  += delta;
8008 					next     += delta;
8009 					hdr_end  += delta;
8010 					hdr_next += delta;
8011 					cur_hdr->len += delta;
8012 					http_msg_move_end(&txn->req, delta);
8013 
8014 					del_from = NULL;
8015 					preserve_hdr = 1; /* we want to keep this cookie */
8016 				}
8017 				else if (del_from == NULL &&
8018 					 (s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) {
8019 					del_from = prev;
8020 				}
8021 			} else {
8022 				/* This is not our cookie, so we must preserve it. But if we already
8023 				 * scheduled another cookie for removal, we cannot remove the
8024 				 * complete header, but we can remove the previous block itself.
8025 				 */
8026 				preserve_hdr = 1;
8027 
8028 				if (del_from != NULL) {
8029 					int delta = del_hdr_value(req->buf, &del_from, prev);
8030 					if (att_beg >= del_from)
8031 						att_beg += delta;
8032 					if (att_end >= del_from)
8033 						att_end += delta;
8034 					val_beg  += delta;
8035 					val_end  += delta;
8036 					next     += delta;
8037 					hdr_end  += delta;
8038 					hdr_next += delta;
8039 					cur_hdr->len += delta;
8040 					http_msg_move_end(&txn->req, delta);
8041 					prev     = del_from;
8042 					del_from = NULL;
8043 				}
8044 			}
8045 
8046 			/* continue with next cookie on this header line */
8047 			att_beg = next;
8048 		} /* for each cookie */
8049 
8050 		/* There are no more cookies on this line.
8051 		 * We may still have one (or several) marked for deletion at the
8052 		 * end of the line. We must do this now in two ways :
8053 		 *  - if some cookies must be preserved, we only delete from the
8054 		 *    mark to the end of line ;
8055 		 *  - if nothing needs to be preserved, simply delete the whole header
8056 		 */
8057 		if (del_from) {
8058 			int delta;
8059 			if (preserve_hdr) {
8060 				delta = del_hdr_value(req->buf, &del_from, hdr_end);
8061 				hdr_end = del_from;
8062 				cur_hdr->len += delta;
8063 			} else {
8064 				delta = buffer_replace2(req->buf, hdr_beg, hdr_next, NULL, 0);
8065 
8066 				/* FIXME: this should be a separate function */
8067 				txn->hdr_idx.v[old_idx].next = cur_hdr->next;
8068 				txn->hdr_idx.used--;
8069 				cur_hdr->len = 0;
8070 				cur_idx = old_idx;
8071 			}
8072 			hdr_next += delta;
8073 			http_msg_move_end(&txn->req, delta);
8074 		}
8075 
8076 		/* check next header */
8077 		old_idx = cur_idx;
8078 	}
8079 }
8080 
8081 
8082 /* Iterate the same filter through all response headers contained in <rtr>.
8083  * Returns 1 if this filter can be stopped upon return, otherwise 0.
8084  */
apply_filter_to_resp_headers(struct stream * s,struct channel * rtr,struct hdr_exp * exp)8085 int apply_filter_to_resp_headers(struct stream *s, struct channel *rtr, struct hdr_exp *exp)
8086 {
8087 	char *cur_ptr, *cur_end, *cur_next;
8088 	int cur_idx, old_idx, last_hdr;
8089 	struct http_txn *txn = s->txn;
8090 	struct hdr_idx_elem *cur_hdr;
8091 	int delta;
8092 
8093 	last_hdr = 0;
8094 
8095 	cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
8096 	old_idx = 0;
8097 
8098 	while (!last_hdr) {
8099 		if (unlikely(txn->flags & TX_SVDENY))
8100 			return 1;
8101 		else if (unlikely(txn->flags & TX_SVALLOW) &&
8102 			 (exp->action == ACT_ALLOW ||
8103 			  exp->action == ACT_DENY))
8104 			return 0;
8105 
8106 		cur_idx = txn->hdr_idx.v[old_idx].next;
8107 		if (!cur_idx)
8108 			break;
8109 
8110 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
8111 		cur_ptr  = cur_next;
8112 		cur_end  = cur_ptr + cur_hdr->len;
8113 		cur_next = cur_end + cur_hdr->cr + 1;
8114 
8115 		/* Now we have one header between cur_ptr and cur_end,
8116 		 * and the next header starts at cur_next.
8117 		 */
8118 
8119 		if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
8120 			switch (exp->action) {
8121 			case ACT_ALLOW:
8122 				txn->flags |= TX_SVALLOW;
8123 				last_hdr = 1;
8124 				break;
8125 
8126 			case ACT_DENY:
8127 				txn->flags |= TX_SVDENY;
8128 				last_hdr = 1;
8129 				break;
8130 
8131 			case ACT_REPLACE:
8132 				trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
8133 				if (trash.len < 0)
8134 					return -1;
8135 
8136 				delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len);
8137 				/* FIXME: if the user adds a newline in the replacement, the
8138 				 * index will not be recalculated for now, and the new line
8139 				 * will not be counted as a new header.
8140 				 */
8141 
8142 				cur_end += delta;
8143 				cur_next += delta;
8144 				cur_hdr->len += delta;
8145 				http_msg_move_end(&txn->rsp, delta);
8146 				break;
8147 
8148 			case ACT_REMOVE:
8149 				delta = buffer_replace2(rtr->buf, cur_ptr, cur_next, NULL, 0);
8150 				cur_next += delta;
8151 
8152 				http_msg_move_end(&txn->rsp, delta);
8153 				txn->hdr_idx.v[old_idx].next = cur_hdr->next;
8154 				txn->hdr_idx.used--;
8155 				cur_hdr->len = 0;
8156 				cur_end = NULL; /* null-term has been rewritten */
8157 				cur_idx = old_idx;
8158 				break;
8159 
8160 			}
8161 		}
8162 
8163 		/* keep the link from this header to next one in case of later
8164 		 * removal of next header.
8165 		 */
8166 		old_idx = cur_idx;
8167 	}
8168 	return 0;
8169 }
8170 
8171 
8172 /* Apply the filter to the status line in the response buffer <rtr>.
8173  * Returns 0 if nothing has been done, 1 if the filter has been applied,
8174  * or -1 if a replacement resulted in an invalid status line.
8175  */
apply_filter_to_sts_line(struct stream * s,struct channel * rtr,struct hdr_exp * exp)8176 int apply_filter_to_sts_line(struct stream *s, struct channel *rtr, struct hdr_exp *exp)
8177 {
8178 	char *cur_ptr, *cur_end;
8179 	int done;
8180 	struct http_txn *txn = s->txn;
8181 	int delta;
8182 
8183 
8184 	if (unlikely(txn->flags & TX_SVDENY))
8185 		return 1;
8186 	else if (unlikely(txn->flags & TX_SVALLOW) &&
8187 		 (exp->action == ACT_ALLOW ||
8188 		  exp->action == ACT_DENY))
8189 		return 0;
8190 	else if (exp->action == ACT_REMOVE)
8191 		return 0;
8192 
8193 	done = 0;
8194 
8195 	cur_ptr = rtr->buf->p;
8196 	cur_end = cur_ptr + txn->rsp.sl.st.l;
8197 
8198 	/* Now we have the status line between cur_ptr and cur_end */
8199 
8200 	if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) {
8201 		switch (exp->action) {
8202 		case ACT_ALLOW:
8203 			txn->flags |= TX_SVALLOW;
8204 			done = 1;
8205 			break;
8206 
8207 		case ACT_DENY:
8208 			txn->flags |= TX_SVDENY;
8209 			done = 1;
8210 			break;
8211 
8212 		case ACT_REPLACE:
8213 			trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch);
8214 			if (trash.len < 0)
8215 				return -1;
8216 
8217 			delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len);
8218 			/* FIXME: if the user adds a newline in the replacement, the
8219 			 * index will not be recalculated for now, and the new line
8220 			 * will not be counted as a new header.
8221 			 */
8222 
8223 			http_msg_move_end(&txn->rsp, delta);
8224 			cur_end += delta;
8225 			cur_end = (char *)http_parse_stsline(&txn->rsp,
8226 							     HTTP_MSG_RPVER,
8227 							     cur_ptr, cur_end + 1,
8228 							     NULL, NULL);
8229 			if (unlikely(!cur_end))
8230 				return -1;
8231 
8232 			/* we have a full respnse and we know that we have either a CR
8233 			 * or an LF at <ptr>.
8234 			 */
8235 			txn->status = strl2ui(rtr->buf->p + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l);
8236 			hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.st.l, *cur_end == '\r');
8237 			/* there is no point trying this regex on headers */
8238 			return 1;
8239 		}
8240 	}
8241 	return done;
8242 }
8243 
8244 
8245 
8246 /*
8247  * Apply all the resp filters of proxy <px> to all headers in buffer <rtr> of stream <s>.
8248  * Returns 0 if everything is alright, or -1 in case a replacement lead to an
8249  * unparsable response.
8250  */
apply_filters_to_response(struct stream * s,struct channel * rtr,struct proxy * px)8251 int apply_filters_to_response(struct stream *s, struct channel *rtr, struct proxy *px)
8252 {
8253 	struct session *sess = s->sess;
8254 	struct http_txn *txn = s->txn;
8255 	struct hdr_exp *exp;
8256 
8257 	for (exp = px->rsp_exp; exp; exp = exp->next) {
8258 		int ret;
8259 
8260 		/*
8261 		 * The interleaving of transformations and verdicts
8262 		 * makes it difficult to decide to continue or stop
8263 		 * the evaluation.
8264 		 */
8265 
8266 		if (txn->flags & TX_SVDENY)
8267 			break;
8268 
8269 		if ((txn->flags & TX_SVALLOW) &&
8270 		    (exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
8271 		     exp->action == ACT_PASS)) {
8272 			exp = exp->next;
8273 			continue;
8274 		}
8275 
8276 		/* if this filter had a condition, evaluate it now and skip to
8277 		 * next filter if the condition does not match.
8278 		 */
8279 		if (exp->cond) {
8280 			ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
8281 			ret = acl_pass(ret);
8282 			if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS)
8283 				ret = !ret;
8284 			if (!ret)
8285 				continue;
8286 		}
8287 
8288 		/* Apply the filter to the status line. */
8289 		ret = apply_filter_to_sts_line(s, rtr, exp);
8290 		if (unlikely(ret < 0))
8291 			return -1;
8292 
8293 		if (likely(ret == 0)) {
8294 			/* The filter did not match the response, it can be
8295 			 * iterated through all headers.
8296 			 */
8297 			if (unlikely(apply_filter_to_resp_headers(s, rtr, exp) < 0))
8298 				return -1;
8299 		}
8300 	}
8301 	return 0;
8302 }
8303 
8304 
8305 /*
8306  * Manage server-side cookies. It can impact performance by about 2% so it is
8307  * desirable to call it only when needed. This function is also used when we
8308  * just need to know if there is a cookie (eg: for check-cache).
8309  */
manage_server_side_cookies(struct stream * s,struct channel * res)8310 void manage_server_side_cookies(struct stream *s, struct channel *res)
8311 {
8312 	struct http_txn *txn = s->txn;
8313 	struct session *sess = s->sess;
8314 	struct server *srv;
8315 	int is_cookie2;
8316 	int cur_idx, old_idx, delta;
8317 	char *hdr_beg, *hdr_end, *hdr_next;
8318 	char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
8319 
8320 	/* Iterate through the headers.
8321 	 * we start with the start line.
8322 	 */
8323 	old_idx = 0;
8324 	hdr_next = res->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
8325 
8326 	while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
8327 		struct hdr_idx_elem *cur_hdr;
8328 		int val;
8329 
8330 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
8331 		hdr_beg  = hdr_next;
8332 		hdr_end  = hdr_beg + cur_hdr->len;
8333 		hdr_next = hdr_end + cur_hdr->cr + 1;
8334 
8335 		/* We have one full header between hdr_beg and hdr_end, and the
8336 		 * next header starts at hdr_next. We're only interested in
8337 		 * "Set-Cookie" and "Set-Cookie2" headers.
8338 		 */
8339 
8340 		is_cookie2 = 0;
8341 		prev = hdr_beg + 10;
8342 		val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie", 10);
8343 		if (!val) {
8344 			val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie2", 11);
8345 			if (!val) {
8346 				old_idx = cur_idx;
8347 				continue;
8348 			}
8349 			is_cookie2 = 1;
8350 			prev = hdr_beg + 11;
8351 		}
8352 
8353 		/* OK, right now we know we have a Set-Cookie* at hdr_beg, and
8354 		 * <prev> points to the colon.
8355 		 */
8356 		txn->flags |= TX_SCK_PRESENT;
8357 
8358 		/* Maybe we only wanted to see if there was a Set-Cookie (eg:
8359 		 * check-cache is enabled) and we are not interested in checking
8360 		 * them. Warning, the cookie capture is declared in the frontend.
8361 		 */
8362 		if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL)
8363 			return;
8364 
8365 		/* OK so now we know we have to process this response cookie.
8366 		 * The format of the Set-Cookie header is slightly different
8367 		 * from the format of the Cookie header in that it does not
8368 		 * support the comma as a cookie delimiter (thus the header
8369 		 * cannot be folded) because the Expires attribute described in
8370 		 * the original Netscape's spec may contain an unquoted date
8371 		 * with a comma inside. We have to live with this because
8372 		 * many browsers don't support Max-Age and some browsers don't
8373 		 * support quoted strings. However the Set-Cookie2 header is
8374 		 * clean.
8375 		 *
8376 		 * We have to keep multiple pointers in order to support cookie
8377 		 * removal at the beginning, middle or end of header without
8378 		 * corrupting the header (in case of set-cookie2). A special
8379 		 * pointer, <scav> points to the beginning of the set-cookie-av
8380 		 * fields after the first semi-colon. The <next> pointer points
8381 		 * either to the end of line (set-cookie) or next unquoted comma
8382 		 * (set-cookie2). All of these headers are valid :
8383 		 *
8384 		 * Set-Cookie:    NAME1  =  VALUE 1  ; Secure; Path="/"\r\n
8385 		 * Set-Cookie:NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
8386 		 * Set-Cookie: NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
8387 		 * Set-Cookie2: NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard\r\n
8388 		 * |          | |   | | |     | |          |                      |
8389 		 * |          | |   | | |     | |          +-> next    hdr_end <--+
8390 		 * |          | |   | | |     | +------------> scav
8391 		 * |          | |   | | |     +--------------> val_end
8392 		 * |          | |   | | +--------------------> val_beg
8393 		 * |          | |   | +----------------------> equal
8394 		 * |          | |   +------------------------> att_end
8395 		 * |          | +----------------------------> att_beg
8396 		 * |          +------------------------------> prev
8397 		 * +-----------------------------------------> hdr_beg
8398 		 */
8399 
8400 		for (; prev < hdr_end; prev = next) {
8401 			/* Iterate through all cookies on this line */
8402 
8403 			/* find att_beg */
8404 			att_beg = prev + 1;
8405 			while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
8406 				att_beg++;
8407 
8408 			/* find att_end : this is the first character after the last non
8409 			 * space before the equal. It may be equal to hdr_end.
8410 			 */
8411 			equal = att_end = att_beg;
8412 
8413 			while (equal < hdr_end) {
8414 				if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ','))
8415 					break;
8416 				if (HTTP_IS_SPHT(*equal++))
8417 					continue;
8418 				att_end = equal;
8419 			}
8420 
8421 			/* here, <equal> points to '=', a delimitor or the end. <att_end>
8422 			 * is between <att_beg> and <equal>, both may be identical.
8423 			 */
8424 
8425 			/* look for end of cookie if there is an equal sign */
8426 			if (equal < hdr_end && *equal == '=') {
8427 				/* look for the beginning of the value */
8428 				val_beg = equal + 1;
8429 				while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
8430 					val_beg++;
8431 
8432 				/* find the end of the value, respecting quotes */
8433 				next = find_cookie_value_end(val_beg, hdr_end);
8434 
8435 				/* make val_end point to the first white space or delimitor after the value */
8436 				val_end = next;
8437 				while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
8438 					val_end--;
8439 			} else {
8440 				/* <equal> points to next comma, semi-colon or EOL */
8441 				val_beg = val_end = next = equal;
8442 			}
8443 
8444 			if (next < hdr_end) {
8445 				/* Set-Cookie2 supports multiple cookies, and <next> points to
8446 				 * a colon or semi-colon before the end. So skip all attr-value
8447 				 * pairs and look for the next comma. For Set-Cookie, since
8448 				 * commas are permitted in values, skip to the end.
8449 				 */
8450 				if (is_cookie2)
8451 					next = find_hdr_value_end(next, hdr_end);
8452 				else
8453 					next = hdr_end;
8454 			}
8455 
8456 			/* Now everything is as on the diagram above */
8457 
8458 			/* Ignore cookies with no equal sign */
8459 			if (equal == val_end)
8460 				continue;
8461 
8462 			/* If there are spaces around the equal sign, we need to
8463 			 * strip them otherwise we'll get trouble for cookie captures,
8464 			 * or even for rewrites. Since this happens extremely rarely,
8465 			 * it does not hurt performance.
8466 			 */
8467 			if (unlikely(att_end != equal || val_beg > equal + 1)) {
8468 				int stripped_before = 0;
8469 				int stripped_after = 0;
8470 
8471 				if (att_end != equal) {
8472 					stripped_before = buffer_replace2(res->buf, att_end, equal, NULL, 0);
8473 					equal   += stripped_before;
8474 					val_beg += stripped_before;
8475 				}
8476 
8477 				if (val_beg > equal + 1) {
8478 					stripped_after = buffer_replace2(res->buf, equal + 1, val_beg, NULL, 0);
8479 					val_beg += stripped_after;
8480 					stripped_before += stripped_after;
8481 				}
8482 
8483 				val_end      += stripped_before;
8484 				next         += stripped_before;
8485 				hdr_end      += stripped_before;
8486 				hdr_next     += stripped_before;
8487 				cur_hdr->len += stripped_before;
8488 				http_msg_move_end(&txn->rsp, stripped_before);
8489 			}
8490 
8491 			/* First, let's see if we want to capture this cookie. We check
8492 			 * that we don't already have a server side cookie, because we
8493 			 * can only capture one. Also as an optimisation, we ignore
8494 			 * cookies shorter than the declared name.
8495 			 */
8496 			if (sess->fe->capture_name != NULL &&
8497 			    txn->srv_cookie == NULL &&
8498 			    (val_end - att_beg >= sess->fe->capture_namelen) &&
8499 			    memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
8500 				int log_len = val_end - att_beg;
8501 				if ((txn->srv_cookie = pool_alloc2(pool2_capture)) == NULL) {
8502 					Alert("HTTP logging : out of memory.\n");
8503 				}
8504 				else {
8505 					if (log_len > sess->fe->capture_len)
8506 						log_len = sess->fe->capture_len;
8507 					memcpy(txn->srv_cookie, att_beg, log_len);
8508 					txn->srv_cookie[log_len] = 0;
8509 				}
8510 			}
8511 
8512 			srv = objt_server(s->target);
8513 			/* now check if we need to process it for persistence */
8514 			if (!(s->flags & SF_IGNORE_PRST) &&
8515 			    (att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
8516 			    (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
8517 				/* assume passive cookie by default */
8518 				txn->flags &= ~TX_SCK_MASK;
8519 				txn->flags |= TX_SCK_FOUND;
8520 
8521 				/* If the cookie is in insert mode on a known server, we'll delete
8522 				 * this occurrence because we'll insert another one later.
8523 				 * We'll delete it too if the "indirect" option is set and we're in
8524 				 * a direct access.
8525 				 */
8526 				if (s->be->ck_opts & PR_CK_PSV) {
8527 					/* The "preserve" flag was set, we don't want to touch the
8528 					 * server's cookie.
8529 					 */
8530 				}
8531 				else if ((srv && (s->be->ck_opts & PR_CK_INS)) ||
8532 				    ((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) {
8533 					/* this cookie must be deleted */
8534 					if (*prev == ':' && next == hdr_end) {
8535 						/* whole header */
8536 						delta = buffer_replace2(res->buf, hdr_beg, hdr_next, NULL, 0);
8537 						txn->hdr_idx.v[old_idx].next = cur_hdr->next;
8538 						txn->hdr_idx.used--;
8539 						cur_hdr->len = 0;
8540 						cur_idx = old_idx;
8541 						hdr_next += delta;
8542 						http_msg_move_end(&txn->rsp, delta);
8543 						/* note: while both invalid now, <next> and <hdr_end>
8544 						 * are still equal, so the for() will stop as expected.
8545 						 */
8546 					} else {
8547 						/* just remove the value */
8548 						int delta = del_hdr_value(res->buf, &prev, next);
8549 						next      = prev;
8550 						hdr_end  += delta;
8551 						hdr_next += delta;
8552 						cur_hdr->len += delta;
8553 						http_msg_move_end(&txn->rsp, delta);
8554 					}
8555 					txn->flags &= ~TX_SCK_MASK;
8556 					txn->flags |= TX_SCK_DELETED;
8557 					/* and go on with next cookie */
8558 				}
8559 				else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) {
8560 					/* replace bytes val_beg->val_end with the cookie name associated
8561 					 * with this server since we know it.
8562 					 */
8563 					delta = buffer_replace2(res->buf, val_beg, val_end, srv->cookie, srv->cklen);
8564 					next     += delta;
8565 					hdr_end  += delta;
8566 					hdr_next += delta;
8567 					cur_hdr->len += delta;
8568 					http_msg_move_end(&txn->rsp, delta);
8569 
8570 					txn->flags &= ~TX_SCK_MASK;
8571 					txn->flags |= TX_SCK_REPLACED;
8572 				}
8573 				else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) {
8574 					/* insert the cookie name associated with this server
8575 					 * before existing cookie, and insert a delimiter between them..
8576 					 */
8577 					delta = buffer_replace2(res->buf, val_beg, val_beg, srv->cookie, srv->cklen + 1);
8578 					next     += delta;
8579 					hdr_end  += delta;
8580 					hdr_next += delta;
8581 					cur_hdr->len += delta;
8582 					http_msg_move_end(&txn->rsp, delta);
8583 
8584 					val_beg[srv->cklen] = COOKIE_DELIM;
8585 					txn->flags &= ~TX_SCK_MASK;
8586 					txn->flags |= TX_SCK_REPLACED;
8587 				}
8588 			}
8589 			/* that's done for this cookie, check the next one on the same
8590 			 * line when next != hdr_end (only if is_cookie2).
8591 			 */
8592 		}
8593 		/* check next header */
8594 		old_idx = cur_idx;
8595 	}
8596 }
8597 
8598 
8599 /*
8600  * Check if response is cacheable or not. Updates s->txn->flags.
8601  */
check_response_for_cacheability(struct stream * s,struct channel * rtr)8602 void check_response_for_cacheability(struct stream *s, struct channel *rtr)
8603 {
8604 	struct http_txn *txn = s->txn;
8605 	char *p1, *p2;
8606 
8607 	char *cur_ptr, *cur_end, *cur_next;
8608 	int cur_idx;
8609 
8610 	if (!(txn->flags & TX_CACHEABLE))
8611 		return;
8612 
8613 	/* Iterate through the headers.
8614 	 * we start with the start line.
8615 	 */
8616 	cur_idx = 0;
8617 	cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
8618 
8619 	while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) {
8620 		struct hdr_idx_elem *cur_hdr;
8621 		int val;
8622 
8623 		cur_hdr  = &txn->hdr_idx.v[cur_idx];
8624 		cur_ptr  = cur_next;
8625 		cur_end  = cur_ptr + cur_hdr->len;
8626 		cur_next = cur_end + cur_hdr->cr + 1;
8627 
8628 		/* We have one full header between cur_ptr and cur_end, and the
8629 		 * next header starts at cur_next.
8630 		 */
8631 
8632 		val = http_header_match2(cur_ptr, cur_end, "Pragma", 6);
8633 		if (val) {
8634 			if ((cur_end - (cur_ptr + val) >= 8) &&
8635 			    strncasecmp(cur_ptr + val, "no-cache", 8) == 0) {
8636 				txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
8637 				return;
8638 			}
8639 		}
8640 
8641 		val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13);
8642 		if (!val)
8643 			continue;
8644 
8645 		/* OK, right now we know we have a cache-control header at cur_ptr */
8646 
8647 		p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */
8648 
8649 		if (p1 >= cur_end)	/* no more info */
8650 			continue;
8651 
8652 		/* p1 is at the beginning of the value */
8653 		p2 = p1;
8654 
8655 		while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2))
8656 			p2++;
8657 
8658 		/* we have a complete value between p1 and p2 */
8659 		if (p2 < cur_end && *p2 == '=') {
8660 			if (((cur_end - p2) > 1 && (p2 - p1 == 7) && strncasecmp(p1, "max-age=0", 9) == 0) ||
8661 			    ((cur_end - p2) > 1 && (p2 - p1 == 8) && strncasecmp(p1, "s-maxage=0", 10) == 0)) {
8662 				txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
8663 				continue;
8664 			}
8665 
8666 			/* we have something of the form no-cache="set-cookie" */
8667 			if ((cur_end - p1 >= 21) &&
8668 			    strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0
8669 			    && (p1[20] == '"' || p1[20] == ','))
8670 				txn->flags &= ~TX_CACHE_COOK;
8671 			continue;
8672 		}
8673 
8674 		/* OK, so we know that either p2 points to the end of string or to a comma */
8675 		if (((p2 - p1 ==  7) && strncasecmp(p1, "private", 7) == 0) ||
8676 		    ((p2 - p1 ==  8) && strncasecmp(p1, "no-cache", 8) == 0) ||
8677 		    ((p2 - p1 ==  8) && strncasecmp(p1, "no-store", 8) == 0)) {
8678 			txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
8679 			return;
8680 		}
8681 
8682 		if ((p2 - p1 ==  6) && strncasecmp(p1, "public", 6) == 0) {
8683 			txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
8684 			continue;
8685 		}
8686 	}
8687 }
8688 
8689 
8690 /*
8691  * In a GET, HEAD or POST request, check if the requested URI matches the stats uri
8692  * for the current backend.
8693  *
8694  * It is assumed that the request is either a HEAD, GET, or POST and that the
8695  * uri_auth field is valid.
8696  *
8697  * Returns 1 if stats should be provided, otherwise 0.
8698  */
stats_check_uri(struct stream_interface * si,struct http_txn * txn,struct proxy * backend)8699 int stats_check_uri(struct stream_interface *si, struct http_txn *txn, struct proxy *backend)
8700 {
8701 	struct uri_auth *uri_auth = backend->uri_auth;
8702 	struct http_msg *msg = &txn->req;
8703 	const char *uri = msg->chn->buf->p+ msg->sl.rq.u;
8704 
8705 	if (!uri_auth)
8706 		return 0;
8707 
8708 	if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST)
8709 		return 0;
8710 
8711 	/* check URI size */
8712 	if (uri_auth->uri_len > msg->sl.rq.u_l)
8713 		return 0;
8714 
8715 	if (memcmp(uri, uri_auth->uri_prefix, uri_auth->uri_len) != 0)
8716 		return 0;
8717 
8718 	return 1;
8719 }
8720 
8721 /*
8722  * Capture a bad request or response and archive it in the proxy's structure.
8723  * By default it tries to report the error position as msg->err_pos. However if
8724  * this one is not set, it will then report msg->next, which is the last known
8725  * parsing point. The function is able to deal with wrapping buffers. It always
8726  * displays buffers as a contiguous area starting at buf->p.
8727  */
http_capture_bad_message(struct error_snapshot * es,struct stream * s,struct http_msg * msg,enum ht_state state,struct proxy * other_end)8728 void http_capture_bad_message(struct error_snapshot *es, struct stream *s,
8729                               struct http_msg *msg,
8730 			      enum ht_state state, struct proxy *other_end)
8731 {
8732 	struct session *sess = strm_sess(s);
8733 	struct channel *chn = msg->chn;
8734 	int len1, len2;
8735 
8736 	es->len = MIN(chn->buf->i, global.tune.bufsize);
8737 	len1 = chn->buf->data + chn->buf->size - chn->buf->p;
8738 	len1 = MIN(len1, es->len);
8739 	len2 = es->len - len1; /* remaining data if buffer wraps */
8740 
8741 	if (!es->buf)
8742 		es->buf = malloc(global.tune.bufsize);
8743 
8744 	if (es->buf) {
8745 		memcpy(es->buf, chn->buf->p, len1);
8746 		if (len2)
8747 			memcpy(es->buf + len1, chn->buf->data, len2);
8748 	}
8749 
8750 	if (msg->err_pos >= 0)
8751 		es->pos = msg->err_pos;
8752 	else
8753 		es->pos = msg->next;
8754 
8755 	es->when = date; // user-visible date
8756 	es->sid  = s->uniq_id;
8757 	es->srv  = objt_server(s->target);
8758 	es->oe   = other_end;
8759 	if (objt_conn(sess->origin))
8760 		es->src  = __objt_conn(sess->origin)->addr.from;
8761 	else
8762 		memset(&es->src, 0, sizeof(es->src));
8763 
8764 	es->state = state;
8765 	es->ev_id = error_snapshot_id++;
8766 	es->b_flags = chn->flags;
8767 	es->s_flags = s->flags;
8768 	es->t_flags = s->txn->flags;
8769 	es->m_flags = msg->flags;
8770 	es->b_out = chn->buf->o;
8771 	es->b_wrap = chn->buf->data + chn->buf->size - chn->buf->p;
8772 	es->b_tot = chn->total;
8773 	es->m_clen = msg->chunk_len;
8774 	es->m_blen = msg->body_len;
8775 }
8776 
8777 /* Return in <vptr> and <vlen> the pointer and length of occurrence <occ> of
8778  * header whose name is <hname> of length <hlen>. If <ctx> is null, lookup is
8779  * performed over the whole headers. Otherwise it must contain a valid header
8780  * context, initialised with ctx->idx=0 for the first lookup in a series. If
8781  * <occ> is positive or null, occurrence #occ from the beginning (or last ctx)
8782  * is returned. Occ #0 and #1 are equivalent. If <occ> is negative (and no less
8783  * than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is
8784  * -1. The value fetch stops at commas, so this function is suited for use with
8785  * list headers.
8786  * The return value is 0 if nothing was found, or non-zero otherwise.
8787  */
http_get_hdr(const struct http_msg * msg,const char * hname,int hlen,struct hdr_idx * idx,int occ,struct hdr_ctx * ctx,char ** vptr,int * vlen)8788 unsigned int http_get_hdr(const struct http_msg *msg, const char *hname, int hlen,
8789 			  struct hdr_idx *idx, int occ,
8790 			  struct hdr_ctx *ctx, char **vptr, int *vlen)
8791 {
8792 	struct hdr_ctx local_ctx;
8793 	char *ptr_hist[MAX_HDR_HISTORY];
8794 	int len_hist[MAX_HDR_HISTORY];
8795 	unsigned int hist_ptr;
8796 	int found;
8797 
8798 	if (!ctx) {
8799 		local_ctx.idx = 0;
8800 		ctx = &local_ctx;
8801 	}
8802 
8803 	if (occ >= 0) {
8804 		/* search from the beginning */
8805 		while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
8806 			occ--;
8807 			if (occ <= 0) {
8808 				*vptr = ctx->line + ctx->val;
8809 				*vlen = ctx->vlen;
8810 				return 1;
8811 			}
8812 		}
8813 		return 0;
8814 	}
8815 
8816 	/* negative occurrence, we scan all the list then walk back */
8817 	if (-occ > MAX_HDR_HISTORY)
8818 		return 0;
8819 
8820 	found = hist_ptr = 0;
8821 	while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
8822 		ptr_hist[hist_ptr] = ctx->line + ctx->val;
8823 		len_hist[hist_ptr] = ctx->vlen;
8824 		if (++hist_ptr >= MAX_HDR_HISTORY)
8825 			hist_ptr = 0;
8826 		found++;
8827 	}
8828 	if (-occ > found)
8829 		return 0;
8830 	/* OK now we have the last occurrence in [hist_ptr-1], and we need to
8831 	 * find occurrence -occ. 0 <= hist_ptr < MAX_HDR_HISTORY, and we have
8832 	 * -10 <= occ <= -1. So we have to check [hist_ptr%MAX_HDR_HISTORY+occ]
8833 	 * to remain in the 0..9 range.
8834 	 */
8835 	hist_ptr += occ + MAX_HDR_HISTORY;
8836 	if (hist_ptr >= MAX_HDR_HISTORY)
8837 		hist_ptr -= MAX_HDR_HISTORY;
8838 	*vptr = ptr_hist[hist_ptr];
8839 	*vlen = len_hist[hist_ptr];
8840 	return 1;
8841 }
8842 
8843 /* Return in <vptr> and <vlen> the pointer and length of occurrence <occ> of
8844  * header whose name is <hname> of length <hlen>. If <ctx> is null, lookup is
8845  * performed over the whole headers. Otherwise it must contain a valid header
8846  * context, initialised with ctx->idx=0 for the first lookup in a series. If
8847  * <occ> is positive or null, occurrence #occ from the beginning (or last ctx)
8848  * is returned. Occ #0 and #1 are equivalent. If <occ> is negative (and no less
8849  * than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is
8850  * -1. This function differs from http_get_hdr() in that it only returns full
8851  * line header values and does not stop at commas.
8852  * The return value is 0 if nothing was found, or non-zero otherwise.
8853  */
http_get_fhdr(const struct http_msg * msg,const char * hname,int hlen,struct hdr_idx * idx,int occ,struct hdr_ctx * ctx,char ** vptr,int * vlen)8854 unsigned int http_get_fhdr(const struct http_msg *msg, const char *hname, int hlen,
8855 			   struct hdr_idx *idx, int occ,
8856 			   struct hdr_ctx *ctx, char **vptr, int *vlen)
8857 {
8858 	struct hdr_ctx local_ctx;
8859 	char *ptr_hist[MAX_HDR_HISTORY];
8860 	int len_hist[MAX_HDR_HISTORY];
8861 	unsigned int hist_ptr;
8862 	int found;
8863 
8864 	if (!ctx) {
8865 		local_ctx.idx = 0;
8866 		ctx = &local_ctx;
8867 	}
8868 
8869 	if (occ >= 0) {
8870 		/* search from the beginning */
8871 		while (http_find_full_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
8872 			occ--;
8873 			if (occ <= 0) {
8874 				*vptr = ctx->line + ctx->val;
8875 				*vlen = ctx->vlen;
8876 				return 1;
8877 			}
8878 		}
8879 		return 0;
8880 	}
8881 
8882 	/* negative occurrence, we scan all the list then walk back */
8883 	if (-occ > MAX_HDR_HISTORY)
8884 		return 0;
8885 
8886 	found = hist_ptr = 0;
8887 	while (http_find_full_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) {
8888 		ptr_hist[hist_ptr] = ctx->line + ctx->val;
8889 		len_hist[hist_ptr] = ctx->vlen;
8890 		if (++hist_ptr >= MAX_HDR_HISTORY)
8891 			hist_ptr = 0;
8892 		found++;
8893 	}
8894 	if (-occ > found)
8895 		return 0;
8896 
8897 	/* OK now we have the last occurrence in [hist_ptr-1], and we need to
8898 	 * find occurrence -occ. 0 <= hist_ptr < MAX_HDR_HISTORY, and we have
8899 	 * -10 <= occ <= -1. So we have to check [hist_ptr%MAX_HDR_HISTORY+occ]
8900 	 * to remain in the 0..9 range.
8901 	 */
8902 	hist_ptr += occ + MAX_HDR_HISTORY;
8903 	if (hist_ptr >= MAX_HDR_HISTORY)
8904 		hist_ptr -= MAX_HDR_HISTORY;
8905 	*vptr = ptr_hist[hist_ptr];
8906 	*vlen = len_hist[hist_ptr];
8907 	return 1;
8908 }
8909 
8910 /*
8911  * Print a debug line with a header. Always stop at the first CR or LF char,
8912  * so it is safe to pass it a full buffer if needed. If <err> is not NULL, an
8913  * arrow is printed after the line which contains the pointer.
8914  */
debug_hdr(const char * dir,struct stream * s,const char * start,const char * end)8915 void debug_hdr(const char *dir, struct stream *s, const char *start, const char *end)
8916 {
8917 	struct session *sess = strm_sess(s);
8918 	int max;
8919 
8920 	chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id,
8921 		      dir,
8922 		     objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->t.sock.fd : -1,
8923 		     objt_conn(s->si[1].end) ? (unsigned short)objt_conn(s->si[1].end)->t.sock.fd : -1);
8924 
8925 	for (max = 0; start + max < end; max++)
8926 		if (start[max] == '\r' || start[max] == '\n')
8927 			break;
8928 
8929 	UBOUND(max, trash.size - trash.len - 3);
8930 	trash.len += strlcpy2(trash.str + trash.len, start, max + 1);
8931 	trash.str[trash.len++] = '\n';
8932 	shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
8933 }
8934 
8935 
8936 /* Allocate a new HTTP transaction for stream <s> unless there is one already.
8937  * The hdr_idx is allocated as well. In case of allocation failure, everything
8938  * allocated is freed and NULL is returned. Otherwise the new transaction is
8939  * assigned to the stream and returned.
8940  */
http_alloc_txn(struct stream * s)8941 struct http_txn *http_alloc_txn(struct stream *s)
8942 {
8943 	struct http_txn *txn = s->txn;
8944 
8945 	if (txn)
8946 		return txn;
8947 
8948 	txn = pool_alloc2(pool2_http_txn);
8949 	if (!txn)
8950 		return txn;
8951 
8952 	txn->hdr_idx.size = global.tune.max_http_hdr;
8953 	txn->hdr_idx.v    = pool_alloc2(pool2_hdr_idx);
8954 	if (!txn->hdr_idx.v) {
8955 		pool_free2(pool2_http_txn, txn);
8956 		return NULL;
8957 	}
8958 
8959 	s->txn = txn;
8960 	return txn;
8961 }
8962 
http_txn_reset_req(struct http_txn * txn)8963 void http_txn_reset_req(struct http_txn *txn)
8964 {
8965 	txn->req.flags = 0;
8966 	txn->req.sol = txn->req.eol = txn->req.eoh = 0; /* relative to the buffer */
8967 	txn->req.next = 0;
8968 	txn->req.chunk_len = 0LL;
8969 	txn->req.body_len = 0LL;
8970 	txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */
8971 }
8972 
http_txn_reset_res(struct http_txn * txn)8973 void http_txn_reset_res(struct http_txn *txn)
8974 {
8975 	txn->rsp.flags = 0;
8976 	txn->rsp.sol = txn->rsp.eol = txn->rsp.eoh = 0; /* relative to the buffer */
8977 	txn->rsp.next = 0;
8978 	txn->rsp.chunk_len = 0LL;
8979 	txn->rsp.body_len = 0LL;
8980 	txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */
8981 }
8982 
8983 /*
8984  * Initialize a new HTTP transaction for stream <s>. It is assumed that all
8985  * the required fields are properly allocated and that we only need to (re)init
8986  * them. This should be used before processing any new request.
8987  */
http_init_txn(struct stream * s)8988 void http_init_txn(struct stream *s)
8989 {
8990 	struct http_txn *txn = s->txn;
8991 	struct proxy *fe = strm_fe(s);
8992 
8993 	txn->flags = 0;
8994 	txn->status = -1;
8995 
8996 	txn->cookie_first_date = 0;
8997 	txn->cookie_last_date = 0;
8998 
8999 	txn->srv_cookie = NULL;
9000 	txn->cli_cookie = NULL;
9001 	txn->uri = NULL;
9002 
9003 	http_txn_reset_req(txn);
9004 	http_txn_reset_res(txn);
9005 
9006 	txn->req.chn = &s->req;
9007 	txn->rsp.chn = &s->res;
9008 
9009 	txn->auth.method = HTTP_AUTH_UNKNOWN;
9010 
9011 	txn->req.err_pos = txn->rsp.err_pos = -2; /* block buggy requests/responses */
9012 	if (fe->options2 & PR_O2_REQBUG_OK)
9013 		txn->req.err_pos = -1;            /* let buggy requests pass */
9014 
9015 	if (txn->hdr_idx.v)
9016 		hdr_idx_init(&txn->hdr_idx);
9017 
9018 	vars_init(&s->vars_txn,    SCOPE_TXN);
9019 	vars_init(&s->vars_reqres, SCOPE_REQ);
9020 }
9021 
9022 /* to be used at the end of a transaction */
http_end_txn(struct stream * s)9023 void http_end_txn(struct stream *s)
9024 {
9025 	struct http_txn *txn = s->txn;
9026 
9027 	/* these ones will have been dynamically allocated */
9028 	pool_free2(pool2_requri, txn->uri);
9029 	pool_free2(pool2_capture, txn->cli_cookie);
9030 	pool_free2(pool2_capture, txn->srv_cookie);
9031 	pool_free2(pool2_uniqueid, s->unique_id);
9032 
9033 	s->unique_id = NULL;
9034 	txn->uri = NULL;
9035 	txn->srv_cookie = NULL;
9036 	txn->cli_cookie = NULL;
9037 
9038 	vars_prune(&s->vars_txn, s->sess, s);
9039 	vars_prune(&s->vars_reqres, s->sess, s);
9040 }
9041 
9042 /* to be used at the end of a transaction to prepare a new one */
http_reset_txn(struct stream * s)9043 void http_reset_txn(struct stream *s)
9044 {
9045 	http_end_txn(s);
9046 	http_init_txn(s);
9047 
9048 	/* reinitialise the current rule list pointer to NULL. We are sure that
9049 	 * any rulelist match the NULL pointer.
9050 	 */
9051 	s->current_rule_list = NULL;
9052 
9053 	s->be = strm_fe(s);
9054 	s->logs.logwait = strm_fe(s)->to_log;
9055 	s->logs.level = 0;
9056 	stream_del_srv_conn(s);
9057 	s->target = NULL;
9058 	/* re-init store persistence */
9059 	s->store_count = 0;
9060 	s->uniq_id = global.req_count++;
9061 
9062 	s->pend_pos = NULL;
9063 
9064 	s->req.flags |= CF_READ_DONTWAIT; /* one read is usually enough */
9065 
9066 	/* We must trim any excess data from the response buffer, because we
9067 	 * may have blocked an invalid response from a server that we don't
9068 	 * want to accidentely forward once we disable the analysers, nor do
9069 	 * we want those data to come along with next response. A typical
9070 	 * example of such data would be from a buggy server responding to
9071 	 * a HEAD with some data, or sending more than the advertised
9072 	 * content-length.
9073 	 */
9074 	if (unlikely(s->res.buf->i))
9075 		s->res.buf->i = 0;
9076 
9077 	/* Now we can realign the response buffer */
9078 	buffer_realign(s->res.buf);
9079 
9080 	s->req.rto = strm_fe(s)->timeout.client;
9081 	s->req.wto = TICK_ETERNITY;
9082 
9083 	s->res.rto = TICK_ETERNITY;
9084 	s->res.wto = strm_fe(s)->timeout.client;
9085 
9086 	s->req.rex = TICK_ETERNITY;
9087 	s->req.wex = TICK_ETERNITY;
9088 	s->req.analyse_exp = TICK_ETERNITY;
9089 	s->res.rex = TICK_ETERNITY;
9090 	s->res.wex = TICK_ETERNITY;
9091 	s->res.analyse_exp = TICK_ETERNITY;
9092 	s->si[1].hcto = TICK_ETERNITY;
9093 }
9094 
9095 /* parse an "http-request" rule */
parse_http_req_cond(const char ** args,const char * file,int linenum,struct proxy * proxy)9096 struct act_rule *parse_http_req_cond(const char **args, const char *file, int linenum, struct proxy *proxy)
9097 {
9098 	struct act_rule *rule;
9099 	struct action_kw *custom = NULL;
9100 	int cur_arg;
9101 	char *error;
9102 
9103 	rule = calloc(1, sizeof(*rule));
9104 	if (!rule) {
9105 		Alert("parsing [%s:%d]: out of memory.\n", file, linenum);
9106 		goto out_err;
9107 	}
9108 
9109 	rule->deny_status = HTTP_ERR_403;
9110 	if (!strcmp(args[0], "allow")) {
9111 		rule->action = ACT_ACTION_ALLOW;
9112 		cur_arg = 1;
9113 	} else if (!strcmp(args[0], "deny") || !strcmp(args[0], "block")) {
9114 		int code;
9115 		int hc;
9116 
9117 		rule->action = ACT_ACTION_DENY;
9118 		cur_arg = 1;
9119                 if (strcmp(args[cur_arg], "deny_status") == 0) {
9120                         cur_arg++;
9121                         if (!args[cur_arg]) {
9122                                 Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing status code.\n",
9123                                       file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
9124                                 goto out_err;
9125                         }
9126 
9127                         code = atol(args[cur_arg]);
9128                         cur_arg++;
9129                         for (hc = 0; hc < HTTP_ERR_SIZE; hc++) {
9130                                 if (http_err_codes[hc] == code) {
9131                                         rule->deny_status = hc;
9132                                         break;
9133                                 }
9134                         }
9135 
9136                         if (hc >= HTTP_ERR_SIZE) {
9137                                 Warning("parsing [%s:%d] : status code %d not handled, using default code 403.\n",
9138                                         file, linenum, code);
9139                         }
9140                 }
9141 	} else if (!strcmp(args[0], "tarpit")) {
9142 		rule->action = ACT_HTTP_REQ_TARPIT;
9143 		cur_arg = 1;
9144 	} else if (!strcmp(args[0], "auth")) {
9145 		rule->action = ACT_HTTP_REQ_AUTH;
9146 		cur_arg = 1;
9147 
9148 		while(*args[cur_arg]) {
9149 			if (!strcmp(args[cur_arg], "realm")) {
9150 				rule->arg.auth.realm = strdup(args[cur_arg + 1]);
9151 				cur_arg+=2;
9152 				continue;
9153 			} else
9154 				break;
9155 		}
9156 	} else if (!strcmp(args[0], "set-nice")) {
9157 		rule->action = ACT_HTTP_SET_NICE;
9158 		cur_arg = 1;
9159 
9160 		if (!*args[cur_arg] ||
9161 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
9162 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer value).\n",
9163 			      file, linenum, args[0]);
9164 			goto out_err;
9165 		}
9166 		rule->arg.nice = atoi(args[cur_arg]);
9167 		if (rule->arg.nice < -1024)
9168 			rule->arg.nice = -1024;
9169 		else if (rule->arg.nice > 1024)
9170 			rule->arg.nice = 1024;
9171 		cur_arg++;
9172 	} else if (!strcmp(args[0], "set-tos")) {
9173 #ifdef IP_TOS
9174 		char *err;
9175 		rule->action = ACT_HTTP_SET_TOS;
9176 		cur_arg = 1;
9177 
9178 		if (!*args[cur_arg] ||
9179 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
9180 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n",
9181 			      file, linenum, args[0]);
9182 			goto out_err;
9183 		}
9184 
9185 		rule->arg.tos = strtol(args[cur_arg], &err, 0);
9186 		if (err && *err != '\0') {
9187 			Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n",
9188 			      file, linenum, err, args[0]);
9189 			goto out_err;
9190 		}
9191 		cur_arg++;
9192 #else
9193 		Alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]);
9194 		goto out_err;
9195 #endif
9196 	} else if (!strcmp(args[0], "set-mark")) {
9197 #ifdef SO_MARK
9198 		char *err;
9199 		rule->action = ACT_HTTP_SET_MARK;
9200 		cur_arg = 1;
9201 
9202 		if (!*args[cur_arg] ||
9203 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
9204 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n",
9205 			      file, linenum, args[0]);
9206 			goto out_err;
9207 		}
9208 
9209 		rule->arg.mark = strtoul(args[cur_arg], &err, 0);
9210 		if (err && *err != '\0') {
9211 			Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n",
9212 			      file, linenum, err, args[0]);
9213 			goto out_err;
9214 		}
9215 		cur_arg++;
9216 		global.last_checks |= LSTCHK_NETADM;
9217 #else
9218 		Alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]);
9219 		goto out_err;
9220 #endif
9221 	} else if (!strcmp(args[0], "set-log-level")) {
9222 		rule->action = ACT_HTTP_SET_LOGL;
9223 		cur_arg = 1;
9224 
9225 		if (!*args[cur_arg] ||
9226 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
9227 		bad_log_level:
9228 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (log level name or 'silent').\n",
9229 			      file, linenum, args[0]);
9230 			goto out_err;
9231 		}
9232 		if (strcmp(args[cur_arg], "silent") == 0)
9233 			rule->arg.loglevel = -1;
9234 		else if ((rule->arg.loglevel = get_log_level(args[cur_arg]) + 1) == 0)
9235 			goto bad_log_level;
9236 		cur_arg++;
9237 	} else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) {
9238 		rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR;
9239 		cur_arg = 1;
9240 
9241 		if (!*args[cur_arg] || !*args[cur_arg+1] ||
9242 		    (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
9243 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n",
9244 			      file, linenum, args[0]);
9245 			goto out_err;
9246 		}
9247 
9248 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
9249 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
9250 		LIST_INIT(&rule->arg.hdr_add.fmt);
9251 
9252 		proxy->conf.args.ctx = ARGC_HRQ;
9253 		error = NULL;
9254 		if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
9255 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
9256 			Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
9257 			      file, linenum, args[0], error);
9258 			free(error);
9259 			goto out_err;
9260 		}
9261 		free(proxy->conf.lfs_file);
9262 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9263 		proxy->conf.lfs_line = proxy->conf.args.line;
9264 		cur_arg += 2;
9265 	} else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) {
9266 		rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL;
9267 		cur_arg = 1;
9268 
9269 		if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] ||
9270 		    (*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) {
9271 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 3 arguments.\n",
9272 			      file, linenum, args[0]);
9273 			goto out_err;
9274 		}
9275 
9276 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
9277 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
9278 		LIST_INIT(&rule->arg.hdr_add.fmt);
9279 
9280 		error = NULL;
9281 		if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) {
9282 			Alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum,
9283 			      args[cur_arg + 1], error);
9284 			free(error);
9285 			goto out_err;
9286 		}
9287 
9288 		proxy->conf.args.ctx = ARGC_HRQ;
9289 		error = NULL;
9290 		if (!parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
9291 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
9292 			Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
9293 			      file, linenum, args[0], error);
9294 			free(error);
9295 			goto out_err;
9296 		}
9297 
9298 		free(proxy->conf.lfs_file);
9299 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9300 		proxy->conf.lfs_line = proxy->conf.args.line;
9301 		cur_arg += 3;
9302 	} else if (strcmp(args[0], "del-header") == 0) {
9303 		rule->action = ACT_HTTP_DEL_HDR;
9304 		cur_arg = 1;
9305 
9306 		if (!*args[cur_arg] ||
9307 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9308 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
9309 			      file, linenum, args[0]);
9310 			goto out_err;
9311 		}
9312 
9313 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
9314 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
9315 
9316 		proxy->conf.args.ctx = ARGC_HRQ;
9317 		free(proxy->conf.lfs_file);
9318 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9319 		proxy->conf.lfs_line = proxy->conf.args.line;
9320 		cur_arg += 1;
9321 	} else if (strncmp(args[0], "track-sc", 8) == 0 &&
9322 		 args[0][9] == '\0' && args[0][8] >= '0' &&
9323 		 args[0][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */
9324 		struct sample_expr *expr;
9325 		unsigned int where;
9326 		char *err = NULL;
9327 
9328 		cur_arg = 1;
9329 		proxy->conf.args.ctx = ARGC_TRK;
9330 
9331 		expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args);
9332 		if (!expr) {
9333 			Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
9334 			      file, linenum, proxy_type_str(proxy), proxy->id, args[0], err);
9335 			free(err);
9336 			goto out_err;
9337 		}
9338 
9339 		where = 0;
9340 		if (proxy->cap & PR_CAP_FE)
9341 			where |= SMP_VAL_FE_HRQ_HDR;
9342 		if (proxy->cap & PR_CAP_BE)
9343 			where |= SMP_VAL_BE_HRQ_HDR;
9344 
9345 		if (!(expr->fetch->val & where)) {
9346 			Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule :"
9347 			      " fetch method '%s' extracts information from '%s', none of which is available here.\n",
9348 			      file, linenum, proxy_type_str(proxy), proxy->id, args[0],
9349 			      args[cur_arg-1], sample_src_names(expr->fetch->use));
9350 			free(expr);
9351 			goto out_err;
9352 		}
9353 
9354 		if (strcmp(args[cur_arg], "table") == 0) {
9355 			cur_arg++;
9356 			if (!args[cur_arg]) {
9357 				Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing table name.\n",
9358 				      file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
9359 				free(expr);
9360 				goto out_err;
9361 			}
9362 			/* we copy the table name for now, it will be resolved later */
9363 			rule->arg.trk_ctr.table.n = strdup(args[cur_arg]);
9364 			cur_arg++;
9365 		}
9366 		rule->arg.trk_ctr.expr = expr;
9367 		rule->action = ACT_ACTION_TRK_SC0 + args[0][8] - '0';
9368 	} else if (strcmp(args[0], "redirect") == 0) {
9369 		struct redirect_rule *redir;
9370 		char *errmsg = NULL;
9371 
9372 		if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 0)) == NULL) {
9373 			Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
9374 			      file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
9375 			goto out_err;
9376 		}
9377 
9378 		/* this redirect rule might already contain a parsed condition which
9379 		 * we'll pass to the http-request rule.
9380 		 */
9381 		rule->action = ACT_HTTP_REDIR;
9382 		rule->arg.redir = redir;
9383 		rule->cond = redir->cond;
9384 		redir->cond = NULL;
9385 		cur_arg = 2;
9386 		return rule;
9387 	} else if (strncmp(args[0], "add-acl", 7) == 0) {
9388 		/* http-request add-acl(<reference (acl name)>) <key pattern> */
9389 		rule->action = ACT_HTTP_ADD_ACL;
9390 		/*
9391 		 * '+ 8' for 'add-acl('
9392 		 * '- 9' for 'add-acl(' + trailing ')'
9393 		 */
9394 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9395 
9396 		cur_arg = 1;
9397 
9398 		if (!*args[cur_arg] ||
9399 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9400 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
9401 			      file, linenum, args[0]);
9402 			goto out_err;
9403 		}
9404 
9405 		LIST_INIT(&rule->arg.map.key);
9406 		proxy->conf.args.ctx = ARGC_HRQ;
9407 		error = NULL;
9408 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9409 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
9410 			Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
9411 			      file, linenum, args[0], error);
9412 			free(error);
9413 			goto out_err;
9414 		}
9415 		free(proxy->conf.lfs_file);
9416 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9417 		proxy->conf.lfs_line = proxy->conf.args.line;
9418 		cur_arg += 1;
9419 	} else if (strncmp(args[0], "del-acl", 7) == 0) {
9420 		/* http-request del-acl(<reference (acl name)>) <key pattern> */
9421 		rule->action = ACT_HTTP_DEL_ACL;
9422 		/*
9423 		 * '+ 8' for 'del-acl('
9424 		 * '- 9' for 'del-acl(' + trailing ')'
9425 		 */
9426 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9427 
9428 		cur_arg = 1;
9429 
9430 		if (!*args[cur_arg] ||
9431 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9432 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
9433 			      file, linenum, args[0]);
9434 			goto out_err;
9435 		}
9436 
9437 		LIST_INIT(&rule->arg.map.key);
9438 		proxy->conf.args.ctx = ARGC_HRQ;
9439 		error = NULL;
9440 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9441 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
9442 			Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
9443 			      file, linenum, args[0], error);
9444 			free(error);
9445 			goto out_err;
9446 		}
9447 		free(proxy->conf.lfs_file);
9448 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9449 		proxy->conf.lfs_line = proxy->conf.args.line;
9450 		cur_arg += 1;
9451 	} else if (strncmp(args[0], "del-map", 7) == 0) {
9452 		/* http-request del-map(<reference (map name)>) <key pattern> */
9453 		rule->action = ACT_HTTP_DEL_MAP;
9454 		/*
9455 		 * '+ 8' for 'del-map('
9456 		 * '- 9' for 'del-map(' + trailing ')'
9457 		 */
9458 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9459 
9460 		cur_arg = 1;
9461 
9462 		if (!*args[cur_arg] ||
9463 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9464 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
9465 			      file, linenum, args[0]);
9466 			goto out_err;
9467 		}
9468 
9469 		LIST_INIT(&rule->arg.map.key);
9470 		proxy->conf.args.ctx = ARGC_HRQ;
9471 		error = NULL;
9472 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9473 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
9474 			Alert("parsing [%s:%d]: 'http-request %s': %s.\n",
9475 			      file, linenum, args[0], error);
9476 			free(error);
9477 			goto out_err;
9478 		}
9479 		free(proxy->conf.lfs_file);
9480 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9481 		proxy->conf.lfs_line = proxy->conf.args.line;
9482 		cur_arg += 1;
9483 	} else if (strncmp(args[0], "set-map", 7) == 0) {
9484 		/* http-request set-map(<reference (map name)>) <key pattern> <value pattern> */
9485 		rule->action = ACT_HTTP_SET_MAP;
9486 		/*
9487 		 * '+ 8' for 'set-map('
9488 		 * '- 9' for 'set-map(' + trailing ')'
9489 		 */
9490 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9491 
9492 		cur_arg = 1;
9493 
9494 		if (!*args[cur_arg] || !*args[cur_arg+1] ||
9495 		    (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
9496 			Alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n",
9497 			      file, linenum, args[0]);
9498 			goto out_err;
9499 		}
9500 
9501 		LIST_INIT(&rule->arg.map.key);
9502 		LIST_INIT(&rule->arg.map.value);
9503 		proxy->conf.args.ctx = ARGC_HRQ;
9504 
9505 		/* key pattern */
9506 		error = NULL;
9507 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9508 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
9509 			Alert("parsing [%s:%d]: 'http-request %s' key: %s.\n",
9510 			      file, linenum, args[0], error);
9511 			free(error);
9512 			goto out_err;
9513 		}
9514 
9515 		/* value pattern */
9516 		error = NULL;
9517 		if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP,
9518 		                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
9519 			Alert("parsing [%s:%d]: 'http-request %s' pattern: %s.\n",
9520 			      file, linenum, args[0], error);
9521 			free(error);
9522 			goto out_err;
9523 		}
9524 		free(proxy->conf.lfs_file);
9525 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9526 		proxy->conf.lfs_line = proxy->conf.args.line;
9527 
9528 		cur_arg += 2;
9529 	} else if (((custom = action_http_req_custom(args[0])) != NULL)) {
9530 		char *errmsg = NULL;
9531 		cur_arg = 1;
9532 		/* try in the module list */
9533 		rule->from = ACT_F_HTTP_REQ;
9534 		rule->kw = custom;
9535 		if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) {
9536 			Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
9537 			      file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
9538 			free(errmsg);
9539 			goto out_err;
9540 		}
9541 	} else {
9542 		action_build_list(&http_req_keywords.list, &trash);
9543 		Alert("parsing [%s:%d]: 'http-request' expects 'allow', 'deny', 'auth', 'redirect', "
9544 		      "'tarpit', 'add-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', "
9545 		      "'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', 'track-sc*'"
9546 		      "%s%s, but got '%s'%s.\n",
9547 		      file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)");
9548 		goto out_err;
9549 	}
9550 
9551 	if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) {
9552 		struct acl_cond *cond;
9553 		char *errmsg = NULL;
9554 
9555 		if ((cond = build_acl_cond(file, linenum, proxy, args+cur_arg, &errmsg)) == NULL) {
9556 			Alert("parsing [%s:%d] : error detected while parsing an 'http-request %s' condition : %s.\n",
9557 			      file, linenum, args[0], errmsg);
9558 			free(errmsg);
9559 			goto out_err;
9560 		}
9561 		rule->cond = cond;
9562 	}
9563 	else if (*args[cur_arg]) {
9564 		Alert("parsing [%s:%d]: 'http-request %s' expects 'realm' for 'auth',"
9565 		      " 'deny_status' for 'deny', or"
9566 		      " either 'if' or 'unless' followed by a condition but found '%s'.\n",
9567 		      file, linenum, args[0], args[cur_arg]);
9568 		goto out_err;
9569 	}
9570 
9571 	return rule;
9572  out_err:
9573 	free(rule);
9574 	return NULL;
9575 }
9576 
9577 /* parse an "http-respose" rule */
parse_http_res_cond(const char ** args,const char * file,int linenum,struct proxy * proxy)9578 struct act_rule *parse_http_res_cond(const char **args, const char *file, int linenum, struct proxy *proxy)
9579 {
9580 	struct act_rule *rule;
9581 	struct action_kw *custom = NULL;
9582 	int cur_arg;
9583 	char *error;
9584 
9585 	rule = calloc(1, sizeof(*rule));
9586 	if (!rule) {
9587 		Alert("parsing [%s:%d]: out of memory.\n", file, linenum);
9588 		goto out_err;
9589 	}
9590 
9591 	if (!strcmp(args[0], "allow")) {
9592 		rule->action = ACT_ACTION_ALLOW;
9593 		cur_arg = 1;
9594 	} else if (!strcmp(args[0], "deny")) {
9595 		rule->action = ACT_ACTION_DENY;
9596 		cur_arg = 1;
9597 	} else if (!strcmp(args[0], "set-nice")) {
9598 		rule->action = ACT_HTTP_SET_NICE;
9599 		cur_arg = 1;
9600 
9601 		if (!*args[cur_arg] ||
9602 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
9603 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer value).\n",
9604 			      file, linenum, args[0]);
9605 			goto out_err;
9606 		}
9607 		rule->arg.nice = atoi(args[cur_arg]);
9608 		if (rule->arg.nice < -1024)
9609 			rule->arg.nice = -1024;
9610 		else if (rule->arg.nice > 1024)
9611 			rule->arg.nice = 1024;
9612 		cur_arg++;
9613 	} else if (!strcmp(args[0], "set-tos")) {
9614 #ifdef IP_TOS
9615 		char *err;
9616 		rule->action = ACT_HTTP_SET_TOS;
9617 		cur_arg = 1;
9618 
9619 		if (!*args[cur_arg] ||
9620 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
9621 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n",
9622 			      file, linenum, args[0]);
9623 			goto out_err;
9624 		}
9625 
9626 		rule->arg.tos = strtol(args[cur_arg], &err, 0);
9627 		if (err && *err != '\0') {
9628 			Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n",
9629 			      file, linenum, err, args[0]);
9630 			goto out_err;
9631 		}
9632 		cur_arg++;
9633 #else
9634 		Alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]);
9635 		goto out_err;
9636 #endif
9637 	} else if (!strcmp(args[0], "set-mark")) {
9638 #ifdef SO_MARK
9639 		char *err;
9640 		rule->action = ACT_HTTP_SET_MARK;
9641 		cur_arg = 1;
9642 
9643 		if (!*args[cur_arg] ||
9644 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
9645 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n",
9646 			      file, linenum, args[0]);
9647 			goto out_err;
9648 		}
9649 
9650 		rule->arg.mark = strtoul(args[cur_arg], &err, 0);
9651 		if (err && *err != '\0') {
9652 			Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n",
9653 			      file, linenum, err, args[0]);
9654 			goto out_err;
9655 		}
9656 		cur_arg++;
9657 		global.last_checks |= LSTCHK_NETADM;
9658 #else
9659 		Alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]);
9660 		goto out_err;
9661 #endif
9662 	} else if (!strcmp(args[0], "set-log-level")) {
9663 		rule->action = ACT_HTTP_SET_LOGL;
9664 		cur_arg = 1;
9665 
9666 		if (!*args[cur_arg] ||
9667 		    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
9668 		bad_log_level:
9669 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (log level name or 'silent').\n",
9670 			      file, linenum, args[0]);
9671 			goto out_err;
9672 		}
9673 		if (strcmp(args[cur_arg], "silent") == 0)
9674 			rule->arg.loglevel = -1;
9675 		else if ((rule->arg.loglevel = get_log_level(args[cur_arg]) + 1) == 0)
9676 			goto bad_log_level;
9677 		cur_arg++;
9678 	} else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) {
9679 		rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR;
9680 		cur_arg = 1;
9681 
9682 		if (!*args[cur_arg] || !*args[cur_arg+1] ||
9683 		    (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
9684 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n",
9685 			      file, linenum, args[0]);
9686 			goto out_err;
9687 		}
9688 
9689 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
9690 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
9691 		LIST_INIT(&rule->arg.hdr_add.fmt);
9692 
9693 		proxy->conf.args.ctx = ARGC_HRS;
9694 		error = NULL;
9695 		if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
9696 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9697 			Alert("parsing [%s:%d]: 'http-response %s': %s.\n",
9698 			      file, linenum, args[0], error);
9699 			free(error);
9700 			goto out_err;
9701 		}
9702 		free(proxy->conf.lfs_file);
9703 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9704 		proxy->conf.lfs_line = proxy->conf.args.line;
9705 		cur_arg += 2;
9706 	} else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) {
9707 		rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL;
9708 		cur_arg = 1;
9709 
9710 		if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] ||
9711 		    (*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) {
9712 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 3 arguments.\n",
9713 			      file, linenum, args[0]);
9714 			goto out_err;
9715 		}
9716 
9717 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
9718 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
9719 		LIST_INIT(&rule->arg.hdr_add.fmt);
9720 
9721 		error = NULL;
9722 		if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) {
9723 			Alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum,
9724 			      args[cur_arg + 1], error);
9725 			free(error);
9726 			goto out_err;
9727 		}
9728 
9729 		proxy->conf.args.ctx = ARGC_HRQ;
9730 		error = NULL;
9731 		if (!parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
9732 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9733 			Alert("parsing [%s:%d]: 'http-response %s': %s.\n",
9734 			      file, linenum, args[0], error);
9735 			free(error);
9736 			goto out_err;
9737 		}
9738 
9739 		free(proxy->conf.lfs_file);
9740 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9741 		proxy->conf.lfs_line = proxy->conf.args.line;
9742 		cur_arg += 3;
9743 	} else if (strcmp(args[0], "del-header") == 0) {
9744 		rule->action = ACT_HTTP_DEL_HDR;
9745 		cur_arg = 1;
9746 
9747 		if (!*args[cur_arg] ||
9748 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9749 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
9750 			      file, linenum, args[0]);
9751 			goto out_err;
9752 		}
9753 
9754 		rule->arg.hdr_add.name = strdup(args[cur_arg]);
9755 		rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
9756 
9757 		proxy->conf.args.ctx = ARGC_HRS;
9758 		free(proxy->conf.lfs_file);
9759 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9760 		proxy->conf.lfs_line = proxy->conf.args.line;
9761 		cur_arg += 1;
9762 	} else if (strncmp(args[0], "add-acl", 7) == 0) {
9763 		/* http-request add-acl(<reference (acl name)>) <key pattern> */
9764 		rule->action = ACT_HTTP_ADD_ACL;
9765 		/*
9766 		 * '+ 8' for 'add-acl('
9767 		 * '- 9' for 'add-acl(' + trailing ')'
9768 		 */
9769 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9770 
9771 		cur_arg = 1;
9772 
9773 		if (!*args[cur_arg] ||
9774 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9775 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
9776 			      file, linenum, args[0]);
9777 			goto out_err;
9778 		}
9779 
9780 		LIST_INIT(&rule->arg.map.key);
9781 		proxy->conf.args.ctx = ARGC_HRS;
9782 		error = NULL;
9783 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9784 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9785 			Alert("parsing [%s:%d]: 'http-response %s': %s.\n",
9786 			      file, linenum, args[0], error);
9787 			free(error);
9788 			goto out_err;
9789 		}
9790 		free(proxy->conf.lfs_file);
9791 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9792 		proxy->conf.lfs_line = proxy->conf.args.line;
9793 
9794 		cur_arg += 1;
9795 	} else if (strncmp(args[0], "del-acl", 7) == 0) {
9796 		/* http-response del-acl(<reference (acl name)>) <key pattern> */
9797 		rule->action = ACT_HTTP_DEL_ACL;
9798 		/*
9799 		 * '+ 8' for 'del-acl('
9800 		 * '- 9' for 'del-acl(' + trailing ')'
9801 		 */
9802 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9803 
9804 		cur_arg = 1;
9805 
9806 		if (!*args[cur_arg] ||
9807 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9808 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
9809 			      file, linenum, args[0]);
9810 			goto out_err;
9811 		}
9812 
9813 		LIST_INIT(&rule->arg.map.key);
9814 		proxy->conf.args.ctx = ARGC_HRS;
9815 		error = NULL;
9816 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9817 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9818 			Alert("parsing [%s:%d]: 'http-response %s': %s.\n",
9819 			      file, linenum, args[0], error);
9820 			free(error);
9821 			goto out_err;
9822 		}
9823 		free(proxy->conf.lfs_file);
9824 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9825 		proxy->conf.lfs_line = proxy->conf.args.line;
9826 		cur_arg += 1;
9827 	} else if (strncmp(args[0], "del-map", 7) == 0) {
9828 		/* http-response del-map(<reference (map name)>) <key pattern> */
9829 		rule->action = ACT_HTTP_DEL_MAP;
9830 		/*
9831 		 * '+ 8' for 'del-map('
9832 		 * '- 9' for 'del-map(' + trailing ')'
9833 		 */
9834 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9835 
9836 		cur_arg = 1;
9837 
9838 		if (!*args[cur_arg] ||
9839 		    (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
9840 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
9841 			      file, linenum, args[0]);
9842 			goto out_err;
9843 		}
9844 
9845 		LIST_INIT(&rule->arg.map.key);
9846 		proxy->conf.args.ctx = ARGC_HRS;
9847 		error = NULL;
9848 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9849 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9850 			Alert("parsing [%s:%d]: 'http-response %s' %s.\n",
9851 			      file, linenum, args[0], error);
9852 			free(error);
9853 			goto out_err;
9854 		}
9855 		free(proxy->conf.lfs_file);
9856 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9857 		proxy->conf.lfs_line = proxy->conf.args.line;
9858 		cur_arg += 1;
9859 	} else if (strncmp(args[0], "set-map", 7) == 0) {
9860 		/* http-response set-map(<reference (map name)>) <key pattern> <value pattern> */
9861 		rule->action = ACT_HTTP_SET_MAP;
9862 		/*
9863 		 * '+ 8' for 'set-map('
9864 		 * '- 9' for 'set-map(' + trailing ')'
9865 		 */
9866 		rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
9867 
9868 		cur_arg = 1;
9869 
9870 		if (!*args[cur_arg] || !*args[cur_arg+1] ||
9871 		    (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
9872 			Alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n",
9873 			      file, linenum, args[0]);
9874 			goto out_err;
9875 		}
9876 
9877 		LIST_INIT(&rule->arg.map.key);
9878 		LIST_INIT(&rule->arg.map.value);
9879 
9880 		proxy->conf.args.ctx = ARGC_HRS;
9881 
9882 		/* key pattern */
9883 		error = NULL;
9884 		if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
9885 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9886 			Alert("parsing [%s:%d]: 'http-response %s' name: %s.\n",
9887 			      file, linenum, args[0], error);
9888 			free(error);
9889 			goto out_err;
9890 		}
9891 
9892 		/* value pattern */
9893 		error = NULL;
9894 		if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP,
9895 		                            (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
9896 			Alert("parsing [%s:%d]: 'http-response %s' value: %s.\n",
9897 			      file, linenum, args[0], error);
9898 			free(error);
9899 			goto out_err;
9900 		}
9901 
9902 		free(proxy->conf.lfs_file);
9903 		proxy->conf.lfs_file = strdup(proxy->conf.args.file);
9904 		proxy->conf.lfs_line = proxy->conf.args.line;
9905 
9906 		cur_arg += 2;
9907 	} else if (strcmp(args[0], "redirect") == 0) {
9908 		struct redirect_rule *redir;
9909 		char *errmsg = NULL;
9910 
9911 		if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 1)) == NULL) {
9912 			Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
9913 			      file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
9914 			goto out_err;
9915 		}
9916 
9917 		/* this redirect rule might already contain a parsed condition which
9918 		 * we'll pass to the http-request rule.
9919 		 */
9920 		rule->action = ACT_HTTP_REDIR;
9921 		rule->arg.redir = redir;
9922 		rule->cond = redir->cond;
9923 		redir->cond = NULL;
9924 		cur_arg = 2;
9925 		return rule;
9926 	} else if (strncmp(args[0], "track-sc", 8) == 0 &&
9927 	                   args[0][9] == '\0' && args[0][8] >= '0' &&
9928 	                   args[0][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */
9929 		struct sample_expr *expr;
9930 		unsigned int where;
9931 		char *err = NULL;
9932 
9933 		cur_arg = 1;
9934 		proxy->conf.args.ctx = ARGC_TRK;
9935 
9936 		expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args);
9937 		if (!expr) {
9938 			Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
9939 			      file, linenum, proxy_type_str(proxy), proxy->id, args[0], err);
9940 			free(err);
9941 			goto out_err;
9942 		}
9943 
9944 		where = 0;
9945 		if (proxy->cap & PR_CAP_FE)
9946 			where |= SMP_VAL_FE_HRS_HDR;
9947 		if (proxy->cap & PR_CAP_BE)
9948 			where |= SMP_VAL_BE_HRS_HDR;
9949 
9950 		if (!(expr->fetch->val & where)) {
9951 			Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule :"
9952 			      " fetch method '%s' extracts information from '%s', none of which is available here.\n",
9953 			      file, linenum, proxy_type_str(proxy), proxy->id, args[0],
9954 			      args[cur_arg-1], sample_src_names(expr->fetch->use));
9955 			free(expr);
9956 			goto out_err;
9957 		}
9958 
9959 		if (strcmp(args[cur_arg], "table") == 0) {
9960 			cur_arg++;
9961 			if (!args[cur_arg]) {
9962 				Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : missing table name.\n",
9963 				      file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
9964 				free(expr);
9965 				goto out_err;
9966 			}
9967 			/* we copy the table name for now, it will be resolved later */
9968 			rule->arg.trk_ctr.table.n = strdup(args[cur_arg]);
9969 			cur_arg++;
9970 		}
9971 		rule->arg.trk_ctr.expr = expr;
9972 		rule->action = ACT_ACTION_TRK_SC0 + args[0][8] - '0';
9973 	} else if (((custom = action_http_res_custom(args[0])) != NULL)) {
9974 		char *errmsg = NULL;
9975 		cur_arg = 1;
9976 		/* try in the module list */
9977 		rule->from = ACT_F_HTTP_RES;
9978 		rule->kw = custom;
9979 		if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) {
9980 			Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
9981 			      file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
9982 			free(errmsg);
9983 			goto out_err;
9984 		}
9985 	} else {
9986 		action_build_list(&http_res_keywords.list, &trash);
9987 		Alert("parsing [%s:%d]: 'http-response' expects 'allow', 'deny', 'redirect', "
9988 		      "'add-header', 'del-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', "
9989 		      "'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', 'track-sc*'"
9990 		      "%s%s, but got '%s'%s.\n",
9991 		      file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)");
9992 		goto out_err;
9993 	}
9994 
9995 	if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) {
9996 		struct acl_cond *cond;
9997 		char *errmsg = NULL;
9998 
9999 		if ((cond = build_acl_cond(file, linenum, proxy, args+cur_arg, &errmsg)) == NULL) {
10000 			Alert("parsing [%s:%d] : error detected while parsing an 'http-response %s' condition : %s.\n",
10001 			      file, linenum, args[0], errmsg);
10002 			free(errmsg);
10003 			goto out_err;
10004 		}
10005 		rule->cond = cond;
10006 	}
10007 	else if (*args[cur_arg]) {
10008 		Alert("parsing [%s:%d]: 'http-response %s' expects"
10009 		      " either 'if' or 'unless' followed by a condition but found '%s'.\n",
10010 		      file, linenum, args[0], args[cur_arg]);
10011 		goto out_err;
10012 	}
10013 
10014 	return rule;
10015  out_err:
10016 	free(rule);
10017 	return NULL;
10018 }
10019 
10020 /* Parses a redirect rule. Returns the redirect rule on success or NULL on error,
10021  * with <err> filled with the error message. If <use_fmt> is not null, builds a
10022  * dynamic log-format rule instead of a static string. Parameter <dir> indicates
10023  * the direction of the rule, and equals 0 for request, non-zero for responses.
10024  */
http_parse_redirect_rule(const char * file,int linenum,struct proxy * curproxy,const char ** args,char ** errmsg,int use_fmt,int dir)10025 struct redirect_rule *http_parse_redirect_rule(const char *file, int linenum, struct proxy *curproxy,
10026                                                const char **args, char **errmsg, int use_fmt, int dir)
10027 {
10028 	struct redirect_rule *rule;
10029 	int cur_arg;
10030 	int type = REDIRECT_TYPE_NONE;
10031 	int code = 302;
10032 	const char *destination = NULL;
10033 	const char *cookie = NULL;
10034 	int cookie_set = 0;
10035 	unsigned int flags = (!dir ? REDIRECT_FLAG_FROM_REQ : REDIRECT_FLAG_NONE);
10036 	struct acl_cond *cond = NULL;
10037 
10038 	cur_arg = 0;
10039 	while (*(args[cur_arg])) {
10040 		if (strcmp(args[cur_arg], "location") == 0) {
10041 			if (!*args[cur_arg + 1])
10042 				goto missing_arg;
10043 
10044 			type = REDIRECT_TYPE_LOCATION;
10045 			cur_arg++;
10046 			destination = args[cur_arg];
10047 		}
10048 		else if (strcmp(args[cur_arg], "prefix") == 0) {
10049 			if (!*args[cur_arg + 1])
10050 				goto missing_arg;
10051 			type = REDIRECT_TYPE_PREFIX;
10052 			cur_arg++;
10053 			destination = args[cur_arg];
10054 		}
10055 		else if (strcmp(args[cur_arg], "scheme") == 0) {
10056 			if (!*args[cur_arg + 1])
10057 				goto missing_arg;
10058 
10059 			type = REDIRECT_TYPE_SCHEME;
10060 			cur_arg++;
10061 			destination = args[cur_arg];
10062 		}
10063 		else if (strcmp(args[cur_arg], "set-cookie") == 0) {
10064 			if (!*args[cur_arg + 1])
10065 				goto missing_arg;
10066 
10067 			cur_arg++;
10068 			cookie = args[cur_arg];
10069 			cookie_set = 1;
10070 		}
10071 		else if (strcmp(args[cur_arg], "clear-cookie") == 0) {
10072 			if (!*args[cur_arg + 1])
10073 				goto missing_arg;
10074 
10075 			cur_arg++;
10076 			cookie = args[cur_arg];
10077 			cookie_set = 0;
10078 		}
10079 		else if (strcmp(args[cur_arg], "code") == 0) {
10080 			if (!*args[cur_arg + 1])
10081 				goto missing_arg;
10082 
10083 			cur_arg++;
10084 			code = atol(args[cur_arg]);
10085 			if (code < 301 || code > 308 || (code > 303 && code < 307)) {
10086 				memprintf(errmsg,
10087 				          "'%s': unsupported HTTP code '%s' (must be one of 301, 302, 303, 307 or 308)",
10088 				          args[cur_arg - 1], args[cur_arg]);
10089 				return NULL;
10090 			}
10091 		}
10092 		else if (!strcmp(args[cur_arg],"drop-query")) {
10093 			flags |= REDIRECT_FLAG_DROP_QS;
10094 		}
10095 		else if (!strcmp(args[cur_arg],"append-slash")) {
10096 			flags |= REDIRECT_FLAG_APPEND_SLASH;
10097 		}
10098 		else if (strcmp(args[cur_arg], "if") == 0 ||
10099 			 strcmp(args[cur_arg], "unless") == 0) {
10100 			cond = build_acl_cond(file, linenum, curproxy, (const char **)args + cur_arg, errmsg);
10101 			if (!cond) {
10102 				memprintf(errmsg, "error in condition: %s", *errmsg);
10103 				return NULL;
10104 			}
10105 			break;
10106 		}
10107 		else {
10108 			memprintf(errmsg,
10109 			          "expects 'code', 'prefix', 'location', 'scheme', 'set-cookie', 'clear-cookie', 'drop-query' or 'append-slash' (was '%s')",
10110 			          args[cur_arg]);
10111 			return NULL;
10112 		}
10113 		cur_arg++;
10114 	}
10115 
10116 	if (type == REDIRECT_TYPE_NONE) {
10117 		memprintf(errmsg, "redirection type expected ('prefix', 'location', or 'scheme')");
10118 		return NULL;
10119 	}
10120 
10121 	if (dir && type != REDIRECT_TYPE_LOCATION) {
10122 		memprintf(errmsg, "response only supports redirect type 'location'");
10123 		return NULL;
10124 	}
10125 
10126 	rule = calloc(1, sizeof(*rule));
10127 	rule->cond = cond;
10128 	LIST_INIT(&rule->rdr_fmt);
10129 
10130 	if (!use_fmt) {
10131 		/* old-style static redirect rule */
10132 		rule->rdr_str = strdup(destination);
10133 		rule->rdr_len = strlen(destination);
10134 	}
10135 	else {
10136 		/* log-format based redirect rule */
10137 
10138 		/* Parse destination. Note that in the REDIRECT_TYPE_PREFIX case,
10139 		 * if prefix == "/", we don't want to add anything, otherwise it
10140 		 * makes it hard for the user to configure a self-redirection.
10141 		 */
10142 		curproxy->conf.args.ctx = ARGC_RDR;
10143 		if (!(type == REDIRECT_TYPE_PREFIX && destination[0] == '/' && destination[1] == '\0')) {
10144 			if (!parse_logformat_string(destination, curproxy, &rule->rdr_fmt, LOG_OPT_HTTP,
10145 			                            dir ? (curproxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRS_HDR : SMP_VAL_BE_HRS_HDR
10146 			                                : (curproxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR,
10147 			                            errmsg)) {
10148 				return  NULL;
10149 			}
10150 			free(curproxy->conf.lfs_file);
10151 			curproxy->conf.lfs_file = strdup(curproxy->conf.args.file);
10152 			curproxy->conf.lfs_line = curproxy->conf.args.line;
10153 		}
10154 	}
10155 
10156 	if (cookie) {
10157 		/* depending on cookie_set, either we want to set the cookie, or to clear it.
10158 		 * a clear consists in appending "; path=/; Max-Age=0;" at the end.
10159 		 */
10160 		rule->cookie_len = strlen(cookie);
10161 		if (cookie_set) {
10162 			rule->cookie_str = malloc(rule->cookie_len + 10);
10163 			memcpy(rule->cookie_str, cookie, rule->cookie_len);
10164 			memcpy(rule->cookie_str + rule->cookie_len, "; path=/;", 10);
10165 			rule->cookie_len += 9;
10166 		} else {
10167 			rule->cookie_str = malloc(rule->cookie_len + 21);
10168 			memcpy(rule->cookie_str, cookie, rule->cookie_len);
10169 			memcpy(rule->cookie_str + rule->cookie_len, "; path=/; Max-Age=0;", 21);
10170 			rule->cookie_len += 20;
10171 		}
10172 	}
10173 	rule->type = type;
10174 	rule->code = code;
10175 	rule->flags = flags;
10176 	LIST_INIT(&rule->list);
10177 	return rule;
10178 
10179  missing_arg:
10180 	memprintf(errmsg, "missing argument for '%s'", args[cur_arg]);
10181 	return NULL;
10182 }
10183 
10184 /************************************************************************/
10185 /*        The code below is dedicated to ACL parsing and matching       */
10186 /************************************************************************/
10187 
10188 
10189 /* This function ensures that the prerequisites for an L7 fetch are ready,
10190  * which means that a request or response is ready. If some data is missing,
10191  * a parsing attempt is made. This is useful in TCP-based ACLs which are able
10192  * to extract data from L7. If <req_vol> is non-null during a request prefetch,
10193  * another test is made to ensure the required information is not gone.
10194  *
10195  * The function returns :
10196  *   0 with SMP_F_MAY_CHANGE in the sample flags if some data is missing to
10197  *     decide whether or not an HTTP message is present ;
10198  *   0 if the requested data cannot be fetched or if it is certain that
10199  *     we'll never have any HTTP message there ;
10200  *   1 if an HTTP message is ready
10201  */
smp_prefetch_http(struct proxy * px,struct stream * s,unsigned int opt,const struct arg * args,struct sample * smp,int req_vol)10202 int smp_prefetch_http(struct proxy *px, struct stream *s, unsigned int opt,
10203                   const struct arg *args, struct sample *smp, int req_vol)
10204 {
10205 	struct http_txn *txn;
10206 	struct http_msg *msg;
10207 
10208 	/* Note: it is possible that <s> is NULL when called before stream
10209 	 * initialization (eg: tcp-request connection), so this function is the
10210 	 * one responsible for guarding against this case for all HTTP users.
10211 	 */
10212 	if (!s)
10213 		return 0;
10214 
10215 	if (!s->txn) {
10216 		if (unlikely(!http_alloc_txn(s)))
10217 			return 0; /* not enough memory */
10218 		http_init_txn(s);
10219 	}
10220 	txn = s->txn;
10221 	msg = &txn->req;
10222 
10223 	/* Check for a dependency on a request */
10224 	smp->data.type = SMP_T_BOOL;
10225 
10226 	if ((opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) {
10227 		/* If the buffer does not leave enough free space at the end,
10228 		 * we must first realign it.
10229 		 */
10230 		if (s->req.buf->p > s->req.buf->data &&
10231 		    s->req.buf->i + s->req.buf->p > s->req.buf->data + s->req.buf->size - global.tune.maxrewrite)
10232 			buffer_slow_realign(s->req.buf);
10233 
10234 		if (unlikely(txn->req.msg_state < HTTP_MSG_BODY)) {
10235 			if (msg->msg_state == HTTP_MSG_ERROR)
10236 				return 0;
10237 
10238 			/* Try to decode HTTP request */
10239 			if (likely(msg->next < s->req.buf->i))
10240 				http_msg_analyzer(msg, &txn->hdr_idx);
10241 
10242 			/* Still no valid request ? */
10243 			if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
10244 				if ((msg->msg_state == HTTP_MSG_ERROR) ||
10245 				    buffer_full(s->req.buf, global.tune.maxrewrite)) {
10246 					return 0;
10247 				}
10248 				/* wait for final state */
10249 				smp->flags |= SMP_F_MAY_CHANGE;
10250 				return 0;
10251 			}
10252 
10253 			/* OK we just got a valid HTTP request. We have some minor
10254 			 * preparation to perform so that further checks can rely
10255 			 * on HTTP tests.
10256 			 */
10257 
10258 			/* If the request was parsed but was too large, we must absolutely
10259 			 * return an error so that it is not processed. At the moment this
10260 			 * cannot happen, but if the parsers are to change in the future,
10261 			 * we want this check to be maintained.
10262 			 */
10263 			if (unlikely(s->req.buf->i + s->req.buf->p >
10264 				     s->req.buf->data + s->req.buf->size - global.tune.maxrewrite)) {
10265 				msg->err_state = msg->msg_state;
10266 				msg->msg_state = HTTP_MSG_ERROR;
10267 				smp->data.u.sint = 1;
10268 				return 1;
10269 			}
10270 
10271 			txn->meth = find_http_meth(msg->chn->buf->p, msg->sl.rq.m_l);
10272 			if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
10273 				s->flags |= SF_REDIRECTABLE;
10274 
10275 			if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn))
10276 				return 0;
10277 		}
10278 
10279 		if (req_vol && txn->rsp.msg_state != HTTP_MSG_RPBEFORE) {
10280 			return 0;  /* data might have moved and indexes changed */
10281 		}
10282 
10283 		/* otherwise everything's ready for the request */
10284 	}
10285 	else {
10286 		/* Check for a dependency on a response */
10287 		if (txn->rsp.msg_state < HTTP_MSG_BODY) {
10288 			smp->flags |= SMP_F_MAY_CHANGE;
10289 			return 0;
10290 		}
10291 	}
10292 
10293 	/* everything's OK */
10294 	smp->data.u.sint = 1;
10295 	return 1;
10296 }
10297 
10298 /* 1. Check on METHOD
10299  * We use the pre-parsed method if it is known, and store its number as an
10300  * integer. If it is unknown, we use the pointer and the length.
10301  */
pat_parse_meth(const char * text,struct pattern * pattern,int mflags,char ** err)10302 static int pat_parse_meth(const char *text, struct pattern *pattern, int mflags, char **err)
10303 {
10304 	int len, meth;
10305 
10306 	len  = strlen(text);
10307 	meth = find_http_meth(text, len);
10308 
10309 	pattern->val.i = meth;
10310 	if (meth == HTTP_METH_OTHER) {
10311 		pattern->ptr.str = (char *)text;
10312 		pattern->len = len;
10313 	}
10314 	else {
10315 		pattern->ptr.str = NULL;
10316 		pattern->len = 0;
10317 	}
10318 	return 1;
10319 }
10320 
10321 /* This function fetches the method of current HTTP request and stores
10322  * it in the global pattern struct as a chunk. There are two possibilities :
10323  *   - if the method is known (not HTTP_METH_OTHER), its identifier is stored
10324  *     in <len> and <ptr> is NULL ;
10325  *   - if the method is unknown (HTTP_METH_OTHER), <ptr> points to the text and
10326  *     <len> to its length.
10327  * This is intended to be used with pat_match_meth() only.
10328  */
10329 static int
smp_fetch_meth(const struct arg * args,struct sample * smp,const char * kw,void * private)10330 smp_fetch_meth(const struct arg *args, struct sample *smp, const char *kw, void *private)
10331 {
10332 	int meth;
10333 	struct http_txn *txn;
10334 
10335 	CHECK_HTTP_MESSAGE_FIRST_PERM();
10336 
10337 	txn = smp->strm->txn;
10338 	meth = txn->meth;
10339 	smp->data.type = SMP_T_METH;
10340 	smp->data.u.meth.meth = meth;
10341 	if (meth == HTTP_METH_OTHER) {
10342 		if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
10343 			/* ensure the indexes are not affected */
10344 			return 0;
10345 		smp->flags |= SMP_F_CONST;
10346 		smp->data.u.meth.str.len = txn->req.sl.rq.m_l;
10347 		smp->data.u.meth.str.str = txn->req.chn->buf->p;
10348 	}
10349 	smp->flags |= SMP_F_VOL_1ST;
10350 	return 1;
10351 }
10352 
10353 /* See above how the method is stored in the global pattern */
pat_match_meth(struct sample * smp,struct pattern_expr * expr,int fill)10354 static struct pattern *pat_match_meth(struct sample *smp, struct pattern_expr *expr, int fill)
10355 {
10356 	int icase;
10357 	struct pattern_list *lst;
10358 	struct pattern *pattern;
10359 
10360 	list_for_each_entry(lst, &expr->patterns, list) {
10361 		pattern = &lst->pat;
10362 
10363 		/* well-known method */
10364 		if (pattern->val.i != HTTP_METH_OTHER) {
10365 			if (smp->data.u.meth.meth == pattern->val.i)
10366 				return pattern;
10367 			else
10368 				continue;
10369 		}
10370 
10371 		/* Other method, we must compare the strings */
10372 		if (pattern->len != smp->data.u.meth.str.len)
10373 			continue;
10374 
10375 		icase = expr->mflags & PAT_MF_IGNORE_CASE;
10376 		if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0) ||
10377 		    (!icase && strncmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0))
10378 			return pattern;
10379 	}
10380 	return NULL;
10381 }
10382 
10383 static int
smp_fetch_rqver(const struct arg * args,struct sample * smp,const char * kw,void * private)10384 smp_fetch_rqver(const struct arg *args, struct sample *smp, const char *kw, void *private)
10385 {
10386 	struct http_txn *txn;
10387 	char *ptr;
10388 	int len;
10389 
10390 	CHECK_HTTP_MESSAGE_FIRST();
10391 
10392 	txn = smp->strm->txn;
10393 	len = txn->req.sl.rq.v_l;
10394 	ptr = txn->req.chn->buf->p + txn->req.sl.rq.v;
10395 
10396 	while ((len-- > 0) && (*ptr++ != '/'));
10397 	if (len <= 0)
10398 		return 0;
10399 
10400 	smp->data.type = SMP_T_STR;
10401 	smp->data.u.str.str = ptr;
10402 	smp->data.u.str.len = len;
10403 
10404 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
10405 	return 1;
10406 }
10407 
10408 static int
smp_fetch_stver(const struct arg * args,struct sample * smp,const char * kw,void * private)10409 smp_fetch_stver(const struct arg *args, struct sample *smp, const char *kw, void *private)
10410 {
10411 	struct http_txn *txn;
10412 	char *ptr;
10413 	int len;
10414 
10415 	CHECK_HTTP_MESSAGE_FIRST();
10416 
10417 	txn = smp->strm->txn;
10418 	if (txn->rsp.msg_state < HTTP_MSG_BODY)
10419 		return 0;
10420 
10421 	len = txn->rsp.sl.st.v_l;
10422 	ptr = txn->rsp.chn->buf->p;
10423 
10424 	while ((len-- > 0) && (*ptr++ != '/'));
10425 	if (len <= 0)
10426 		return 0;
10427 
10428 	smp->data.type = SMP_T_STR;
10429 	smp->data.u.str.str = ptr;
10430 	smp->data.u.str.len = len;
10431 
10432 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
10433 	return 1;
10434 }
10435 
10436 /* 3. Check on Status Code. We manipulate integers here. */
10437 static int
smp_fetch_stcode(const struct arg * args,struct sample * smp,const char * kw,void * private)10438 smp_fetch_stcode(const struct arg *args, struct sample *smp, const char *kw, void *private)
10439 {
10440 	struct http_txn *txn;
10441 	char *ptr;
10442 	int len;
10443 
10444 	CHECK_HTTP_MESSAGE_FIRST();
10445 
10446 	txn = smp->strm->txn;
10447 	if (txn->rsp.msg_state < HTTP_MSG_BODY)
10448 		return 0;
10449 
10450 	len = txn->rsp.sl.st.c_l;
10451 	ptr = txn->rsp.chn->buf->p + txn->rsp.sl.st.c;
10452 
10453 	smp->data.type = SMP_T_SINT;
10454 	smp->data.u.sint = __strl2ui(ptr, len);
10455 	smp->flags = SMP_F_VOL_1ST;
10456 	return 1;
10457 }
10458 
10459 static int
smp_fetch_uniqueid(const struct arg * args,struct sample * smp,const char * kw,void * private)10460 smp_fetch_uniqueid(const struct arg *args, struct sample *smp, const char *kw, void *private)
10461 {
10462 	if (LIST_ISEMPTY(&smp->sess->fe->format_unique_id))
10463 		return 0;
10464 
10465 	if (!smp->strm)
10466 		return 0;
10467 
10468 	if (!smp->strm->unique_id) {
10469 		if ((smp->strm->unique_id = pool_alloc2(pool2_uniqueid)) == NULL)
10470 			return 0;
10471 		smp->strm->unique_id[0] = '\0';
10472 		build_logline(smp->strm, smp->strm->unique_id,
10473 		              UNIQUEID_LEN, &smp->sess->fe->format_unique_id);
10474 	}
10475 	smp->data.u.str.len = strlen(smp->strm->unique_id);
10476 	smp->data.type = SMP_T_STR;
10477 	smp->data.u.str.str = smp->strm->unique_id;
10478 	smp->flags = SMP_F_CONST;
10479 	return 1;
10480 }
10481 
10482 /* returns the longest available part of the body. This requires that the body
10483  * has been waited for using http-buffer-request.
10484  */
10485 static int
smp_fetch_body(const struct arg * args,struct sample * smp,const char * kw,void * private)10486 smp_fetch_body(const struct arg *args, struct sample *smp, const char *kw, void *private)
10487 {
10488 	struct http_msg *msg;
10489 	unsigned long len;
10490 	unsigned long block1;
10491 	char *body;
10492 	struct chunk *temp;
10493 
10494 	CHECK_HTTP_MESSAGE_FIRST();
10495 
10496 	if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
10497 		msg = &smp->strm->txn->req;
10498 	else
10499 		msg = &smp->strm->txn->rsp;
10500 
10501 	len  = http_body_bytes(msg);
10502 	body = b_ptr(msg->chn->buf, -http_data_rewind(msg));
10503 
10504 	block1 = len;
10505 	if (block1 > msg->chn->buf->data + msg->chn->buf->size - body)
10506 		block1 = msg->chn->buf->data + msg->chn->buf->size - body;
10507 
10508 	if (block1 == len) {
10509 		/* buffer is not wrapped (or empty) */
10510 		smp->data.type = SMP_T_BIN;
10511 		smp->data.u.str.str = body;
10512 		smp->data.u.str.len = len;
10513 		smp->flags = SMP_F_VOL_TEST | SMP_F_CONST;
10514 	}
10515 	else {
10516 		/* buffer is wrapped, we need to defragment it */
10517 		temp = get_trash_chunk();
10518 		memcpy(temp->str, body, block1);
10519 		memcpy(temp->str + block1, msg->chn->buf->data, len - block1);
10520 		smp->data.type = SMP_T_BIN;
10521 		smp->data.u.str.str = temp->str;
10522 		smp->data.u.str.len = len;
10523 		smp->flags = SMP_F_VOL_TEST;
10524 	}
10525 	return 1;
10526 }
10527 
10528 
10529 /* returns the available length of the body. This requires that the body
10530  * has been waited for using http-buffer-request.
10531  */
10532 static int
smp_fetch_body_len(const struct arg * args,struct sample * smp,const char * kw,void * private)10533 smp_fetch_body_len(const struct arg *args, struct sample *smp, const char *kw, void *private)
10534 {
10535 	struct http_msg *msg;
10536 
10537 	CHECK_HTTP_MESSAGE_FIRST();
10538 
10539 	if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
10540 		msg = &smp->strm->txn->req;
10541 	else
10542 		msg = &smp->strm->txn->rsp;
10543 
10544 	smp->data.type = SMP_T_SINT;
10545 	smp->data.u.sint = http_body_bytes(msg);
10546 
10547 	smp->flags = SMP_F_VOL_TEST;
10548 	return 1;
10549 }
10550 
10551 
10552 /* returns the advertised length of the body, or the advertised size of the
10553  * chunks available in the buffer. This requires that the body has been waited
10554  * for using http-buffer-request.
10555  */
10556 static int
smp_fetch_body_size(const struct arg * args,struct sample * smp,const char * kw,void * private)10557 smp_fetch_body_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
10558 {
10559 	struct http_msg *msg;
10560 
10561 	CHECK_HTTP_MESSAGE_FIRST();
10562 
10563 	if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
10564 		msg = &smp->strm->txn->req;
10565 	else
10566 		msg = &smp->strm->txn->rsp;
10567 
10568 	smp->data.type = SMP_T_SINT;
10569 	smp->data.u.sint = msg->body_len;
10570 
10571 	smp->flags = SMP_F_VOL_TEST;
10572 	return 1;
10573 }
10574 
10575 
10576 /* 4. Check on URL/URI. A pointer to the URI is stored. */
10577 static int
smp_fetch_url(const struct arg * args,struct sample * smp,const char * kw,void * private)10578 smp_fetch_url(const struct arg *args, struct sample *smp, const char *kw, void *private)
10579 {
10580 	struct http_txn *txn;
10581 
10582 	CHECK_HTTP_MESSAGE_FIRST();
10583 
10584 	txn = smp->strm->txn;
10585 	smp->data.type = SMP_T_STR;
10586 	smp->data.u.str.len = txn->req.sl.rq.u_l;
10587 	smp->data.u.str.str = txn->req.chn->buf->p + txn->req.sl.rq.u;
10588 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
10589 	return 1;
10590 }
10591 
10592 static int
smp_fetch_url_ip(const struct arg * args,struct sample * smp,const char * kw,void * private)10593 smp_fetch_url_ip(const struct arg *args, struct sample *smp, const char *kw, void *private)
10594 {
10595 	struct http_txn *txn;
10596 	struct sockaddr_storage addr;
10597 
10598 	CHECK_HTTP_MESSAGE_FIRST();
10599 
10600 	txn = smp->strm->txn;
10601 	url2sa(txn->req.chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &addr, NULL);
10602 	if (((struct sockaddr_in *)&addr)->sin_family != AF_INET)
10603 		return 0;
10604 
10605 	smp->data.type = SMP_T_IPV4;
10606 	smp->data.u.ipv4 = ((struct sockaddr_in *)&addr)->sin_addr;
10607 	smp->flags = 0;
10608 	return 1;
10609 }
10610 
10611 static int
smp_fetch_url_port(const struct arg * args,struct sample * smp,const char * kw,void * private)10612 smp_fetch_url_port(const struct arg *args, struct sample *smp, const char *kw, void *private)
10613 {
10614 	struct http_txn *txn;
10615 	struct sockaddr_storage addr;
10616 
10617 	CHECK_HTTP_MESSAGE_FIRST();
10618 
10619 	txn = smp->strm->txn;
10620 	url2sa(txn->req.chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &addr, NULL);
10621 	if (((struct sockaddr_in *)&addr)->sin_family != AF_INET)
10622 		return 0;
10623 
10624 	smp->data.type = SMP_T_SINT;
10625 	smp->data.u.sint = ntohs(((struct sockaddr_in *)&addr)->sin_port);
10626 	smp->flags = 0;
10627 	return 1;
10628 }
10629 
10630 /* Fetch an HTTP header. A pointer to the beginning of the value is returned.
10631  * Accepts an optional argument of type string containing the header field name,
10632  * and an optional argument of type signed or unsigned integer to request an
10633  * explicit occurrence of the header. Note that in the event of a missing name,
10634  * headers are considered from the first one. It does not stop on commas and
10635  * returns full lines instead (useful for User-Agent or Date for example).
10636  */
10637 static int
smp_fetch_fhdr(const struct arg * args,struct sample * smp,const char * kw,void * private)10638 smp_fetch_fhdr(const struct arg *args, struct sample *smp, const char *kw, void *private)
10639 {
10640 	struct hdr_idx *idx;
10641 	struct hdr_ctx *ctx = smp->ctx.a[0];
10642 	const struct http_msg *msg;
10643 	int occ = 0;
10644 	const char *name_str = NULL;
10645 	int name_len = 0;
10646 
10647 	if (!ctx) {
10648 		/* first call */
10649 		ctx = &static_hdr_ctx;
10650 		ctx->idx = 0;
10651 		smp->ctx.a[0] = ctx;
10652 	}
10653 
10654 	if (args) {
10655 		if (args[0].type != ARGT_STR)
10656 			return 0;
10657 		name_str = args[0].data.str.str;
10658 		name_len = args[0].data.str.len;
10659 
10660 		if (args[1].type == ARGT_SINT)
10661 			occ = args[1].data.sint;
10662 	}
10663 
10664 	CHECK_HTTP_MESSAGE_FIRST();
10665 
10666 	idx = &smp->strm->txn->hdr_idx;
10667 	msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
10668 
10669 	if (ctx && !(smp->flags & SMP_F_NOT_LAST))
10670 		/* search for header from the beginning */
10671 		ctx->idx = 0;
10672 
10673 	if (!occ && !(smp->opt & SMP_OPT_ITERATE))
10674 		/* no explicit occurrence and single fetch => last header by default */
10675 		occ = -1;
10676 
10677 	if (!occ)
10678 		/* prepare to report multiple occurrences for ACL fetches */
10679 		smp->flags |= SMP_F_NOT_LAST;
10680 
10681 	smp->data.type = SMP_T_STR;
10682 	smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST;
10683 	if (http_get_fhdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.u.str.str, &smp->data.u.str.len))
10684 		return 1;
10685 
10686 	smp->flags &= ~SMP_F_NOT_LAST;
10687 	return 0;
10688 }
10689 
10690 /* 6. Check on HTTP header count. The number of occurrences is returned.
10691  * Accepts exactly 1 argument of type string. It does not stop on commas and
10692  * returns full lines instead (useful for User-Agent or Date for example).
10693  */
10694 static int
smp_fetch_fhdr_cnt(const struct arg * args,struct sample * smp,const char * kw,void * private)10695 smp_fetch_fhdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
10696 {
10697 	struct hdr_idx *idx;
10698 	struct hdr_ctx ctx;
10699 	const struct http_msg *msg;
10700 	int cnt;
10701 	const char *name = NULL;
10702 	int len = 0;
10703 
10704 	if (args && args->type == ARGT_STR) {
10705 		name = args->data.str.str;
10706 		len = args->data.str.len;
10707 	}
10708 
10709 	CHECK_HTTP_MESSAGE_FIRST();
10710 
10711 	idx = &smp->strm->txn->hdr_idx;
10712 	msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
10713 
10714 	ctx.idx = 0;
10715 	cnt = 0;
10716 	while (http_find_full_header2(name, len, msg->chn->buf->p, idx, &ctx))
10717 		cnt++;
10718 
10719 	smp->data.type = SMP_T_SINT;
10720 	smp->data.u.sint = cnt;
10721 	smp->flags = SMP_F_VOL_HDR;
10722 	return 1;
10723 }
10724 
10725 static int
smp_fetch_hdr_names(const struct arg * args,struct sample * smp,const char * kw,void * private)10726 smp_fetch_hdr_names(const struct arg *args, struct sample *smp, const char *kw, void *private)
10727 {
10728 	struct hdr_idx *idx;
10729 	struct hdr_ctx ctx;
10730 	const struct http_msg *msg;
10731 	struct chunk *temp;
10732 	char del = ',';
10733 
10734 	if (args && args->type == ARGT_STR)
10735 		del = *args[0].data.str.str;
10736 
10737 	CHECK_HTTP_MESSAGE_FIRST();
10738 
10739 	idx = &smp->strm->txn->hdr_idx;
10740 	msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
10741 
10742 	temp = get_trash_chunk();
10743 
10744 	ctx.idx = 0;
10745 	while (http_find_next_header(msg->chn->buf->p, idx, &ctx)) {
10746 		if (temp->len)
10747 			temp->str[temp->len++] = del;
10748 		memcpy(temp->str + temp->len, ctx.line, ctx.del);
10749 		temp->len += ctx.del;
10750 	}
10751 
10752 	smp->data.type = SMP_T_STR;
10753 	smp->data.u.str.str = temp->str;
10754 	smp->data.u.str.len = temp->len;
10755 	smp->flags = SMP_F_VOL_HDR;
10756 	return 1;
10757 }
10758 
10759 /* Fetch an HTTP header. A pointer to the beginning of the value is returned.
10760  * Accepts an optional argument of type string containing the header field name,
10761  * and an optional argument of type signed or unsigned integer to request an
10762  * explicit occurrence of the header. Note that in the event of a missing name,
10763  * headers are considered from the first one.
10764  */
10765 static int
smp_fetch_hdr(const struct arg * args,struct sample * smp,const char * kw,void * private)10766 smp_fetch_hdr(const struct arg *args, struct sample *smp, const char *kw, void *private)
10767 {
10768 	struct hdr_idx *idx;
10769 	struct hdr_ctx *ctx = smp->ctx.a[0];
10770 	const struct http_msg *msg;
10771 	int occ = 0;
10772 	const char *name_str = NULL;
10773 	int name_len = 0;
10774 
10775 	if (!ctx) {
10776 		/* first call */
10777 		ctx = &static_hdr_ctx;
10778 		ctx->idx = 0;
10779 		smp->ctx.a[0] = ctx;
10780 	}
10781 
10782 	if (args) {
10783 		if (args[0].type != ARGT_STR)
10784 			return 0;
10785 		name_str = args[0].data.str.str;
10786 		name_len = args[0].data.str.len;
10787 
10788 		if (args[1].type == ARGT_SINT)
10789 			occ = args[1].data.sint;
10790 	}
10791 
10792 	CHECK_HTTP_MESSAGE_FIRST();
10793 
10794 	idx = &smp->strm->txn->hdr_idx;
10795 	msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
10796 
10797 	if (ctx && !(smp->flags & SMP_F_NOT_LAST))
10798 		/* search for header from the beginning */
10799 		ctx->idx = 0;
10800 
10801 	if (!occ && !(smp->opt & SMP_OPT_ITERATE))
10802 		/* no explicit occurrence and single fetch => last header by default */
10803 		occ = -1;
10804 
10805 	if (!occ)
10806 		/* prepare to report multiple occurrences for ACL fetches */
10807 		smp->flags |= SMP_F_NOT_LAST;
10808 
10809 	smp->data.type = SMP_T_STR;
10810 	smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST;
10811 	if (http_get_hdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.u.str.str, &smp->data.u.str.len))
10812 		return 1;
10813 
10814 	smp->flags &= ~SMP_F_NOT_LAST;
10815 	return 0;
10816 }
10817 
10818 /* 6. Check on HTTP header count. The number of occurrences is returned.
10819  * Accepts exactly 1 argument of type string.
10820  */
10821 static int
smp_fetch_hdr_cnt(const struct arg * args,struct sample * smp,const char * kw,void * private)10822 smp_fetch_hdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
10823 {
10824 	struct hdr_idx *idx;
10825 	struct hdr_ctx ctx;
10826 	const struct http_msg *msg;
10827 	int cnt;
10828 	const char *name = NULL;
10829 	int len = 0;
10830 
10831 	if (args && args->type == ARGT_STR) {
10832 		name = args->data.str.str;
10833 		len = args->data.str.len;
10834 	}
10835 
10836 	CHECK_HTTP_MESSAGE_FIRST();
10837 
10838 	idx = &smp->strm->txn->hdr_idx;
10839 	msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
10840 
10841 	ctx.idx = 0;
10842 	cnt = 0;
10843 	while (http_find_header2(name, len, msg->chn->buf->p, idx, &ctx))
10844 		cnt++;
10845 
10846 	smp->data.type = SMP_T_SINT;
10847 	smp->data.u.sint = cnt;
10848 	smp->flags = SMP_F_VOL_HDR;
10849 	return 1;
10850 }
10851 
10852 /* Fetch an HTTP header's integer value. The integer value is returned. It
10853  * takes a mandatory argument of type string and an optional one of type int
10854  * to designate a specific occurrence. It returns an unsigned integer, which
10855  * may or may not be appropriate for everything.
10856  */
10857 static int
smp_fetch_hdr_val(const struct arg * args,struct sample * smp,const char * kw,void * private)10858 smp_fetch_hdr_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
10859 {
10860 	int ret = smp_fetch_hdr(args, smp, kw, private);
10861 
10862 	if (ret > 0) {
10863 		smp->data.type = SMP_T_SINT;
10864 		smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
10865 	}
10866 
10867 	return ret;
10868 }
10869 
10870 /* Fetch an HTTP header's IP value. takes a mandatory argument of type string
10871  * and an optional one of type int to designate a specific occurrence.
10872  * It returns an IPv4 or IPv6 address. Addresses surrounded by invalid chars
10873  * are rejected. However IPv4 addresses may be followed with a colon and a
10874  * valid port number.
10875  */
10876 static int
smp_fetch_hdr_ip(const struct arg * args,struct sample * smp,const char * kw,void * private)10877 smp_fetch_hdr_ip(const struct arg *args, struct sample *smp, const char *kw, void *private)
10878 {
10879 	struct chunk *temp = get_trash_chunk();
10880 	int ret, len;
10881 	int port;
10882 
10883 	while ((ret = smp_fetch_hdr(args, smp, kw, private)) > 0) {
10884 		if (smp->data.u.str.len < temp->size - 1) {
10885 			memcpy(temp->str, smp->data.u.str.str,
10886 			       smp->data.u.str.len);
10887 			temp->str[smp->data.u.str.len] = '\0';
10888 			len = url2ipv4((char *) temp->str, &smp->data.u.ipv4);
10889 			if (len > 0 && len == smp->data.u.str.len) {
10890 				/* plain IPv4 address */
10891 				smp->data.type = SMP_T_IPV4;
10892 				break;
10893 			} else if (len > 0 && temp->str[len] == ':' &&
10894 				   strl2irc(temp->str + len + 1, smp->data.u.str.len - len - 1, &port) == 0 &&
10895 				   port >= 0 && port <= 65535) {
10896 				/* IPv4 address suffixed with ':' followed by a valid port number */
10897 				smp->data.type = SMP_T_IPV4;
10898 				break;
10899 			} else if (inet_pton(AF_INET6, temp->str, &smp->data.u.ipv6)) {
10900 				smp->data.type = SMP_T_IPV6;
10901 				break;
10902 			}
10903 		}
10904 
10905 		/* if the header doesn't match an IP address, fetch next one */
10906 		if (!(smp->flags & SMP_F_NOT_LAST))
10907 			return 0;
10908 	}
10909 	return ret;
10910 }
10911 
10912 /* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at
10913  * the first '/' after the possible hostname, and ends before the possible '?'.
10914  */
10915 static int
smp_fetch_path(const struct arg * args,struct sample * smp,const char * kw,void * private)10916 smp_fetch_path(const struct arg *args, struct sample *smp, const char *kw, void *private)
10917 {
10918 	struct http_txn *txn;
10919 	char *ptr, *end;
10920 
10921 	CHECK_HTTP_MESSAGE_FIRST();
10922 
10923 	txn = smp->strm->txn;
10924 	end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
10925 	ptr = http_get_path(txn);
10926 	if (!ptr)
10927 		return 0;
10928 
10929 	/* OK, we got the '/' ! */
10930 	smp->data.type = SMP_T_STR;
10931 	smp->data.u.str.str = ptr;
10932 
10933 	while (ptr < end && *ptr != '?')
10934 		ptr++;
10935 
10936 	smp->data.u.str.len = ptr - smp->data.u.str.str;
10937 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
10938 	return 1;
10939 }
10940 
10941 /* This produces a concatenation of the first occurrence of the Host header
10942  * followed by the path component if it begins with a slash ('/'). This means
10943  * that '*' will not be added, resulting in exactly the first Host entry.
10944  * If no Host header is found, then the path is returned as-is. The returned
10945  * value is stored in the trash so it does not need to be marked constant.
10946  * The returned sample is of type string.
10947  */
10948 static int
smp_fetch_base(const struct arg * args,struct sample * smp,const char * kw,void * private)10949 smp_fetch_base(const struct arg *args, struct sample *smp, const char *kw, void *private)
10950 {
10951 	struct http_txn *txn;
10952 	char *ptr, *end, *beg;
10953 	struct hdr_ctx ctx;
10954 	struct chunk *temp;
10955 
10956 	CHECK_HTTP_MESSAGE_FIRST();
10957 
10958 	txn = smp->strm->txn;
10959 	ctx.idx = 0;
10960 	if (!http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx) || !ctx.vlen)
10961 		return smp_fetch_path(args, smp, kw, private);
10962 
10963 	/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
10964 	temp = get_trash_chunk();
10965 	memcpy(temp->str, ctx.line + ctx.val, ctx.vlen);
10966 	smp->data.type = SMP_T_STR;
10967 	smp->data.u.str.str = temp->str;
10968 	smp->data.u.str.len = ctx.vlen;
10969 
10970 	/* now retrieve the path */
10971 	end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
10972 	beg = http_get_path(txn);
10973 	if (!beg)
10974 		beg = end;
10975 
10976 	for (ptr = beg; ptr < end && *ptr != '?'; ptr++);
10977 
10978 	if (beg < ptr && *beg == '/') {
10979 		memcpy(smp->data.u.str.str + smp->data.u.str.len, beg, ptr - beg);
10980 		smp->data.u.str.len += ptr - beg;
10981 	}
10982 
10983 	smp->flags = SMP_F_VOL_1ST;
10984 	return 1;
10985 }
10986 
10987 /* This produces a 32-bit hash of the concatenation of the first occurrence of
10988  * the Host header followed by the path component if it begins with a slash ('/').
10989  * This means that '*' will not be added, resulting in exactly the first Host
10990  * entry. If no Host header is found, then the path is used. The resulting value
10991  * is hashed using the path hash followed by a full avalanche hash and provides a
10992  * 32-bit integer value. This fetch is useful for tracking per-path activity on
10993  * high-traffic sites without having to store whole paths.
10994  */
10995 int
smp_fetch_base32(const struct arg * args,struct sample * smp,const char * kw,void * private)10996 smp_fetch_base32(const struct arg *args, struct sample *smp, const char *kw, void *private)
10997 {
10998 	struct http_txn *txn;
10999 	struct hdr_ctx ctx;
11000 	unsigned int hash = 0;
11001 	char *ptr, *beg, *end;
11002 	int len;
11003 
11004 	CHECK_HTTP_MESSAGE_FIRST();
11005 
11006 	txn = smp->strm->txn;
11007 	ctx.idx = 0;
11008 	if (http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
11009 		/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
11010 		ptr = ctx.line + ctx.val;
11011 		len = ctx.vlen;
11012 		while (len--)
11013 			hash = *(ptr++) + (hash << 6) + (hash << 16) - hash;
11014 	}
11015 
11016 	/* now retrieve the path */
11017 	end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
11018 	beg = http_get_path(txn);
11019 	if (!beg)
11020 		beg = end;
11021 
11022 	for (ptr = beg; ptr < end && *ptr != '?'; ptr++);
11023 
11024 	if (beg < ptr && *beg == '/') {
11025 		while (beg < ptr)
11026 			hash = *(beg++) + (hash << 6) + (hash << 16) - hash;
11027 	}
11028 	hash = full_hash(hash);
11029 
11030 	smp->data.type = SMP_T_SINT;
11031 	smp->data.u.sint = hash;
11032 	smp->flags = SMP_F_VOL_1ST;
11033 	return 1;
11034 }
11035 
11036 /* This concatenates the source address with the 32-bit hash of the Host and
11037  * path as returned by smp_fetch_base32(). The idea is to have per-source and
11038  * per-path counters. The result is a binary block from 8 to 20 bytes depending
11039  * on the source address length. The path hash is stored before the address so
11040  * that in environments where IPv6 is insignificant, truncating the output to
11041  * 8 bytes would still work.
11042  */
11043 static int
smp_fetch_base32_src(const struct arg * args,struct sample * smp,const char * kw,void * private)11044 smp_fetch_base32_src(const struct arg *args, struct sample *smp, const char *kw, void *private)
11045 {
11046 	struct chunk *temp;
11047 	struct connection *cli_conn = objt_conn(smp->sess->origin);
11048 
11049 	if (!cli_conn)
11050 		return 0;
11051 
11052 	if (!smp_fetch_base32(args, smp, kw, private))
11053 		return 0;
11054 
11055 	temp = get_trash_chunk();
11056 	*(unsigned int *)temp->str = htonl(smp->data.u.sint);
11057 	temp->len += sizeof(unsigned int);
11058 
11059 	switch (cli_conn->addr.from.ss_family) {
11060 	case AF_INET:
11061 		memcpy(temp->str + temp->len, &((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr, 4);
11062 		temp->len += 4;
11063 		break;
11064 	case AF_INET6:
11065 		memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, 16);
11066 		temp->len += 16;
11067 		break;
11068 	default:
11069 		return 0;
11070 	}
11071 
11072 	smp->data.u.str = *temp;
11073 	smp->data.type = SMP_T_BIN;
11074 	return 1;
11075 }
11076 
11077 /* Extracts the query string, which comes after the question mark '?'. If no
11078  * question mark is found, nothing is returned. Otherwise it returns a sample
11079  * of type string carrying the whole query string.
11080  */
11081 static int
smp_fetch_query(const struct arg * args,struct sample * smp,const char * kw,void * private)11082 smp_fetch_query(const struct arg *args, struct sample *smp, const char *kw, void *private)
11083 {
11084 	struct http_txn *txn;
11085 	char *ptr, *end;
11086 
11087 	CHECK_HTTP_MESSAGE_FIRST();
11088 
11089 	txn = smp->strm->txn;
11090 	ptr = txn->req.chn->buf->p + txn->req.sl.rq.u;
11091 	end = ptr + txn->req.sl.rq.u_l;
11092 
11093 	/* look up the '?' */
11094 	do {
11095 		if (ptr == end)
11096 			return 0;
11097 	} while (*ptr++ != '?');
11098 
11099 	smp->data.type = SMP_T_STR;
11100 	smp->data.u.str.str = ptr;
11101 	smp->data.u.str.len = end - ptr;
11102 	smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
11103 	return 1;
11104 }
11105 
11106 static int
smp_fetch_proto_http(const struct arg * args,struct sample * smp,const char * kw,void * private)11107 smp_fetch_proto_http(const struct arg *args, struct sample *smp, const char *kw, void *private)
11108 {
11109 	/* Note: hdr_idx.v cannot be NULL in this ACL because the ACL is tagged
11110 	 * as a layer7 ACL, which involves automatic allocation of hdr_idx.
11111 	 */
11112 
11113 	CHECK_HTTP_MESSAGE_FIRST_PERM();
11114 
11115 	smp->data.type = SMP_T_BOOL;
11116 	smp->data.u.sint = 1;
11117 	return 1;
11118 }
11119 
11120 /* return a valid test if the current request is the first one on the connection */
11121 static int
smp_fetch_http_first_req(const struct arg * args,struct sample * smp,const char * kw,void * private)11122 smp_fetch_http_first_req(const struct arg *args, struct sample *smp, const char *kw, void *private)
11123 {
11124 	if (!smp->strm)
11125 		return 0;
11126 
11127 	smp->data.type = SMP_T_BOOL;
11128 	smp->data.u.sint = !(smp->strm->txn->flags & TX_NOT_FIRST);
11129 	return 1;
11130 }
11131 
11132 /* Accepts exactly 1 argument of type userlist */
11133 static int
smp_fetch_http_auth(const struct arg * args,struct sample * smp,const char * kw,void * private)11134 smp_fetch_http_auth(const struct arg *args, struct sample *smp, const char *kw, void *private)
11135 {
11136 
11137 	if (!args || args->type != ARGT_USR)
11138 		return 0;
11139 
11140 	CHECK_HTTP_MESSAGE_FIRST();
11141 
11142 	if (!get_http_auth(smp->strm))
11143 		return 0;
11144 
11145 	smp->data.type = SMP_T_BOOL;
11146 	smp->data.u.sint = check_user(args->data.usr, smp->strm->txn->auth.user,
11147 	                            smp->strm->txn->auth.pass);
11148 	return 1;
11149 }
11150 
11151 /* Accepts exactly 1 argument of type userlist */
11152 static int
smp_fetch_http_auth_grp(const struct arg * args,struct sample * smp,const char * kw,void * private)11153 smp_fetch_http_auth_grp(const struct arg *args, struct sample *smp, const char *kw, void *private)
11154 {
11155 	if (!args || args->type != ARGT_USR)
11156 		return 0;
11157 
11158 	CHECK_HTTP_MESSAGE_FIRST();
11159 
11160 	if (!get_http_auth(smp->strm))
11161 		return 0;
11162 
11163 	/* if the user does not belong to the userlist or has a wrong password,
11164 	 * report that it unconditionally does not match. Otherwise we return
11165 	 * a string containing the username.
11166 	 */
11167 	if (!check_user(args->data.usr, smp->strm->txn->auth.user,
11168 	                smp->strm->txn->auth.pass))
11169 		return 0;
11170 
11171 	/* pat_match_auth() will need the user list */
11172 	smp->ctx.a[0] = args->data.usr;
11173 
11174 	smp->data.type = SMP_T_STR;
11175 	smp->flags = SMP_F_CONST;
11176 	smp->data.u.str.str = smp->strm->txn->auth.user;
11177 	smp->data.u.str.len = strlen(smp->strm->txn->auth.user);
11178 
11179 	return 1;
11180 }
11181 
11182 /* Try to find the next occurrence of a cookie name in a cookie header value.
11183  * To match on any cookie name, <cookie_name_l> must be set to 0.
11184  * The lookup begins at <hdr>. The pointer and size of the next occurrence of
11185  * the cookie value is returned into *value and *value_l, and the function
11186  * returns a pointer to the next pointer to search from if the value was found.
11187  * Otherwise if the cookie was not found, NULL is returned and neither value
11188  * nor value_l are touched. The input <hdr> string should first point to the
11189  * header's value, and the <hdr_end> pointer must point to the first character
11190  * not part of the value. <list> must be non-zero if value may represent a list
11191  * of values (cookie headers). This makes it faster to abort parsing when no
11192  * list is expected.
11193  */
11194 char *
extract_cookie_value(char * hdr,const char * hdr_end,char * cookie_name,size_t cookie_name_l,int list,char ** value,int * value_l)11195 extract_cookie_value(char *hdr, const char *hdr_end,
11196 		  char *cookie_name, size_t cookie_name_l, int list,
11197 		  char **value, int *value_l)
11198 {
11199 	char *equal, *att_end, *att_beg, *val_beg, *val_end;
11200 	char *next;
11201 
11202 	/* we search at least a cookie name followed by an equal, and more
11203 	 * generally something like this :
11204 	 * Cookie:    NAME1  =  VALUE 1  ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n
11205 	 */
11206 	for (att_beg = hdr; att_beg + cookie_name_l + 1 < hdr_end; att_beg = next + 1) {
11207 		/* Iterate through all cookies on this line */
11208 
11209 		while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
11210 			att_beg++;
11211 
11212 		/* find att_end : this is the first character after the last non
11213 		 * space before the equal. It may be equal to hdr_end.
11214 		 */
11215 		equal = att_end = att_beg;
11216 
11217 		while (equal < hdr_end) {
11218 			if (*equal == '=' || *equal == ';' || (list && *equal == ','))
11219 				break;
11220 			if (HTTP_IS_SPHT(*equal++))
11221 				continue;
11222 			att_end = equal;
11223 		}
11224 
11225 		/* here, <equal> points to '=', a delimitor or the end. <att_end>
11226 		 * is between <att_beg> and <equal>, both may be identical.
11227 		 */
11228 
11229 		/* look for end of cookie if there is an equal sign */
11230 		if (equal < hdr_end && *equal == '=') {
11231 			/* look for the beginning of the value */
11232 			val_beg = equal + 1;
11233 			while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
11234 				val_beg++;
11235 
11236 			/* find the end of the value, respecting quotes */
11237 			next = find_cookie_value_end(val_beg, hdr_end);
11238 
11239 			/* make val_end point to the first white space or delimitor after the value */
11240 			val_end = next;
11241 			while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
11242 				val_end--;
11243 		} else {
11244 			val_beg = val_end = next = equal;
11245 		}
11246 
11247 		/* We have nothing to do with attributes beginning with '$'. However,
11248 		 * they will automatically be removed if a header before them is removed,
11249 		 * since they're supposed to be linked together.
11250 		 */
11251 		if (*att_beg == '$')
11252 			continue;
11253 
11254 		/* Ignore cookies with no equal sign */
11255 		if (equal == next)
11256 			continue;
11257 
11258 		/* Now we have the cookie name between att_beg and att_end, and
11259 		 * its value between val_beg and val_end.
11260 		 */
11261 
11262 		if (cookie_name_l == 0 || (att_end - att_beg == cookie_name_l &&
11263 		    memcmp(att_beg, cookie_name, cookie_name_l) == 0)) {
11264 			/* let's return this value and indicate where to go on from */
11265 			*value = val_beg;
11266 			*value_l = val_end - val_beg;
11267 			return next + 1;
11268 		}
11269 
11270 		/* Set-Cookie headers only have the name in the first attr=value part */
11271 		if (!list)
11272 			break;
11273 	}
11274 
11275 	return NULL;
11276 }
11277 
11278 /* Fetch a captured HTTP request header. The index is the position of
11279  * the "capture" option in the configuration file
11280  */
11281 static int
smp_fetch_capture_header_req(const struct arg * args,struct sample * smp,const char * kw,void * private)11282 smp_fetch_capture_header_req(const struct arg *args, struct sample *smp, const char *kw, void *private)
11283 {
11284 	struct proxy *fe;
11285 	int idx;
11286 
11287 	if (!args || args->type != ARGT_SINT)
11288 		return 0;
11289 
11290 	if (!smp->strm)
11291 		return 0;
11292 
11293 	fe = strm_fe(smp->strm);
11294 	idx = args->data.sint;
11295 
11296 	if (idx > (fe->nb_req_cap - 1) || smp->strm->req_cap == NULL || smp->strm->req_cap[idx] == NULL)
11297 		return 0;
11298 
11299 	smp->data.type = SMP_T_STR;
11300 	smp->flags |= SMP_F_CONST;
11301 	smp->data.u.str.str = smp->strm->req_cap[idx];
11302 	smp->data.u.str.len = strlen(smp->strm->req_cap[idx]);
11303 
11304 	return 1;
11305 }
11306 
11307 /* Fetch a captured HTTP response header. The index is the position of
11308  * the "capture" option in the configuration file
11309  */
11310 static int
smp_fetch_capture_header_res(const struct arg * args,struct sample * smp,const char * kw,void * private)11311 smp_fetch_capture_header_res(const struct arg *args, struct sample *smp, const char *kw, void *private)
11312 {
11313 	struct proxy *fe;
11314 	int idx;
11315 
11316 	if (!args || args->type != ARGT_SINT)
11317 		return 0;
11318 
11319 	if (!smp->strm)
11320 		return 0;
11321 
11322 	fe = strm_fe(smp->strm);
11323 	idx = args->data.sint;
11324 
11325 	if (idx > (fe->nb_rsp_cap - 1) || smp->strm->res_cap == NULL || smp->strm->res_cap[idx] == NULL)
11326 		return 0;
11327 
11328 	smp->data.type = SMP_T_STR;
11329 	smp->flags |= SMP_F_CONST;
11330 	smp->data.u.str.str = smp->strm->res_cap[idx];
11331 	smp->data.u.str.len = strlen(smp->strm->res_cap[idx]);
11332 
11333 	return 1;
11334 }
11335 
11336 /* Extracts the METHOD in the HTTP request, the txn->uri should be filled before the call */
11337 static int
smp_fetch_capture_req_method(const struct arg * args,struct sample * smp,const char * kw,void * private)11338 smp_fetch_capture_req_method(const struct arg *args, struct sample *smp, const char *kw, void *private)
11339 {
11340 	struct chunk *temp;
11341 	struct http_txn *txn;
11342 	char *ptr;
11343 
11344 	if (!smp->strm)
11345 		return 0;
11346 
11347 	txn = smp->strm->txn;
11348 	if (!txn || !txn->uri)
11349 		return 0;
11350 
11351 	ptr = txn->uri;
11352 
11353 	while (*ptr != ' ' && *ptr != '\0')  /* find first space */
11354 		ptr++;
11355 
11356 	temp = get_trash_chunk();
11357 	temp->str = txn->uri;
11358 	temp->len = ptr - txn->uri;
11359 	smp->data.u.str = *temp;
11360 	smp->data.type = SMP_T_STR;
11361 	smp->flags = SMP_F_CONST;
11362 
11363 	return 1;
11364 
11365 }
11366 
11367 /* Extracts the path in the HTTP request, the txn->uri should be filled before the call  */
11368 static int
smp_fetch_capture_req_uri(const struct arg * args,struct sample * smp,const char * kw,void * private)11369 smp_fetch_capture_req_uri(const struct arg *args, struct sample *smp, const char *kw, void *private)
11370 {
11371 	struct chunk *temp;
11372 	struct http_txn *txn;
11373 	char *ptr;
11374 
11375 	if (!smp->strm)
11376 		return 0;
11377 
11378 	txn = smp->strm->txn;
11379 	if (!txn || !txn->uri)
11380 		return 0;
11381 
11382 	ptr = txn->uri;
11383 
11384 	while (*ptr != ' ' && *ptr != '\0')  /* find first space */
11385 		ptr++;
11386 
11387 	if (!*ptr)
11388 		return 0;
11389 
11390 	ptr++;  /* skip the space */
11391 
11392 	temp = get_trash_chunk();
11393 	ptr = temp->str = http_get_path_from_string(ptr);
11394 	if (!ptr)
11395 		return 0;
11396 	while (*ptr != ' ' && *ptr != '\0')  /* find space after URI */
11397 		ptr++;
11398 
11399 	smp->data.u.str = *temp;
11400 	smp->data.u.str.len = ptr - temp->str;
11401 	smp->data.type = SMP_T_STR;
11402 	smp->flags = SMP_F_CONST;
11403 
11404 	return 1;
11405 }
11406 
11407 /* Retrieves the HTTP version from the request (either 1.0 or 1.1) and emits it
11408  * as a string (either "HTTP/1.0" or "HTTP/1.1").
11409  */
11410 static int
smp_fetch_capture_req_ver(const struct arg * args,struct sample * smp,const char * kw,void * private)11411 smp_fetch_capture_req_ver(const struct arg *args, struct sample *smp, const char *kw, void *private)
11412 {
11413 	struct http_txn *txn;
11414 
11415 	if (!smp->strm)
11416 		return 0;
11417 
11418 	txn = smp->strm->txn;
11419 	if (!txn || txn->req.msg_state < HTTP_MSG_HDR_FIRST)
11420 		return 0;
11421 
11422 	if (txn->req.flags & HTTP_MSGF_VER_11)
11423 		smp->data.u.str.str = "HTTP/1.1";
11424 	else
11425 		smp->data.u.str.str = "HTTP/1.0";
11426 
11427 	smp->data.u.str.len = 8;
11428 	smp->data.type  = SMP_T_STR;
11429 	smp->flags = SMP_F_CONST;
11430 	return 1;
11431 
11432 }
11433 
11434 /* Retrieves the HTTP version from the response (either 1.0 or 1.1) and emits it
11435  * as a string (either "HTTP/1.0" or "HTTP/1.1").
11436  */
11437 static int
smp_fetch_capture_res_ver(const struct arg * args,struct sample * smp,const char * kw,void * private)11438 smp_fetch_capture_res_ver(const struct arg *args, struct sample *smp, const char *kw, void *private)
11439 {
11440 	struct http_txn *txn;
11441 
11442 	if (!smp->strm)
11443 		return 0;
11444 
11445 	txn = smp->strm->txn;
11446 	if (!txn || txn->rsp.msg_state < HTTP_MSG_HDR_FIRST)
11447 		return 0;
11448 
11449 	if (txn->rsp.flags & HTTP_MSGF_VER_11)
11450 		smp->data.u.str.str = "HTTP/1.1";
11451 	else
11452 		smp->data.u.str.str = "HTTP/1.0";
11453 
11454 	smp->data.u.str.len = 8;
11455 	smp->data.type  = SMP_T_STR;
11456 	smp->flags = SMP_F_CONST;
11457 	return 1;
11458 
11459 }
11460 
11461 
11462 /* Iterate over all cookies present in a message. The context is stored in
11463  * smp->ctx.a[0] for the in-header position, smp->ctx.a[1] for the
11464  * end-of-header-value, and smp->ctx.a[2] for the hdr_ctx. Depending on
11465  * the direction, multiple cookies may be parsed on the same line or not.
11466  * If provided, the searched cookie name is in args, in args->data.str. If
11467  * the input options indicate that no iterating is desired, then only last
11468  * value is fetched if any. If no cookie name is provided, the first cookie
11469  * value found is fetched. The returned sample is of type CSTR.  Can be used
11470  * to parse cookies in other files.
11471  */
smp_fetch_cookie(const struct arg * args,struct sample * smp,const char * kw,void * private)11472 int smp_fetch_cookie(const struct arg *args, struct sample *smp, const char *kw, void *private)
11473 {
11474 	struct http_txn *txn;
11475 	char *cook = NULL;
11476 	size_t cook_l = 0;
11477 	struct hdr_idx *idx;
11478 	struct hdr_ctx *ctx = smp->ctx.a[2];
11479 	const struct http_msg *msg;
11480 	const char *hdr_name;
11481 	int hdr_name_len;
11482 	char *sol;
11483 	int found = 0;
11484 
11485 	if (args && args->type == ARGT_STR) {
11486 		cook = args->data.str.str;
11487 		cook_l = args->data.str.len;
11488 	}
11489 
11490 	if (!ctx) {
11491 		/* first call */
11492 		ctx = &static_hdr_ctx;
11493 		ctx->idx = 0;
11494 		smp->ctx.a[2] = ctx;
11495 	}
11496 
11497 	CHECK_HTTP_MESSAGE_FIRST();
11498 
11499 	txn = smp->strm->txn;
11500 	idx = &smp->strm->txn->hdr_idx;
11501 
11502 	if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) {
11503 		msg = &txn->req;
11504 		hdr_name = "Cookie";
11505 		hdr_name_len = 6;
11506 	} else {
11507 		msg = &txn->rsp;
11508 		hdr_name = "Set-Cookie";
11509 		hdr_name_len = 10;
11510 	}
11511 
11512 	/* OK so basically here, either we want only one value or we want to
11513 	 * iterate over all of them and we fetch the next one. In this last case
11514 	 * SMP_OPT_ITERATE option is set.
11515 	 */
11516 
11517 	sol = msg->chn->buf->p;
11518 	if (!(smp->flags & SMP_F_NOT_LAST)) {
11519 		/* search for the header from the beginning, we must first initialize
11520 		 * the search parameters.
11521 		 */
11522 		smp->ctx.a[0] = NULL;
11523 		ctx->idx = 0;
11524 	}
11525 
11526 	smp->flags |= SMP_F_VOL_HDR;
11527 
11528 	while (1) {
11529 		/* Note: smp->ctx.a[0] == NULL every time we need to fetch a new header */
11530 		if (!smp->ctx.a[0]) {
11531 			if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, ctx))
11532 				goto out;
11533 
11534 			if (ctx->vlen < cook_l + 1)
11535 				continue;
11536 
11537 			smp->ctx.a[0] = ctx->line + ctx->val;
11538 			smp->ctx.a[1] = smp->ctx.a[0] + ctx->vlen;
11539 		}
11540 
11541 		smp->data.type = SMP_T_STR;
11542 		smp->flags |= SMP_F_CONST;
11543 		smp->ctx.a[0] = extract_cookie_value(smp->ctx.a[0], smp->ctx.a[1],
11544 						 cook, cook_l,
11545 						 (smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ,
11546 						 &smp->data.u.str.str,
11547 						 &smp->data.u.str.len);
11548 		if (smp->ctx.a[0]) {
11549 			found = 1;
11550 			if (smp->opt & SMP_OPT_ITERATE) {
11551 				/* iterate on cookie value */
11552 				smp->flags |= SMP_F_NOT_LAST;
11553 				return 1;
11554 			}
11555 			if (args->data.str.len == 0) {
11556 				/* No cookie name, first occurrence returned */
11557 				break;
11558 			}
11559 		}
11560 		/* if we're looking for last occurrence, let's loop */
11561 	}
11562 	/* all cookie headers and values were scanned. If we're looking for the
11563 	 * last occurrence, we may return it now.
11564 	 */
11565  out:
11566 	smp->flags &= ~SMP_F_NOT_LAST;
11567 	return found;
11568 }
11569 
11570 /* Iterate over all cookies present in a request to count how many occurrences
11571  * match the name in args and args->data.str.len. If <multi> is non-null, then
11572  * multiple cookies may be parsed on the same line. The returned sample is of
11573  * type UINT. Accepts exactly 1 argument of type string.
11574  */
11575 static int
smp_fetch_cookie_cnt(const struct arg * args,struct sample * smp,const char * kw,void * private)11576 smp_fetch_cookie_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
11577 {
11578 	struct http_txn *txn;
11579 	struct hdr_idx *idx;
11580 	struct hdr_ctx ctx;
11581 	const struct http_msg *msg;
11582 	const char *hdr_name;
11583 	int hdr_name_len;
11584 	int cnt;
11585 	char *val_beg, *val_end;
11586 	char *cook = NULL;
11587 	size_t cook_l = 0;
11588 	char *sol;
11589 
11590 	if (args && args->type == ARGT_STR){
11591 		cook = args->data.str.str;
11592 		cook_l = args->data.str.len;
11593 	}
11594 
11595 	CHECK_HTTP_MESSAGE_FIRST();
11596 
11597 	txn = smp->strm->txn;
11598 	idx = &smp->strm->txn->hdr_idx;
11599 
11600 	if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) {
11601 		msg = &txn->req;
11602 		hdr_name = "Cookie";
11603 		hdr_name_len = 6;
11604 	} else {
11605 		msg = &txn->rsp;
11606 		hdr_name = "Set-Cookie";
11607 		hdr_name_len = 10;
11608 	}
11609 
11610 	sol = msg->chn->buf->p;
11611 	val_end = val_beg = NULL;
11612 	ctx.idx = 0;
11613 	cnt = 0;
11614 
11615 	while (1) {
11616 		/* Note: val_beg == NULL every time we need to fetch a new header */
11617 		if (!val_beg) {
11618 			if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, &ctx))
11619 				break;
11620 
11621 			if (ctx.vlen < cook_l + 1)
11622 				continue;
11623 
11624 			val_beg = ctx.line + ctx.val;
11625 			val_end = val_beg + ctx.vlen;
11626 		}
11627 
11628 		smp->data.type = SMP_T_STR;
11629 		smp->flags |= SMP_F_CONST;
11630 		while ((val_beg = extract_cookie_value(val_beg, val_end,
11631 						       cook, cook_l,
11632 						       (smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ,
11633 						       &smp->data.u.str.str,
11634 						       &smp->data.u.str.len))) {
11635 			cnt++;
11636 		}
11637 	}
11638 
11639 	smp->data.type = SMP_T_SINT;
11640 	smp->data.u.sint = cnt;
11641 	smp->flags |= SMP_F_VOL_HDR;
11642 	return 1;
11643 }
11644 
11645 /* Fetch an cookie's integer value. The integer value is returned. It
11646  * takes a mandatory argument of type string. It relies on smp_fetch_cookie().
11647  */
11648 static int
smp_fetch_cookie_val(const struct arg * args,struct sample * smp,const char * kw,void * private)11649 smp_fetch_cookie_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
11650 {
11651 	int ret = smp_fetch_cookie(args, smp, kw, private);
11652 
11653 	if (ret > 0) {
11654 		smp->data.type = SMP_T_SINT;
11655 		smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
11656 	}
11657 
11658 	return ret;
11659 }
11660 
11661 /************************************************************************/
11662 /*           The code below is dedicated to sample fetches              */
11663 /************************************************************************/
11664 
11665 /*
11666  * Given a path string and its length, find the position of beginning of the
11667  * query string. Returns NULL if no query string is found in the path.
11668  *
11669  * Example: if path = "/foo/bar/fubar?yo=mama;ye=daddy", and n = 22:
11670  *
11671  * find_query_string(path, n, '?') points to "yo=mama;ye=daddy" string.
11672  */
find_param_list(char * path,size_t path_l,char delim)11673 static inline char *find_param_list(char *path, size_t path_l, char delim)
11674 {
11675 	char *p;
11676 
11677 	p = memchr(path, delim, path_l);
11678 	return p ? p + 1 : NULL;
11679 }
11680 
is_param_delimiter(char c,char delim)11681 static inline int is_param_delimiter(char c, char delim)
11682 {
11683 	return c == '&' || c == ';' || c == delim;
11684 }
11685 
11686 /* after increasing a pointer value, it can exceed the first buffer
11687  * size. This function transform the value of <ptr> according with
11688  * the expected position. <chunks> is an array of the one or two
11689  * avalaible chunks. The first value is the start of the first chunk,
11690  * the second value if the end+1 of the first chunks. The third value
11691  * is NULL or the start of the second chunk and the fourth value is
11692  * the end+1 of the second chunk. The function returns 1 if does a
11693  * wrap, else returns 0.
11694  */
fix_pointer_if_wrap(const char ** chunks,const char ** ptr)11695 static inline int fix_pointer_if_wrap(const char **chunks, const char **ptr)
11696 {
11697 	if (*ptr < chunks[1])
11698 		return 0;
11699 	if (!chunks[2])
11700 		return 0;
11701 	*ptr = chunks[2] + ( *ptr - chunks[1] );
11702 	return 1;
11703 }
11704 
11705 /*
11706  * Given a url parameter, find the starting position of the first occurence,
11707  * or NULL if the parameter is not found.
11708  *
11709  * Example: if query_string is "yo=mama;ye=daddy" and url_param_name is "ye",
11710  * the function will return query_string+8.
11711  *
11712  * Warning: this function returns a pointer that can point to the first chunk
11713  * or the second chunk. The caller must be check the position before using the
11714  * result.
11715  */
11716 static const char *
find_url_param_pos(const char ** chunks,const char * url_param_name,size_t url_param_name_l,char delim)11717 find_url_param_pos(const char **chunks,
11718                    const char* url_param_name, size_t url_param_name_l,
11719                    char delim)
11720 {
11721 	const char *pos, *last, *equal;
11722 	const char **bufs = chunks;
11723 	int l1, l2;
11724 
11725 
11726 	pos  = bufs[0];
11727 	last = bufs[1];
11728 	while (pos < last) {
11729 		/* Check the equal. */
11730 		equal = pos + url_param_name_l;
11731 		if (fix_pointer_if_wrap(chunks, &equal)) {
11732 			if (equal >= chunks[3])
11733 				return NULL;
11734 		} else {
11735 			if (equal >= chunks[1])
11736 				return NULL;
11737 		}
11738 		if (*equal == '=') {
11739 			if (pos + url_param_name_l > last) {
11740 				/* process wrap case, we detect a wrap. In this case, the
11741 				 * comparison is performed in two parts.
11742 				 */
11743 
11744 				/* This is the end, we dont have any other chunk. */
11745 				if (bufs != chunks || !bufs[2])
11746 					return NULL;
11747 
11748 				/* Compute the length of each part of the comparison. */
11749 				l1 = last - pos;
11750 				l2 = url_param_name_l - l1;
11751 
11752 				/* The second buffer is too short to contain the compared string. */
11753 				if (bufs[2] + l2 > bufs[3])
11754 					return NULL;
11755 
11756 				if (memcmp(pos,     url_param_name,    l1) == 0 &&
11757 				    memcmp(bufs[2], url_param_name+l1, l2) == 0)
11758 					return pos;
11759 
11760 				/* Perform wrapping and jump the string who fail the comparison. */
11761 				bufs += 2;
11762 				pos = bufs[0] + l2;
11763 				last = bufs[1];
11764 
11765 			} else {
11766 				/* process a simple comparison. */
11767 				if (memcmp(pos, url_param_name, url_param_name_l) == 0)
11768 					return pos;
11769 				pos += url_param_name_l + 1;
11770 				if (fix_pointer_if_wrap(chunks, &pos))
11771 					last = bufs[2];
11772 			}
11773 		}
11774 
11775 		while (1) {
11776 			/* Look for the next delimiter. */
11777 			while (pos < last && !is_param_delimiter(*pos, delim))
11778 				pos++;
11779 			if (pos < last)
11780 				break;
11781 			/* process buffer wrapping. */
11782 			if (bufs != chunks || !bufs[2])
11783 				return NULL;
11784 			bufs += 2;
11785 			pos = bufs[0];
11786 			last = bufs[1];
11787 		}
11788 		pos++;
11789 	}
11790 	return NULL;
11791 }
11792 
11793 /*
11794  * Given a url parameter name and a query string, find the next value.
11795  * An empty url_param_name matches the first available parameter.
11796  * If the parameter is found, 1 is returned and *vstart / *vend are updated to
11797  * respectively provide a pointer to the value and its end.
11798  * Otherwise, 0 is returned and vstart/vend are not modified.
11799  */
11800 static int
find_next_url_param(const char ** chunks,const char * url_param_name,size_t url_param_name_l,const char ** vstart,const char ** vend,char delim)11801 find_next_url_param(const char **chunks,
11802                     const char* url_param_name, size_t url_param_name_l,
11803                     const char **vstart, const char **vend, char delim)
11804 {
11805 	const char *arg_start, *qs_end;
11806 	const char *value_start, *value_end;
11807 
11808 	arg_start = chunks[0];
11809 	qs_end = chunks[1];
11810 	if (url_param_name_l) {
11811 		/* Looks for an argument name. */
11812 		arg_start = find_url_param_pos(chunks,
11813 		                               url_param_name, url_param_name_l,
11814 		                               delim);
11815 		/* Check for wrapping. */
11816 		if (arg_start >= qs_end)
11817 			qs_end = chunks[3];
11818 	}
11819 	if (!arg_start)
11820 		return 0;
11821 
11822 	if (!url_param_name_l) {
11823 		while (1) {
11824 			/* looks for the first argument. */
11825 			value_start = memchr(arg_start, '=', qs_end - arg_start);
11826 			if (!value_start) {
11827 				/* Check for wrapping. */
11828 				if (arg_start >= chunks[0] &&
11829 				    arg_start < chunks[1] &&
11830 				    chunks[2]) {
11831 					arg_start = chunks[2];
11832 					qs_end = chunks[3];
11833 					continue;
11834 				}
11835 				return 0;
11836 			}
11837 			break;
11838 		}
11839 		value_start++;
11840 	}
11841 	else {
11842 		/* Jump the argument length. */
11843 		value_start = arg_start + url_param_name_l + 1;
11844 
11845 		/* Check for pointer wrapping. */
11846 		if (fix_pointer_if_wrap(chunks, &value_start)) {
11847 			/* Update the end pointer. */
11848 			qs_end = chunks[3];
11849 
11850 			/* Check for overflow. */
11851 			if (value_start >= qs_end)
11852 				return 0;
11853 		}
11854 	}
11855 
11856 	value_end = value_start;
11857 
11858 	while (1) {
11859 		while ((value_end < qs_end) && !is_param_delimiter(*value_end, delim))
11860 			value_end++;
11861 		if (value_end < qs_end)
11862 			break;
11863 		/* process buffer wrapping. */
11864 		if (value_end >= chunks[0] &&
11865 		    value_end < chunks[1] &&
11866 		    chunks[2]) {
11867 			value_end = chunks[2];
11868 			qs_end = chunks[3];
11869 			continue;
11870 		}
11871 		break;
11872 	}
11873 
11874 	*vstart = value_start;
11875 	*vend = value_end;
11876 	return 1;
11877 }
11878 
11879 /* This scans a URL-encoded query string. It takes an optionally wrapping
11880  * string whose first contigous chunk has its beginning in ctx->a[0] and end
11881  * in ctx->a[1], and the optional second part in (ctx->a[2]..ctx->a[3]). The
11882  * pointers are updated for next iteration before leaving.
11883  */
11884 static int
smp_fetch_param(char delim,const char * name,int name_len,const struct arg * args,struct sample * smp,const char * kw,void * private)11885 smp_fetch_param(char delim, const char *name, int name_len, const struct arg *args, struct sample *smp, const char *kw, void *private)
11886 {
11887 	const char *vstart, *vend;
11888 	struct chunk *temp;
11889 	const char **chunks = (const char **)smp->ctx.a;
11890 
11891 	if (!find_next_url_param(chunks,
11892 	                         name, name_len,
11893 	                         &vstart, &vend,
11894 	                         delim))
11895 		return 0;
11896 
11897 	/* Create sample. If the value is contiguous, return the pointer as CONST,
11898 	 * if the value is wrapped, copy-it in a buffer.
11899 	 */
11900 	smp->data.type = SMP_T_STR;
11901 	if (chunks[2] &&
11902 	    vstart >= chunks[0] && vstart <= chunks[1] &&
11903 	    vend >= chunks[2] && vend <= chunks[3]) {
11904 		/* Wrapped case. */
11905 		temp = get_trash_chunk();
11906 		memcpy(temp->str, vstart, chunks[1] - vstart);
11907 		memcpy(temp->str + ( chunks[1] - vstart ), chunks[2], vend - chunks[2]);
11908 		smp->data.u.str.str = temp->str;
11909 		smp->data.u.str.len = ( chunks[1] - vstart ) + ( vend - chunks[2] );
11910 	} else {
11911 		/* Contiguous case. */
11912 		smp->data.u.str.str = (char *)vstart;
11913 		smp->data.u.str.len = vend - vstart;
11914 		smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
11915 	}
11916 
11917 	/* Update context, check wrapping. */
11918 	chunks[0] = vend;
11919 	if (chunks[2] && vend >= chunks[2] && vend <= chunks[3]) {
11920 		chunks[1] = chunks[3];
11921 		chunks[2] = NULL;
11922 	}
11923 
11924 	if (chunks[0] < chunks[1])
11925 		smp->flags |= SMP_F_NOT_LAST;
11926 
11927 	return 1;
11928 }
11929 
11930 /* This function iterates over each parameter of the query string. It uses
11931  * ctx->a[0] and ctx->a[1] to store the beginning and end of the current
11932  * parameter. Since it uses smp_fetch_param(), ctx->a[2..3] are both NULL.
11933  * An optional parameter name is passed in args[0], otherwise any parameter is
11934  * considered. It supports an optional delimiter argument for the beginning of
11935  * the string in args[1], which defaults to "?".
11936  */
11937 static int
smp_fetch_url_param(const struct arg * args,struct sample * smp,const char * kw,void * private)11938 smp_fetch_url_param(const struct arg *args, struct sample *smp, const char *kw, void *private)
11939 {
11940 	struct http_msg *msg;
11941 	char delim = '?';
11942 	const char *name;
11943 	int name_len;
11944 
11945 	if (!args ||
11946 	    (args[0].type && args[0].type != ARGT_STR) ||
11947 	    (args[1].type && args[1].type != ARGT_STR))
11948 		return 0;
11949 
11950 	name = "";
11951 	name_len = 0;
11952 	if (args->type == ARGT_STR) {
11953 		name     = args->data.str.str;
11954 		name_len = args->data.str.len;
11955 	}
11956 
11957 	if (args[1].type)
11958 		delim = *args[1].data.str.str;
11959 
11960 	if (!smp->ctx.a[0]) { // first call, find the query string
11961 		CHECK_HTTP_MESSAGE_FIRST();
11962 
11963 		msg = &smp->strm->txn->req;
11964 
11965 		smp->ctx.a[0] = find_param_list(msg->chn->buf->p + msg->sl.rq.u,
11966 		                                msg->sl.rq.u_l, delim);
11967 		if (!smp->ctx.a[0])
11968 			return 0;
11969 
11970 		smp->ctx.a[1] = msg->chn->buf->p + msg->sl.rq.u + msg->sl.rq.u_l;
11971 
11972 		/* Assume that the context is filled with NULL pointer
11973 		 * before the first call.
11974 		 * smp->ctx.a[2] = NULL;
11975 		 * smp->ctx.a[3] = NULL;
11976 		 */
11977 	}
11978 
11979 	return smp_fetch_param(delim, name, name_len, args, smp, kw, private);
11980 }
11981 
11982 /* This function iterates over each parameter of the body. This requires
11983  * that the body has been waited for using http-buffer-request. It uses
11984  * ctx->a[0] and ctx->a[1] to store the beginning and end of the first
11985  * contigous part of the body, and optionally ctx->a[2..3] to reference the
11986  * optional second part if the body wraps at the end of the buffer. An optional
11987  * parameter name is passed in args[0], otherwise any parameter is considered.
11988  */
11989 static int
smp_fetch_body_param(const struct arg * args,struct sample * smp,const char * kw,void * private)11990 smp_fetch_body_param(const struct arg *args, struct sample *smp, const char *kw, void *private)
11991 {
11992 	struct http_msg *msg;
11993 	unsigned long len;
11994 	unsigned long block1;
11995 	char *body;
11996 	const char *name;
11997 	int name_len;
11998 
11999 	if (!args || (args[0].type && args[0].type != ARGT_STR))
12000 		return 0;
12001 
12002 	name = "";
12003 	name_len = 0;
12004 	if (args[0].type == ARGT_STR) {
12005 		name     = args[0].data.str.str;
12006 		name_len = args[0].data.str.len;
12007 	}
12008 
12009 	if (!smp->ctx.a[0]) { // first call, find the query string
12010 		CHECK_HTTP_MESSAGE_FIRST();
12011 
12012 		if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
12013 			msg = &smp->strm->txn->req;
12014 		else
12015 			msg = &smp->strm->txn->rsp;
12016 
12017 		len  = http_body_bytes(msg);
12018 		body = b_ptr(msg->chn->buf, -http_data_rewind(msg));
12019 
12020 		block1 = len;
12021 		if (block1 > msg->chn->buf->data + msg->chn->buf->size - body)
12022 			block1 = msg->chn->buf->data + msg->chn->buf->size - body;
12023 
12024 		if (block1 == len) {
12025 			/* buffer is not wrapped (or empty) */
12026 			smp->ctx.a[0] = body;
12027 			smp->ctx.a[1] = body + len;
12028 
12029 			/* Assume that the context is filled with NULL pointer
12030 			 * before the first call.
12031 			 * smp->ctx.a[2] = NULL;
12032 			 * smp->ctx.a[3] = NULL;
12033 			*/
12034 		}
12035 		else {
12036 			/* buffer is wrapped, we need to defragment it */
12037 			smp->ctx.a[0] = body;
12038 			smp->ctx.a[1] = body + block1;
12039 			smp->ctx.a[2] = msg->chn->buf->data;
12040 			smp->ctx.a[3] = msg->chn->buf->data + ( len - block1 );
12041 		}
12042 	}
12043 	return smp_fetch_param('&', name, name_len, args, smp, kw, private);
12044 }
12045 
12046 /* Return the signed integer value for the specified url parameter (see url_param
12047  * above).
12048  */
12049 static int
smp_fetch_url_param_val(const struct arg * args,struct sample * smp,const char * kw,void * private)12050 smp_fetch_url_param_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
12051 {
12052 	int ret = smp_fetch_url_param(args, smp, kw, private);
12053 
12054 	if (ret > 0) {
12055 		smp->data.type = SMP_T_SINT;
12056 		smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
12057 	}
12058 
12059 	return ret;
12060 }
12061 
12062 /* This produces a 32-bit hash of the concatenation of the first occurrence of
12063  * the Host header followed by the path component if it begins with a slash ('/').
12064  * This means that '*' will not be added, resulting in exactly the first Host
12065  * entry. If no Host header is found, then the path is used. The resulting value
12066  * is hashed using the url hash followed by a full avalanche hash and provides a
12067  * 32-bit integer value. This fetch is useful for tracking per-URL activity on
12068  * high-traffic sites without having to store whole paths.
12069  * this differs from the base32 functions in that it includes the url parameters
12070  * as well as the path
12071  */
12072 static int
smp_fetch_url32(const struct arg * args,struct sample * smp,const char * kw,void * private)12073 smp_fetch_url32(const struct arg *args, struct sample *smp, const char *kw, void *private)
12074 {
12075 	struct http_txn *txn;
12076 	struct hdr_ctx ctx;
12077 	unsigned int hash = 0;
12078 	char *ptr, *beg, *end;
12079 	int len;
12080 
12081 	CHECK_HTTP_MESSAGE_FIRST();
12082 
12083 	txn = smp->strm->txn;
12084 	ctx.idx = 0;
12085 	if (http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
12086 		/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
12087 		ptr = ctx.line + ctx.val;
12088 		len = ctx.vlen;
12089 		while (len--)
12090 			hash = *(ptr++) + (hash << 6) + (hash << 16) - hash;
12091 	}
12092 
12093 	/* now retrieve the path */
12094 	end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
12095 	beg = http_get_path(txn);
12096 	if (!beg)
12097 		beg = end;
12098 
12099 	for (ptr = beg; ptr < end ; ptr++);
12100 
12101 	if (beg < ptr && *beg == '/') {
12102 		while (beg < ptr)
12103 			hash = *(beg++) + (hash << 6) + (hash << 16) - hash;
12104 	}
12105 	hash = full_hash(hash);
12106 
12107 	smp->data.type = SMP_T_SINT;
12108 	smp->data.u.sint = hash;
12109 	smp->flags = SMP_F_VOL_1ST;
12110 	return 1;
12111 }
12112 
12113 /* This concatenates the source address with the 32-bit hash of the Host and
12114  * URL as returned by smp_fetch_base32(). The idea is to have per-source and
12115  * per-url counters. The result is a binary block from 8 to 20 bytes depending
12116  * on the source address length. The URL hash is stored before the address so
12117  * that in environments where IPv6 is insignificant, truncating the output to
12118  * 8 bytes would still work.
12119  */
12120 static int
smp_fetch_url32_src(const struct arg * args,struct sample * smp,const char * kw,void * private)12121 smp_fetch_url32_src(const struct arg *args, struct sample *smp, const char *kw, void *private)
12122 {
12123 	struct chunk *temp;
12124 	struct connection *cli_conn = objt_conn(smp->sess->origin);
12125 
12126 	if (!cli_conn)
12127 		return 0;
12128 
12129 	if (!smp_fetch_url32(args, smp, kw, private))
12130 		return 0;
12131 
12132 	temp = get_trash_chunk();
12133 	*(unsigned int *)temp->str = htonl(smp->data.u.sint);
12134 	temp->len += sizeof(unsigned int);
12135 
12136 	switch (cli_conn->addr.from.ss_family) {
12137 	case AF_INET:
12138 		memcpy(temp->str + temp->len, &((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr, 4);
12139 		temp->len += 4;
12140 		break;
12141 	case AF_INET6:
12142 		memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, 16);
12143 		temp->len += 16;
12144 		break;
12145 	default:
12146 		return 0;
12147 	}
12148 
12149 	smp->data.u.str = *temp;
12150 	smp->data.type = SMP_T_BIN;
12151 	return 1;
12152 }
12153 
12154 /* This function is used to validate the arguments passed to any "hdr" fetch
12155  * keyword. These keywords support an optional positive or negative occurrence
12156  * number. We must ensure that the number is greater than -MAX_HDR_HISTORY. It
12157  * is assumed that the types are already the correct ones. Returns 0 on error,
12158  * non-zero if OK. If <err> is not NULL, it will be filled with a pointer to an
12159  * error message in case of error, that the caller is responsible for freeing.
12160  * The initial location must either be freeable or NULL.
12161  */
val_hdr(struct arg * arg,char ** err_msg)12162 int val_hdr(struct arg *arg, char **err_msg)
12163 {
12164 	if (arg && arg[1].type == ARGT_SINT && arg[1].data.sint < -MAX_HDR_HISTORY) {
12165 		memprintf(err_msg, "header occurrence must be >= %d", -MAX_HDR_HISTORY);
12166 		return 0;
12167 	}
12168 	return 1;
12169 }
12170 
12171 /* takes an UINT value on input supposed to represent the time since EPOCH,
12172  * adds an optional offset found in args[0] and emits a string representing
12173  * the date in RFC-1123/5322 format.
12174  */
sample_conv_http_date(const struct arg * args,struct sample * smp,void * private)12175 static int sample_conv_http_date(const struct arg *args, struct sample *smp, void *private)
12176 {
12177 	const char day[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
12178 	const char mon[12][4] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
12179 	struct chunk *temp;
12180 	struct tm *tm;
12181 	/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
12182 	time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
12183 
12184 	/* add offset */
12185 	if (args && (args[0].type == ARGT_SINT))
12186 		curr_date += args[0].data.sint;
12187 
12188 	tm = gmtime(&curr_date);
12189 	if (!tm)
12190 		return 0;
12191 
12192 	temp = get_trash_chunk();
12193 	temp->len = snprintf(temp->str, temp->size - temp->len,
12194 			     "%s, %02d %s %04d %02d:%02d:%02d GMT",
12195 			     day[tm->tm_wday], tm->tm_mday, mon[tm->tm_mon], 1900+tm->tm_year,
12196 			     tm->tm_hour, tm->tm_min, tm->tm_sec);
12197 
12198 	smp->data.u.str = *temp;
12199 	smp->data.type = SMP_T_STR;
12200 	return 1;
12201 }
12202 
12203 /* Match language range with language tag. RFC2616 14.4:
12204  *
12205  *    A language-range matches a language-tag if it exactly equals
12206  *    the tag, or if it exactly equals a prefix of the tag such
12207  *    that the first tag character following the prefix is "-".
12208  *
12209  * Return 1 if the strings match, else return 0.
12210  */
language_range_match(const char * range,int range_len,const char * tag,int tag_len)12211 static inline int language_range_match(const char *range, int range_len,
12212                                        const char *tag, int tag_len)
12213 {
12214 	const char *end = range + range_len;
12215 	const char *tend = tag + tag_len;
12216 	while (range < end) {
12217 		if (*range == '-' && tag == tend)
12218 			return 1;
12219 		if (*range != *tag || tag == tend)
12220 			return 0;
12221 		range++;
12222 		tag++;
12223 	}
12224 	/* Return true only if the last char of the tag is matched. */
12225 	return tag == tend;
12226 }
12227 
12228 /* Arguments: The list of expected value, the number of parts returned and the separator */
sample_conv_q_prefered(const struct arg * args,struct sample * smp,void * private)12229 static int sample_conv_q_prefered(const struct arg *args, struct sample *smp, void *private)
12230 {
12231 	const char *al = smp->data.u.str.str;
12232 	const char *end = al + smp->data.u.str.len;
12233 	const char *token;
12234 	int toklen;
12235 	int qvalue;
12236 	const char *str;
12237 	const char *w;
12238 	int best_q = 0;
12239 
12240 	/* Set the constant to the sample, because the output of the
12241 	 * function will be peek in the constant configuration string.
12242 	 */
12243 	smp->flags |= SMP_F_CONST;
12244 	smp->data.u.str.size = 0;
12245 	smp->data.u.str.str = "";
12246 	smp->data.u.str.len = 0;
12247 
12248 	/* Parse the accept language */
12249 	while (1) {
12250 
12251 		/* Jump spaces, quit if the end is detected. */
12252 		while (al < end && isspace((unsigned char)*al))
12253 			al++;
12254 		if (al >= end)
12255 			break;
12256 
12257 		/* Start of the fisrt word. */
12258 		token = al;
12259 
12260 		/* Look for separator: isspace(), ',' or ';'. Next value if 0 length word. */
12261 		while (al < end && *al != ';' && *al != ',' && !isspace((unsigned char)*al))
12262 			al++;
12263 		if (al == token)
12264 			goto expect_comma;
12265 
12266 		/* Length of the token. */
12267 		toklen = al - token;
12268 		qvalue = 1000;
12269 
12270 		/* Check if the token exists in the list. If the token not exists,
12271 		 * jump to the next token.
12272 		 */
12273 		str = args[0].data.str.str;
12274 		w = str;
12275 		while (1) {
12276 			if (*str == ';' || *str == '\0') {
12277 				if (language_range_match(token, toklen, w, str-w))
12278 					goto look_for_q;
12279 				if (*str == '\0')
12280 					goto expect_comma;
12281 				w = str + 1;
12282 			}
12283 			str++;
12284 		}
12285 		goto expect_comma;
12286 
12287 look_for_q:
12288 
12289 		/* Jump spaces, quit if the end is detected. */
12290 		while (al < end && isspace((unsigned char)*al))
12291 			al++;
12292 		if (al >= end)
12293 			goto process_value;
12294 
12295 		/* If ',' is found, process the result */
12296 		if (*al == ',')
12297 			goto process_value;
12298 
12299 		/* If the character is different from ';', look
12300 		 * for the end of the header part in best effort.
12301 		 */
12302 		if (*al != ';')
12303 			goto expect_comma;
12304 
12305 		/* Assumes that the char is ';', now expect "q=". */
12306 		al++;
12307 
12308 		/* Jump spaces, process value if the end is detected. */
12309 		while (al < end && isspace((unsigned char)*al))
12310 			al++;
12311 		if (al >= end)
12312 			goto process_value;
12313 
12314 		/* Expect 'q'. If no 'q', continue in best effort */
12315 		if (*al != 'q')
12316 			goto process_value;
12317 		al++;
12318 
12319 		/* Jump spaces, process value if the end is detected. */
12320 		while (al < end && isspace((unsigned char)*al))
12321 			al++;
12322 		if (al >= end)
12323 			goto process_value;
12324 
12325 		/* Expect '='. If no '=', continue in best effort */
12326 		if (*al != '=')
12327 			goto process_value;
12328 		al++;
12329 
12330 		/* Jump spaces, process value if the end is detected. */
12331 		while (al < end && isspace((unsigned char)*al))
12332 			al++;
12333 		if (al >= end)
12334 			goto process_value;
12335 
12336 		/* Parse the q value. */
12337 		qvalue = parse_qvalue(al, &al);
12338 
12339 process_value:
12340 
12341 		/* If the new q value is the best q value, then store the associated
12342 		 * language in the response. If qvalue is the biggest value (1000),
12343 		 * break the process.
12344 		 */
12345 		if (qvalue > best_q) {
12346 			smp->data.u.str.str = (char *)w;
12347 			smp->data.u.str.len = str - w;
12348 			if (qvalue >= 1000)
12349 				break;
12350 			best_q = qvalue;
12351 		}
12352 
12353 expect_comma:
12354 
12355 		/* Expect comma or end. If the end is detected, quit the loop. */
12356 		while (al < end && *al != ',')
12357 			al++;
12358 		if (al >= end)
12359 			break;
12360 
12361 		/* Comma is found, jump it and restart the analyzer. */
12362 		al++;
12363 	}
12364 
12365 	/* Set default value if required. */
12366 	if (smp->data.u.str.len == 0 && args[1].type == ARGT_STR) {
12367 		smp->data.u.str.str = args[1].data.str.str;
12368 		smp->data.u.str.len = args[1].data.str.len;
12369 	}
12370 
12371 	/* Return true only if a matching language was found. */
12372 	return smp->data.u.str.len != 0;
12373 }
12374 
12375 /* This fetch url-decode any input string. */
sample_conv_url_dec(const struct arg * args,struct sample * smp,void * private)12376 static int sample_conv_url_dec(const struct arg *args, struct sample *smp, void *private)
12377 {
12378 	/* If the constant flag is set or if not size is avalaible at
12379 	 * the end of the buffer, copy the string in other buffer
12380 	  * before decoding.
12381 	 */
12382 	if (smp->flags & SMP_F_CONST || smp->data.u.str.size <= smp->data.u.str.len) {
12383 		struct chunk *str = get_trash_chunk();
12384 		memcpy(str->str, smp->data.u.str.str, smp->data.u.str.len);
12385 		smp->data.u.str.str = str->str;
12386 		smp->data.u.str.size = str->size;
12387 		smp->flags &= ~SMP_F_CONST;
12388 	}
12389 
12390 	/* Add final \0 required by url_decode(), and convert the input string. */
12391 	smp->data.u.str.str[smp->data.u.str.len] = '\0';
12392 	smp->data.u.str.len = url_decode(smp->data.u.str.str);
12393 	return (smp->data.u.str.len >= 0);
12394 }
12395 
smp_conv_req_capture(const struct arg * args,struct sample * smp,void * private)12396 static int smp_conv_req_capture(const struct arg *args, struct sample *smp, void *private)
12397 {
12398 	struct proxy *fe;
12399 	int idx, i;
12400 	struct cap_hdr *hdr;
12401 	int len;
12402 
12403 	if (!args || args->type != ARGT_SINT)
12404 		return 0;
12405 
12406 	if (!smp->strm)
12407 		return 0;
12408 
12409 	fe = strm_fe(smp->strm);
12410 	idx = args->data.sint;
12411 
12412 	/* Check the availibity of the capture id. */
12413 	if (idx > fe->nb_req_cap - 1)
12414 		return 0;
12415 
12416 	/* Look for the original configuration. */
12417 	for (hdr = fe->req_cap, i = fe->nb_req_cap - 1;
12418 	     hdr != NULL && i != idx ;
12419 	     i--, hdr = hdr->next);
12420 	if (!hdr)
12421 		return 0;
12422 
12423 	/* check for the memory allocation */
12424 	if (smp->strm->req_cap[hdr->index] == NULL)
12425 		smp->strm->req_cap[hdr->index] = pool_alloc2(hdr->pool);
12426 	if (smp->strm->req_cap[hdr->index] == NULL)
12427 		return 0;
12428 
12429 	/* Check length. */
12430 	len = smp->data.u.str.len;
12431 	if (len > hdr->len)
12432 		len = hdr->len;
12433 
12434 	/* Capture input data. */
12435 	memcpy(smp->strm->req_cap[idx], smp->data.u.str.str, len);
12436 	smp->strm->req_cap[idx][len] = '\0';
12437 
12438 	return 1;
12439 }
12440 
smp_conv_res_capture(const struct arg * args,struct sample * smp,void * private)12441 static int smp_conv_res_capture(const struct arg *args, struct sample *smp, void *private)
12442 {
12443 	struct proxy *fe;
12444 	int idx, i;
12445 	struct cap_hdr *hdr;
12446 	int len;
12447 
12448 	if (!args || args->type != ARGT_SINT)
12449 		return 0;
12450 
12451 	if (!smp->strm)
12452 		return 0;
12453 
12454 	fe = strm_fe(smp->strm);
12455 	idx = args->data.sint;
12456 
12457 	/* Check the availibity of the capture id. */
12458 	if (idx > fe->nb_rsp_cap - 1)
12459 		return 0;
12460 
12461 	/* Look for the original configuration. */
12462 	for (hdr = fe->rsp_cap, i = fe->nb_rsp_cap - 1;
12463 	     hdr != NULL && i != idx ;
12464 	     i--, hdr = hdr->next);
12465 	if (!hdr)
12466 		return 0;
12467 
12468 	/* check for the memory allocation */
12469 	if (smp->strm->res_cap[hdr->index] == NULL)
12470 		smp->strm->res_cap[hdr->index] = pool_alloc2(hdr->pool);
12471 	if (smp->strm->res_cap[hdr->index] == NULL)
12472 		return 0;
12473 
12474 	/* Check length. */
12475 	len = smp->data.u.str.len;
12476 	if (len > hdr->len)
12477 		len = hdr->len;
12478 
12479 	/* Capture input data. */
12480 	memcpy(smp->strm->res_cap[idx], smp->data.u.str.str, len);
12481 	smp->strm->res_cap[idx][len] = '\0';
12482 
12483 	return 1;
12484 }
12485 
12486 /* This function executes one of the set-{method,path,query,uri} actions. It
12487  * takes the string from the variable 'replace' with length 'len', then modifies
12488  * the relevant part of the request line accordingly. Then it updates various
12489  * pointers to the next elements which were moved, and the total buffer length.
12490  * It finds the action to be performed in p[2], previously filled by function
12491  * parse_set_req_line(). It returns 0 in case of success, -1 in case of internal
12492  * error, though this can be revisited when this code is finally exploited.
12493  *
12494  * 'action' can be '0' to replace method, '1' to replace path, '2' to replace
12495  * query string and 3 to replace uri.
12496  *
12497  * In query string case, the mark question '?' must be set at the start of the
12498  * string by the caller, event if the replacement query string is empty.
12499  */
http_replace_req_line(int action,const char * replace,int len,struct proxy * px,struct stream * s)12500 int http_replace_req_line(int action, const char *replace, int len,
12501                           struct proxy *px, struct stream *s)
12502 {
12503 	struct http_txn *txn = s->txn;
12504 	char *cur_ptr, *cur_end;
12505 	int offset = 0;
12506 	int delta;
12507 
12508 	switch (action) {
12509 	case 0: // method
12510 		cur_ptr = s->req.buf->p;
12511 		cur_end = cur_ptr + txn->req.sl.rq.m_l;
12512 
12513 		/* adjust req line offsets and lengths */
12514 		delta = len - offset - (cur_end - cur_ptr);
12515 		txn->req.sl.rq.m_l += delta;
12516 		txn->req.sl.rq.u   += delta;
12517 		txn->req.sl.rq.v   += delta;
12518 		break;
12519 
12520 	case 1: // path
12521 		cur_ptr = http_get_path(txn);
12522 		if (!cur_ptr)
12523 			cur_ptr = s->req.buf->p + txn->req.sl.rq.u;
12524 
12525 		cur_end = cur_ptr;
12526 		while (cur_end < s->req.buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l && *cur_end != '?')
12527 			cur_end++;
12528 
12529 		/* adjust req line offsets and lengths */
12530 		delta = len - offset - (cur_end - cur_ptr);
12531 		txn->req.sl.rq.u_l += delta;
12532 		txn->req.sl.rq.v   += delta;
12533 		break;
12534 
12535 	case 2: // query
12536 		offset = 1;
12537 		cur_ptr = s->req.buf->p + txn->req.sl.rq.u;
12538 		cur_end = cur_ptr + txn->req.sl.rq.u_l;
12539 		while (cur_ptr < cur_end && *cur_ptr != '?')
12540 			cur_ptr++;
12541 
12542 		/* skip the question mark or indicate that we must insert it
12543 		 * (but only if the format string is not empty then).
12544 		 */
12545 		if (cur_ptr < cur_end)
12546 			cur_ptr++;
12547 		else if (len > 1)
12548 			offset = 0;
12549 
12550 		/* adjust req line offsets and lengths */
12551 		delta = len - offset - (cur_end - cur_ptr);
12552 		txn->req.sl.rq.u_l += delta;
12553 		txn->req.sl.rq.v   += delta;
12554 		break;
12555 
12556 	case 3: // uri
12557 		cur_ptr = s->req.buf->p + txn->req.sl.rq.u;
12558 		cur_end = cur_ptr + txn->req.sl.rq.u_l;
12559 
12560 		/* adjust req line offsets and lengths */
12561 		delta = len - offset - (cur_end - cur_ptr);
12562 		txn->req.sl.rq.u_l += delta;
12563 		txn->req.sl.rq.v   += delta;
12564 		break;
12565 
12566 	default:
12567 		return -1;
12568 	}
12569 
12570 	/* commit changes and adjust end of message */
12571 	delta = buffer_replace2(s->req.buf, cur_ptr, cur_end, replace + offset, len - offset);
12572 	txn->req.sl.rq.l += delta;
12573 	txn->hdr_idx.v[0].len += delta;
12574 	http_msg_move_end(&txn->req, delta);
12575 	return 0;
12576 }
12577 
12578 /* This function replace the HTTP status code and the associated message. The
12579  * variable <status> contains the new status code. This function never fails.
12580  */
http_set_status(unsigned int status,const char * reason,struct stream * s)12581 void http_set_status(unsigned int status, const char *reason, struct stream *s)
12582 {
12583 	struct http_txn *txn = s->txn;
12584 	char *cur_ptr, *cur_end;
12585 	int delta;
12586 	char *res;
12587 	int c_l;
12588 	const char *msg = reason;
12589 	int msg_len;
12590 
12591 	chunk_reset(&trash);
12592 
12593 	res = ultoa_o(status, trash.str, trash.size);
12594 	c_l = res - trash.str;
12595 
12596 	trash.str[c_l] = ' ';
12597 	trash.len = c_l + 1;
12598 
12599 	/* Do we have a custom reason format string? */
12600 	if (msg == NULL)
12601 		msg = get_reason(status);
12602 	msg_len = strlen(msg);
12603 	strncpy(&trash.str[trash.len], msg, trash.size - trash.len);
12604 	trash.len += msg_len;
12605 
12606 	cur_ptr = s->res.buf->p + txn->rsp.sl.st.c;
12607 	cur_end = s->res.buf->p + txn->rsp.sl.st.r + txn->rsp.sl.st.r_l;
12608 
12609 	/* commit changes and adjust message */
12610 	delta = buffer_replace2(s->res.buf, cur_ptr, cur_end, trash.str, trash.len);
12611 
12612 	/* adjust res line offsets and lengths */
12613 	txn->rsp.sl.st.r += c_l - txn->rsp.sl.st.c_l;
12614 	txn->rsp.sl.st.c_l = c_l;
12615 	txn->rsp.sl.st.r_l = msg_len;
12616 
12617 	delta = trash.len - (cur_end - cur_ptr);
12618 	txn->rsp.sl.st.l += delta;
12619 	txn->hdr_idx.v[0].len += delta;
12620 	http_msg_move_end(&txn->rsp, delta);
12621 }
12622 
12623 /* This function executes one of the set-{method,path,query,uri} actions. It
12624  * builds a string in the trash from the specified format string. It finds
12625  * the action to be performed in <http.action>, previously filled by function
12626  * parse_set_req_line(). The replacement action is excuted by the function
12627  * http_action_set_req_line(). It always returns ACT_RET_CONT. If an error
12628  * occurs the action is canceled, but the rule processing continue.
12629  */
http_action_set_req_line(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12630 enum act_return http_action_set_req_line(struct act_rule *rule, struct proxy *px,
12631                                          struct session *sess, struct stream *s, int flags)
12632 {
12633 	struct chunk *replace;
12634 	enum act_return ret = ACT_RET_ERR;
12635 
12636 	replace = alloc_trash_chunk();
12637 	if (!replace)
12638 		goto leave;
12639 
12640 	/* If we have to create a query string, prepare a '?'. */
12641 	if (rule->arg.http.action == 2)
12642 		replace->str[replace->len++] = '?';
12643 	replace->len += build_logline(s, replace->str + replace->len, replace->size - replace->len,
12644 	                              &rule->arg.http.logfmt);
12645 
12646 	http_replace_req_line(rule->arg.http.action, replace->str, replace->len, px, s);
12647 
12648 	ret = ACT_RET_CONT;
12649 
12650 leave:
12651 	free_trash_chunk(replace);
12652 	return ret;
12653 }
12654 
12655 /* This function is just a compliant action wrapper for "set-status". */
action_http_set_status(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12656 enum act_return action_http_set_status(struct act_rule *rule, struct proxy *px,
12657                                        struct session *sess, struct stream *s, int flags)
12658 {
12659 	http_set_status(rule->arg.status.code, rule->arg.status.reason, s);
12660 	return ACT_RET_CONT;
12661 }
12662 
12663 /* parse an http-request action among :
12664  *   set-method
12665  *   set-path
12666  *   set-query
12667  *   set-uri
12668  *
12669  * All of them accept a single argument of type string representing a log-format.
12670  * The resulting rule makes use of arg->act.p[0..1] to store the log-format list
12671  * head, and p[2] to store the action as an int (0=method, 1=path, 2=query, 3=uri).
12672  * It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
12673  */
parse_set_req_line(const char ** args,int * orig_arg,struct proxy * px,struct act_rule * rule,char ** err)12674 enum act_parse_ret parse_set_req_line(const char **args, int *orig_arg, struct proxy *px,
12675                                       struct act_rule *rule, char **err)
12676 {
12677 	int cur_arg = *orig_arg;
12678 
12679 	rule->action = ACT_CUSTOM;
12680 
12681 	switch (args[0][4]) {
12682 	case 'm' :
12683 		rule->arg.http.action = 0;
12684 		rule->action_ptr = http_action_set_req_line;
12685 		break;
12686 	case 'p' :
12687 		rule->arg.http.action = 1;
12688 		rule->action_ptr = http_action_set_req_line;
12689 		break;
12690 	case 'q' :
12691 		rule->arg.http.action = 2;
12692 		rule->action_ptr = http_action_set_req_line;
12693 		break;
12694 	case 'u' :
12695 		rule->arg.http.action = 3;
12696 		rule->action_ptr = http_action_set_req_line;
12697 		break;
12698 	default:
12699 		memprintf(err, "internal error: unhandled action '%s'", args[0]);
12700 		return ACT_RET_PRS_ERR;
12701 	}
12702 
12703 	if (!*args[cur_arg] ||
12704 	    (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
12705 		memprintf(err, "expects exactly 1 argument <format>");
12706 		return ACT_RET_PRS_ERR;
12707 	}
12708 
12709 	LIST_INIT(&rule->arg.http.logfmt);
12710 	proxy->conf.args.ctx = ARGC_HRQ;
12711 	if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.http.logfmt, LOG_OPT_HTTP,
12712 	                            (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, err)) {
12713 		return ACT_RET_PRS_ERR;
12714 	}
12715 
12716 	(*orig_arg)++;
12717 	return ACT_RET_PRS_OK;
12718 }
12719 
12720 /* parse set-status action:
12721  * This action accepts a single argument of type int representing
12722  * an http status code. It returns ACT_RET_PRS_OK on success,
12723  * ACT_RET_PRS_ERR on error.
12724  */
parse_http_set_status(const char ** args,int * orig_arg,struct proxy * px,struct act_rule * rule,char ** err)12725 enum act_parse_ret parse_http_set_status(const char **args, int *orig_arg, struct proxy *px,
12726                                          struct act_rule *rule, char **err)
12727 {
12728 	char *error;
12729 
12730 	rule->action = ACT_CUSTOM;
12731 	rule->action_ptr = action_http_set_status;
12732 
12733 	/* Check if an argument is available */
12734 	if (!*args[*orig_arg]) {
12735 		memprintf(err, "expects 1 argument: <status>; or 3 arguments: <status> reason <fmt>");
12736 		return ACT_RET_PRS_ERR;
12737 	}
12738 
12739 	/* convert status code as integer */
12740 	rule->arg.status.code = strtol(args[*orig_arg], &error, 10);
12741 	if (*error != '\0' || rule->arg.status.code < 100 || rule->arg.status.code > 999) {
12742 		memprintf(err, "expects an integer status code between 100 and 999");
12743 		return ACT_RET_PRS_ERR;
12744 	}
12745 
12746 	(*orig_arg)++;
12747 
12748 	/* scustom reason string */
12749 	rule->arg.status.reason = NULL; // If null, we use the default reason for the status code.
12750 	if (*args[*orig_arg] && strcmp(args[*orig_arg], "reason") == 0 &&
12751 		(*args[*orig_arg + 1] && strcmp(args[*orig_arg + 1], "if") != 0 && strcmp(args[*orig_arg + 1], "unless") != 0)) {
12752 		(*orig_arg)++;
12753 		rule->arg.status.reason = strdup(args[*orig_arg]);
12754 		(*orig_arg)++;
12755 	}
12756 
12757 	return ACT_RET_PRS_OK;
12758 }
12759 
12760 /* This function executes the "capture" action. It executes a fetch expression,
12761  * turns the result into a string and puts it in a capture slot. It always
12762  * returns 1. If an error occurs the action is cancelled, but the rule
12763  * processing continues.
12764  */
http_action_req_capture(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12765 enum act_return http_action_req_capture(struct act_rule *rule, struct proxy *px,
12766                                         struct session *sess, struct stream *s, int flags)
12767 {
12768 	struct sample *key;
12769 	struct cap_hdr *h = rule->arg.cap.hdr;
12770 	char **cap = s->req_cap;
12771 	int len;
12772 
12773 	key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.cap.expr, SMP_T_STR);
12774 	if (!key)
12775 		return ACT_RET_CONT;
12776 
12777 	if (cap[h->index] == NULL)
12778 		cap[h->index] = pool_alloc2(h->pool);
12779 
12780 	if (cap[h->index] == NULL) /* no more capture memory */
12781 		return ACT_RET_CONT;
12782 
12783 	len = key->data.u.str.len;
12784 	if (len > h->len)
12785 		len = h->len;
12786 
12787 	memcpy(cap[h->index], key->data.u.str.str, len);
12788 	cap[h->index][len] = 0;
12789 	return ACT_RET_CONT;
12790 }
12791 
12792 /* This function executes the "capture" action and store the result in a
12793  * capture slot if exists. It executes a fetch expression, turns the result
12794  * into a string and puts it in a capture slot. It always returns 1. If an
12795  * error occurs the action is cancelled, but the rule processing continues.
12796  */
http_action_req_capture_by_id(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12797 enum act_return http_action_req_capture_by_id(struct act_rule *rule, struct proxy *px,
12798                                               struct session *sess, struct stream *s, int flags)
12799 {
12800 	struct sample *key;
12801 	struct cap_hdr *h;
12802 	char **cap = s->req_cap;
12803 	struct proxy *fe = strm_fe(s);
12804 	int len;
12805 	int i;
12806 
12807 	/* Look for the original configuration. */
12808 	for (h = fe->req_cap, i = fe->nb_req_cap - 1;
12809 	     h != NULL && i != rule->arg.capid.idx ;
12810 	     i--, h = h->next);
12811 	if (!h)
12812 		return ACT_RET_CONT;
12813 
12814 	key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.capid.expr, SMP_T_STR);
12815 	if (!key)
12816 		return ACT_RET_CONT;
12817 
12818 	if (cap[h->index] == NULL)
12819 		cap[h->index] = pool_alloc2(h->pool);
12820 
12821 	if (cap[h->index] == NULL) /* no more capture memory */
12822 		return ACT_RET_CONT;
12823 
12824 	len = key->data.u.str.len;
12825 	if (len > h->len)
12826 		len = h->len;
12827 
12828 	memcpy(cap[h->index], key->data.u.str.str, len);
12829 	cap[h->index][len] = 0;
12830 	return ACT_RET_CONT;
12831 }
12832 
12833 /* parse an "http-request capture" action. It takes a single argument which is
12834  * a sample fetch expression. It stores the expression into arg->act.p[0] and
12835  * the allocated hdr_cap struct or the preallocated "id" into arg->act.p[1].
12836  * It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
12837  */
parse_http_req_capture(const char ** args,int * orig_arg,struct proxy * px,struct act_rule * rule,char ** err)12838 enum act_parse_ret parse_http_req_capture(const char **args, int *orig_arg, struct proxy *px,
12839                                           struct act_rule *rule, char **err)
12840 {
12841 	struct sample_expr *expr;
12842 	struct cap_hdr *hdr;
12843 	int cur_arg;
12844 	int len = 0;
12845 
12846 	for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++)
12847 		if (strcmp(args[cur_arg], "if") == 0 ||
12848 		    strcmp(args[cur_arg], "unless") == 0)
12849 			break;
12850 
12851 	if (cur_arg < *orig_arg + 3) {
12852 		memprintf(err, "expects <expression> [ 'len' <length> | id <idx> ]");
12853 		return ACT_RET_PRS_ERR;
12854 	}
12855 
12856 	cur_arg = *orig_arg;
12857 	expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args);
12858 	if (!expr)
12859 		return ACT_RET_PRS_ERR;
12860 
12861 	if (!(expr->fetch->val & SMP_VAL_FE_HRQ_HDR)) {
12862 		memprintf(err,
12863 			  "fetch method '%s' extracts information from '%s', none of which is available here",
12864 			  args[cur_arg-1], sample_src_names(expr->fetch->use));
12865 		free(expr);
12866 		return ACT_RET_PRS_ERR;
12867 	}
12868 
12869 	if (!args[cur_arg] || !*args[cur_arg]) {
12870 		memprintf(err, "expects 'len or 'id'");
12871 		free(expr);
12872 		return ACT_RET_PRS_ERR;
12873 	}
12874 
12875 	if (strcmp(args[cur_arg], "len") == 0) {
12876 		cur_arg++;
12877 
12878 		if (!(px->cap & PR_CAP_FE)) {
12879 			memprintf(err, "proxy '%s' has no frontend capability", px->id);
12880 			return ACT_RET_PRS_ERR;
12881 		}
12882 
12883 		proxy->conf.args.ctx = ARGC_CAP;
12884 
12885 		if (!args[cur_arg]) {
12886 			memprintf(err, "missing length value");
12887 			free(expr);
12888 			return ACT_RET_PRS_ERR;
12889 		}
12890 		/* we copy the table name for now, it will be resolved later */
12891 		len = atoi(args[cur_arg]);
12892 		if (len <= 0) {
12893 			memprintf(err, "length must be > 0");
12894 			free(expr);
12895 			return ACT_RET_PRS_ERR;
12896 		}
12897 		cur_arg++;
12898 
12899 		if (!len) {
12900 			memprintf(err, "a positive 'len' argument is mandatory");
12901 			free(expr);
12902 			return ACT_RET_PRS_ERR;
12903 		}
12904 
12905 		hdr = calloc(1, sizeof(*hdr));
12906 		hdr->next = px->req_cap;
12907 		hdr->name = NULL; /* not a header capture */
12908 		hdr->namelen = 0;
12909 		hdr->len = len;
12910 		hdr->pool = create_pool("caphdr", hdr->len + 1, MEM_F_SHARED);
12911 		hdr->index = px->nb_req_cap++;
12912 
12913 		px->req_cap = hdr;
12914 		px->to_log |= LW_REQHDR;
12915 
12916 		rule->action       = ACT_CUSTOM;
12917 		rule->action_ptr   = http_action_req_capture;
12918 		rule->arg.cap.expr = expr;
12919 		rule->arg.cap.hdr  = hdr;
12920 	}
12921 
12922 	else if (strcmp(args[cur_arg], "id") == 0) {
12923 		int id;
12924 		char *error;
12925 
12926 		cur_arg++;
12927 
12928 		if (!args[cur_arg]) {
12929 			memprintf(err, "missing id value");
12930 			free(expr);
12931 			return ACT_RET_PRS_ERR;
12932 		}
12933 
12934 		id = strtol(args[cur_arg], &error, 10);
12935 		if (*error != '\0') {
12936 			memprintf(err, "cannot parse id '%s'", args[cur_arg]);
12937 			free(expr);
12938 			return ACT_RET_PRS_ERR;
12939 		}
12940 		cur_arg++;
12941 
12942 		proxy->conf.args.ctx = ARGC_CAP;
12943 
12944 		rule->action       = ACT_CUSTOM;
12945 		rule->action_ptr   = http_action_req_capture_by_id;
12946 		rule->arg.capid.expr = expr;
12947 		rule->arg.capid.idx  = id;
12948 	}
12949 
12950 	else {
12951 		memprintf(err, "expects 'len' or 'id', found '%s'", args[cur_arg]);
12952 		free(expr);
12953 		return ACT_RET_PRS_ERR;
12954 	}
12955 
12956 	*orig_arg = cur_arg;
12957 	return ACT_RET_PRS_OK;
12958 }
12959 
12960 /* This function executes the "capture" action and store the result in a
12961  * capture slot if exists. It executes a fetch expression, turns the result
12962  * into a string and puts it in a capture slot. It always returns 1. If an
12963  * error occurs the action is cancelled, but the rule processing continues.
12964  */
http_action_res_capture_by_id(struct act_rule * rule,struct proxy * px,struct session * sess,struct stream * s,int flags)12965 enum act_return http_action_res_capture_by_id(struct act_rule *rule, struct proxy *px,
12966                                               struct session *sess, struct stream *s, int flags)
12967 {
12968 	struct sample *key;
12969 	struct cap_hdr *h;
12970 	char **cap = s->res_cap;
12971 	struct proxy *fe = strm_fe(s);
12972 	int len;
12973 	int i;
12974 
12975 	/* Look for the original configuration. */
12976 	for (h = fe->rsp_cap, i = fe->nb_rsp_cap - 1;
12977 	     h != NULL && i != rule->arg.capid.idx ;
12978 	     i--, h = h->next);
12979 	if (!h)
12980 		return ACT_RET_CONT;
12981 
12982 	key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->arg.capid.expr, SMP_T_STR);
12983 	if (!key)
12984 		return ACT_RET_CONT;
12985 
12986 	if (cap[h->index] == NULL)
12987 		cap[h->index] = pool_alloc2(h->pool);
12988 
12989 	if (cap[h->index] == NULL) /* no more capture memory */
12990 		return ACT_RET_CONT;
12991 
12992 	len = key->data.u.str.len;
12993 	if (len > h->len)
12994 		len = h->len;
12995 
12996 	memcpy(cap[h->index], key->data.u.str.str, len);
12997 	cap[h->index][len] = 0;
12998 	return ACT_RET_CONT;
12999 }
13000 
13001 
13002 /* parse an "http-response capture" action. It takes a single argument which is
13003  * a sample fetch expression. It stores the expression into arg->act.p[0] and
13004  * the allocated hdr_cap struct od the preallocated id into arg->act.p[1].
13005  * It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
13006  */
parse_http_res_capture(const char ** args,int * orig_arg,struct proxy * px,struct act_rule * rule,char ** err)13007 enum act_parse_ret parse_http_res_capture(const char **args, int *orig_arg, struct proxy *px,
13008                                           struct act_rule *rule, char **err)
13009 {
13010 	struct sample_expr *expr;
13011 	int cur_arg;
13012 	int id;
13013 	char *error;
13014 
13015 	for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++)
13016 		if (strcmp(args[cur_arg], "if") == 0 ||
13017 		    strcmp(args[cur_arg], "unless") == 0)
13018 			break;
13019 
13020 	if (cur_arg < *orig_arg + 3) {
13021 		memprintf(err, "expects <expression> id <idx>");
13022 		return ACT_RET_PRS_ERR;
13023 	}
13024 
13025 	cur_arg = *orig_arg;
13026 	expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args);
13027 	if (!expr)
13028 		return ACT_RET_PRS_ERR;
13029 
13030 	if (!(expr->fetch->val & SMP_VAL_FE_HRS_HDR)) {
13031 		memprintf(err,
13032 			  "fetch method '%s' extracts information from '%s', none of which is available here",
13033 			  args[cur_arg-1], sample_src_names(expr->fetch->use));
13034 		free(expr);
13035 		return ACT_RET_PRS_ERR;
13036 	}
13037 
13038 	if (!args[cur_arg] || !*args[cur_arg]) {
13039 		memprintf(err, "expects 'id'");
13040 		free(expr);
13041 		return ACT_RET_PRS_ERR;
13042 	}
13043 
13044 	if (strcmp(args[cur_arg], "id") != 0) {
13045 		memprintf(err, "expects 'id', found '%s'", args[cur_arg]);
13046 		free(expr);
13047 		return ACT_RET_PRS_ERR;
13048 	}
13049 
13050 	cur_arg++;
13051 
13052 	if (!args[cur_arg]) {
13053 		memprintf(err, "missing id value");
13054 		free(expr);
13055 		return ACT_RET_PRS_ERR;
13056 	}
13057 
13058 	id = strtol(args[cur_arg], &error, 10);
13059 	if (*error != '\0') {
13060 		memprintf(err, "cannot parse id '%s'", args[cur_arg]);
13061 		free(expr);
13062 		return ACT_RET_PRS_ERR;
13063 	}
13064 	cur_arg++;
13065 
13066 	proxy->conf.args.ctx = ARGC_CAP;
13067 
13068 	rule->action       = ACT_CUSTOM;
13069 	rule->action_ptr   = http_action_res_capture_by_id;
13070 	rule->arg.capid.expr = expr;
13071 	rule->arg.capid.idx  = id;
13072 
13073 	*orig_arg = cur_arg;
13074 	return ACT_RET_PRS_OK;
13075 }
13076 
13077 /*
13078  * Return the struct http_req_action_kw associated to a keyword.
13079  */
action_http_req_custom(const char * kw)13080 struct action_kw *action_http_req_custom(const char *kw)
13081 {
13082 	return action_lookup(&http_req_keywords.list, kw);
13083 }
13084 
13085 /*
13086  * Return the struct http_res_action_kw associated to a keyword.
13087  */
action_http_res_custom(const char * kw)13088 struct action_kw *action_http_res_custom(const char *kw)
13089 {
13090 	return action_lookup(&http_res_keywords.list, kw);
13091 }
13092 
13093 
13094 /* "show errors" handler for the CLI. Returns 0 if wants to continue, 1 to stop
13095  * now.
13096  */
cli_parse_show_errors(char ** args,struct appctx * appctx,void * private)13097 static int cli_parse_show_errors(char **args, struct appctx *appctx, void *private)
13098 {
13099 	if (!cli_has_level(appctx, ACCESS_LVL_OPER))
13100 		return 1;
13101 
13102 	if (*args[2]) {
13103 		struct proxy *px;
13104 
13105 		px = proxy_find_by_name(args[2], 0, 0);
13106 		if (px)
13107 			appctx->ctx.errors.iid = px->uuid;
13108 		else
13109 			appctx->ctx.errors.iid = atoi(args[2]);
13110 
13111 		if (!appctx->ctx.errors.iid) {
13112 			appctx->ctx.cli.msg = "No such proxy.\n";
13113 			appctx->st0 = CLI_ST_PRINT;
13114 			return 1;
13115 		}
13116 	}
13117 	else
13118 		appctx->ctx.errors.iid	= -1; // dump all proxies
13119 
13120 	appctx->ctx.errors.flag = 0;
13121 	if (strcmp(args[3], "request") == 0)
13122 		appctx->ctx.errors.flag |= 4; // ignore response
13123 	else if (strcmp(args[3], "response") == 0)
13124 		appctx->ctx.errors.flag |= 2; // ignore request
13125 	appctx->ctx.errors.px = NULL;
13126 	return 0;
13127 }
13128 
13129 /* This function dumps all captured errors onto the stream interface's
13130  * read buffer. It returns 0 if the output buffer is full and it needs
13131  * to be called again, otherwise non-zero.
13132  */
cli_io_handler_show_errors(struct appctx * appctx)13133 static int cli_io_handler_show_errors(struct appctx *appctx)
13134 {
13135 	struct stream_interface *si = appctx->owner;
13136 	extern const char *monthname[12];
13137 
13138 	if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
13139 		return 1;
13140 
13141 	chunk_reset(&trash);
13142 
13143 	if (!appctx->ctx.errors.px) {
13144 		/* the function had not been called yet, let's prepare the
13145 		 * buffer for a response.
13146 		 */
13147 		struct tm tm;
13148 
13149 		get_localtime(date.tv_sec, &tm);
13150 		chunk_appendf(&trash, "Total events captured on [%02d/%s/%04d:%02d:%02d:%02d.%03d] : %u\n",
13151 			     tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
13152 			     tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(date.tv_usec/1000),
13153 			     error_snapshot_id);
13154 
13155 		if (bi_putchk(si_ic(si), &trash) == -1) {
13156 			/* Socket buffer full. Let's try again later from the same point */
13157 			si_applet_cant_put(si);
13158 			return 0;
13159 		}
13160 
13161 		appctx->ctx.errors.px = proxy;
13162 		appctx->ctx.errors.bol = 0;
13163 		appctx->ctx.errors.ptr = -1;
13164 	}
13165 
13166 	/* we have two inner loops here, one for the proxy, the other one for
13167 	 * the buffer.
13168 	 */
13169 	while (appctx->ctx.errors.px) {
13170 		struct error_snapshot *es;
13171 
13172 		if ((appctx->ctx.errors.flag & 1) == 0) {
13173 			es = &appctx->ctx.errors.px->invalid_req;
13174 			if (appctx->ctx.errors.flag & 2) // skip req
13175 				goto next;
13176 		}
13177 		else {
13178 			es = &appctx->ctx.errors.px->invalid_rep;
13179 			if (appctx->ctx.errors.flag & 4) // skip resp
13180 				goto next;
13181 		}
13182 
13183 		if (!es->when.tv_sec)
13184 			goto next;
13185 
13186 		if (appctx->ctx.errors.iid >= 0 &&
13187 		    appctx->ctx.errors.px->uuid != appctx->ctx.errors.iid &&
13188 		    es->oe->uuid != appctx->ctx.errors.iid)
13189 			goto next;
13190 
13191 		if (appctx->ctx.errors.ptr < 0) {
13192 			/* just print headers now */
13193 
13194 			char pn[INET6_ADDRSTRLEN];
13195 			struct tm tm;
13196 			int port;
13197 
13198 			get_localtime(es->when.tv_sec, &tm);
13199 			chunk_appendf(&trash, " \n[%02d/%s/%04d:%02d:%02d:%02d.%03d]",
13200 				     tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
13201 				     tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(es->when.tv_usec/1000));
13202 
13203 			switch (addr_to_str(&es->src, pn, sizeof(pn))) {
13204 			case AF_INET:
13205 			case AF_INET6:
13206 				port = get_host_port(&es->src);
13207 				break;
13208 			default:
13209 				port = 0;
13210 			}
13211 
13212 			switch (appctx->ctx.errors.flag & 1) {
13213 			case 0:
13214 				chunk_appendf(&trash,
13215 					     " frontend %s (#%d): invalid request\n"
13216 					     "  backend %s (#%d)",
13217 					     appctx->ctx.errors.px->id, appctx->ctx.errors.px->uuid,
13218 					     (es->oe->cap & PR_CAP_BE) ? es->oe->id : "<NONE>",
13219 					     (es->oe->cap & PR_CAP_BE) ? es->oe->uuid : -1);
13220 				break;
13221 			case 1:
13222 				chunk_appendf(&trash,
13223 					     " backend %s (#%d): invalid response\n"
13224 					     "  frontend %s (#%d)",
13225 					     appctx->ctx.errors.px->id, appctx->ctx.errors.px->uuid,
13226 					     es->oe->id, es->oe->uuid);
13227 				break;
13228 			}
13229 
13230 			chunk_appendf(&trash,
13231 				     ", server %s (#%d), event #%u\n"
13232 				     "  src %s:%d, session #%d, session flags 0x%08x\n"
13233 				     "  HTTP msg state %s(%d), msg flags 0x%08x, tx flags 0x%08x\n"
13234 				     "  HTTP chunk len %lld bytes, HTTP body len %lld bytes\n"
13235 				     "  buffer flags 0x%08x, out %d bytes, total %lld bytes\n"
13236 				     "  pending %d bytes, wrapping at %d, error at position %d:\n \n",
13237 				     es->srv ? es->srv->id : "<NONE>", es->srv ? es->srv->puid : -1,
13238 				     es->ev_id,
13239 				     pn, port, es->sid, es->s_flags,
13240 				     http_msg_state_str(es->state), es->state, es->m_flags, es->t_flags,
13241 				     es->m_clen, es->m_blen,
13242 				     es->b_flags, es->b_out, es->b_tot,
13243 				     es->len, es->b_wrap, es->pos);
13244 
13245 			if (bi_putchk(si_ic(si), &trash) == -1) {
13246 				/* Socket buffer full. Let's try again later from the same point */
13247 				si_applet_cant_put(si);
13248 				return 0;
13249 			}
13250 			appctx->ctx.errors.ptr = 0;
13251 			appctx->ctx.errors.sid = es->sid;
13252 		}
13253 
13254 		if (appctx->ctx.errors.sid != es->sid) {
13255 			/* the snapshot changed while we were dumping it */
13256 			chunk_appendf(&trash,
13257 				     "  WARNING! update detected on this snapshot, dump interrupted. Please re-check!\n");
13258 			if (bi_putchk(si_ic(si), &trash) == -1) {
13259 				si_applet_cant_put(si);
13260 				return 0;
13261 			}
13262 			goto next;
13263 		}
13264 
13265 		/* OK, ptr >= 0, so we have to dump the current line */
13266 		while (es->buf && appctx->ctx.errors.ptr < es->len && appctx->ctx.errors.ptr < global.tune.bufsize) {
13267 			int newptr;
13268 			int newline;
13269 
13270 			newline = appctx->ctx.errors.bol;
13271 			newptr = dump_text_line(&trash, es->buf, global.tune.bufsize, es->len, &newline, appctx->ctx.errors.ptr);
13272 			if (newptr == appctx->ctx.errors.ptr)
13273 				return 0;
13274 
13275 			if (bi_putchk(si_ic(si), &trash) == -1) {
13276 				/* Socket buffer full. Let's try again later from the same point */
13277 				si_applet_cant_put(si);
13278 				return 0;
13279 			}
13280 			appctx->ctx.errors.ptr = newptr;
13281 			appctx->ctx.errors.bol = newline;
13282 		};
13283 	next:
13284 		appctx->ctx.errors.bol = 0;
13285 		appctx->ctx.errors.ptr = -1;
13286 		appctx->ctx.errors.flag ^= 1;
13287 		if (!(appctx->ctx.errors.flag & 1))
13288 			appctx->ctx.errors.px = appctx->ctx.errors.px->next;
13289 	}
13290 
13291 	/* dump complete */
13292 	return 1;
13293 }
13294 
13295 /* register cli keywords */
13296 static struct cli_kw_list cli_kws = {{ },{
13297 	{ { "show", "errors", NULL },
13298 	  "show errors    : report last request and response errors for each proxy",
13299 	  cli_parse_show_errors, cli_io_handler_show_errors, NULL,
13300 	},
13301 	{{},}
13302 }};
13303 
13304 /************************************************************************/
13305 /*          All supported ACL keywords must be declared here.           */
13306 /************************************************************************/
13307 
13308 /* Note: must not be declared <const> as its list will be overwritten.
13309  * Please take care of keeping this list alphabetically sorted.
13310  */
13311 static struct acl_kw_list acl_kws = {ILH, {
13312 	{ "base",            "base",     PAT_MATCH_STR },
13313 	{ "base_beg",        "base",     PAT_MATCH_BEG },
13314 	{ "base_dir",        "base",     PAT_MATCH_DIR },
13315 	{ "base_dom",        "base",     PAT_MATCH_DOM },
13316 	{ "base_end",        "base",     PAT_MATCH_END },
13317 	{ "base_len",        "base",     PAT_MATCH_LEN },
13318 	{ "base_reg",        "base",     PAT_MATCH_REG },
13319 	{ "base_sub",        "base",     PAT_MATCH_SUB },
13320 
13321 	{ "cook",            "req.cook", PAT_MATCH_STR },
13322 	{ "cook_beg",        "req.cook", PAT_MATCH_BEG },
13323 	{ "cook_dir",        "req.cook", PAT_MATCH_DIR },
13324 	{ "cook_dom",        "req.cook", PAT_MATCH_DOM },
13325 	{ "cook_end",        "req.cook", PAT_MATCH_END },
13326 	{ "cook_len",        "req.cook", PAT_MATCH_LEN },
13327 	{ "cook_reg",        "req.cook", PAT_MATCH_REG },
13328 	{ "cook_sub",        "req.cook", PAT_MATCH_SUB },
13329 
13330 	{ "hdr",             "req.hdr",  PAT_MATCH_STR },
13331 	{ "hdr_beg",         "req.hdr",  PAT_MATCH_BEG },
13332 	{ "hdr_dir",         "req.hdr",  PAT_MATCH_DIR },
13333 	{ "hdr_dom",         "req.hdr",  PAT_MATCH_DOM },
13334 	{ "hdr_end",         "req.hdr",  PAT_MATCH_END },
13335 	{ "hdr_len",         "req.hdr",  PAT_MATCH_LEN },
13336 	{ "hdr_reg",         "req.hdr",  PAT_MATCH_REG },
13337 	{ "hdr_sub",         "req.hdr",  PAT_MATCH_SUB },
13338 
13339 	/* these two declarations uses strings with list storage (in place
13340 	 * of tree storage). The basic match is PAT_MATCH_STR, but the indexation
13341 	 * and delete functions are relative to the list management. The parse
13342 	 * and match method are related to the corresponding fetch methods. This
13343 	 * is very particular ACL declaration mode.
13344 	 */
13345 	{ "http_auth_group", NULL,       PAT_MATCH_STR, NULL,  pat_idx_list_str, pat_del_list_ptr, NULL, pat_match_auth },
13346 	{ "method",          NULL,       PAT_MATCH_STR, pat_parse_meth, pat_idx_list_str, pat_del_list_ptr, NULL, pat_match_meth },
13347 
13348 	{ "path",            "path",     PAT_MATCH_STR },
13349 	{ "path_beg",        "path",     PAT_MATCH_BEG },
13350 	{ "path_dir",        "path",     PAT_MATCH_DIR },
13351 	{ "path_dom",        "path",     PAT_MATCH_DOM },
13352 	{ "path_end",        "path",     PAT_MATCH_END },
13353 	{ "path_len",        "path",     PAT_MATCH_LEN },
13354 	{ "path_reg",        "path",     PAT_MATCH_REG },
13355 	{ "path_sub",        "path",     PAT_MATCH_SUB },
13356 
13357 	{ "req_ver",         "req.ver",  PAT_MATCH_STR },
13358 	{ "resp_ver",        "res.ver",  PAT_MATCH_STR },
13359 
13360 	{ "scook",           "res.cook", PAT_MATCH_STR },
13361 	{ "scook_beg",       "res.cook", PAT_MATCH_BEG },
13362 	{ "scook_dir",       "res.cook", PAT_MATCH_DIR },
13363 	{ "scook_dom",       "res.cook", PAT_MATCH_DOM },
13364 	{ "scook_end",       "res.cook", PAT_MATCH_END },
13365 	{ "scook_len",       "res.cook", PAT_MATCH_LEN },
13366 	{ "scook_reg",       "res.cook", PAT_MATCH_REG },
13367 	{ "scook_sub",       "res.cook", PAT_MATCH_SUB },
13368 
13369 	{ "shdr",            "res.hdr",  PAT_MATCH_STR },
13370 	{ "shdr_beg",        "res.hdr",  PAT_MATCH_BEG },
13371 	{ "shdr_dir",        "res.hdr",  PAT_MATCH_DIR },
13372 	{ "shdr_dom",        "res.hdr",  PAT_MATCH_DOM },
13373 	{ "shdr_end",        "res.hdr",  PAT_MATCH_END },
13374 	{ "shdr_len",        "res.hdr",  PAT_MATCH_LEN },
13375 	{ "shdr_reg",        "res.hdr",  PAT_MATCH_REG },
13376 	{ "shdr_sub",        "res.hdr",  PAT_MATCH_SUB },
13377 
13378 	{ "url",             "url",      PAT_MATCH_STR },
13379 	{ "url_beg",         "url",      PAT_MATCH_BEG },
13380 	{ "url_dir",         "url",      PAT_MATCH_DIR },
13381 	{ "url_dom",         "url",      PAT_MATCH_DOM },
13382 	{ "url_end",         "url",      PAT_MATCH_END },
13383 	{ "url_len",         "url",      PAT_MATCH_LEN },
13384 	{ "url_reg",         "url",      PAT_MATCH_REG },
13385 	{ "url_sub",         "url",      PAT_MATCH_SUB },
13386 
13387 	{ "urlp",            "urlp",     PAT_MATCH_STR },
13388 	{ "urlp_beg",        "urlp",     PAT_MATCH_BEG },
13389 	{ "urlp_dir",        "urlp",     PAT_MATCH_DIR },
13390 	{ "urlp_dom",        "urlp",     PAT_MATCH_DOM },
13391 	{ "urlp_end",        "urlp",     PAT_MATCH_END },
13392 	{ "urlp_len",        "urlp",     PAT_MATCH_LEN },
13393 	{ "urlp_reg",        "urlp",     PAT_MATCH_REG },
13394 	{ "urlp_sub",        "urlp",     PAT_MATCH_SUB },
13395 
13396 	{ /* END */ },
13397 }};
13398 
13399 /************************************************************************/
13400 /*         All supported pattern keywords must be declared here.        */
13401 /************************************************************************/
13402 /* Note: must not be declared <const> as its list will be overwritten */
13403 static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
13404 	{ "base",            smp_fetch_base,           0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13405 	{ "base32",          smp_fetch_base32,         0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13406 	{ "base32+src",      smp_fetch_base32_src,     0,                NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
13407 
13408 	/* capture are allocated and are permanent in the stream */
13409 	{ "capture.req.hdr", smp_fetch_capture_header_req, ARG1(1,SINT), NULL,   SMP_T_STR,  SMP_USE_HRQHP },
13410 
13411 	/* retrieve these captures from the HTTP logs */
13412 	{ "capture.req.method", smp_fetch_capture_req_method, 0,         NULL,   SMP_T_STR,  SMP_USE_HRQHP },
13413 	{ "capture.req.uri",    smp_fetch_capture_req_uri,    0,         NULL,   SMP_T_STR,  SMP_USE_HRQHP },
13414 	{ "capture.req.ver",    smp_fetch_capture_req_ver,    0,         NULL,   SMP_T_STR,  SMP_USE_HRQHP },
13415 
13416 	{ "capture.res.hdr", smp_fetch_capture_header_res, ARG1(1,SINT), NULL,   SMP_T_STR,  SMP_USE_HRSHP },
13417 	{ "capture.res.ver", smp_fetch_capture_res_ver,       0,         NULL,   SMP_T_STR,  SMP_USE_HRQHP },
13418 
13419 	/* cookie is valid in both directions (eg: for "stick ...") but cook*
13420 	 * are only here to match the ACL's name, are request-only and are used
13421 	 * for ACL compatibility only.
13422 	 */
13423 	{ "cook",            smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13424 	{ "cookie",          smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV|SMP_USE_HRSHV },
13425 	{ "cook_cnt",        smp_fetch_cookie_cnt,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13426 	{ "cook_val",        smp_fetch_cookie_val,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13427 
13428 	/* hdr is valid in both directions (eg: for "stick ...") but hdr_* are
13429 	 * only here to match the ACL's name, are request-only and are used for
13430 	 * ACL compatibility only.
13431 	 */
13432 	{ "hdr",             smp_fetch_hdr,            ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRQHV|SMP_USE_HRSHV },
13433 	{ "hdr_cnt",         smp_fetch_hdr_cnt,        ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13434 	{ "hdr_ip",          smp_fetch_hdr_ip,         ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRQHV },
13435 	{ "hdr_val",         smp_fetch_hdr_val,        ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV },
13436 
13437 	{ "http_auth",       smp_fetch_http_auth,      ARG1(1,USR),      NULL,    SMP_T_BOOL, SMP_USE_HRQHV },
13438 	{ "http_auth_group", smp_fetch_http_auth_grp,  ARG1(1,USR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13439 	{ "http_first_req",  smp_fetch_http_first_req, 0,                NULL,    SMP_T_BOOL, SMP_USE_HRQHP },
13440 	{ "method",          smp_fetch_meth,           0,                NULL,    SMP_T_METH, SMP_USE_HRQHP },
13441 	{ "path",            smp_fetch_path,           0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13442 	{ "query",           smp_fetch_query,          0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13443 
13444 	/* HTTP protocol on the request path */
13445 	{ "req.proto_http",  smp_fetch_proto_http,     0,                NULL,    SMP_T_BOOL, SMP_USE_HRQHP },
13446 	{ "req_proto_http",  smp_fetch_proto_http,     0,                NULL,    SMP_T_BOOL, SMP_USE_HRQHP },
13447 
13448 	/* HTTP version on the request path */
13449 	{ "req.ver",         smp_fetch_rqver,          0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13450 	{ "req_ver",         smp_fetch_rqver,          0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13451 
13452 	{ "req.body",        smp_fetch_body,           0,                NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
13453 	{ "req.body_len",    smp_fetch_body_len,       0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13454 	{ "req.body_size",   smp_fetch_body_size,      0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13455 	{ "req.body_param",  smp_fetch_body_param,     ARG1(0,STR),      NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
13456 
13457 	/* HTTP version on the response path */
13458 	{ "res.ver",         smp_fetch_stver,          0,                NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13459 	{ "resp_ver",        smp_fetch_stver,          0,                NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13460 
13461 	/* explicit req.{cook,hdr} are used to force the fetch direction to be request-only */
13462 	{ "req.cook",        smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13463 	{ "req.cook_cnt",    smp_fetch_cookie_cnt,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13464 	{ "req.cook_val",    smp_fetch_cookie_val,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13465 
13466 	{ "req.fhdr",        smp_fetch_fhdr,           ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRQHV },
13467 	{ "req.fhdr_cnt",    smp_fetch_fhdr_cnt,       ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13468 	{ "req.hdr",         smp_fetch_hdr,            ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRQHV },
13469 	{ "req.hdr_cnt",     smp_fetch_hdr_cnt,        ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13470 	{ "req.hdr_ip",      smp_fetch_hdr_ip,         ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRQHV },
13471 	{ "req.hdr_names",   smp_fetch_hdr_names,      ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13472 	{ "req.hdr_val",     smp_fetch_hdr_val,        ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV },
13473 
13474 	/* explicit req.{cook,hdr} are used to force the fetch direction to be response-only */
13475 	{ "res.cook",        smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13476 	{ "res.cook_cnt",    smp_fetch_cookie_cnt,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13477 	{ "res.cook_val",    smp_fetch_cookie_val,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13478 
13479 	{ "res.fhdr",        smp_fetch_fhdr,           ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRSHV },
13480 	{ "res.fhdr_cnt",    smp_fetch_fhdr_cnt,       ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13481 	{ "res.hdr",         smp_fetch_hdr,            ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRSHV },
13482 	{ "res.hdr_cnt",     smp_fetch_hdr_cnt,        ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13483 	{ "res.hdr_ip",      smp_fetch_hdr_ip,         ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRSHV },
13484 	{ "res.hdr_names",   smp_fetch_hdr_names,      ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13485 	{ "res.hdr_val",     smp_fetch_hdr_val,        ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV },
13486 
13487 	/* scook is valid only on the response and is used for ACL compatibility */
13488 	{ "scook",           smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRSHV },
13489 	{ "scook_cnt",       smp_fetch_cookie_cnt,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13490 	{ "scook_val",       smp_fetch_cookie_val,     ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13491 	{ "set-cookie",      smp_fetch_cookie,         ARG1(0,STR),      NULL,    SMP_T_STR,  SMP_USE_HRSHV }, /* deprecated */
13492 
13493 	/* shdr is valid only on the response and is used for ACL compatibility */
13494 	{ "shdr",            smp_fetch_hdr,            ARG2(0,STR,SINT), val_hdr, SMP_T_STR,  SMP_USE_HRSHV },
13495 	{ "shdr_cnt",        smp_fetch_hdr_cnt,        ARG1(0,STR),      NULL,    SMP_T_SINT, SMP_USE_HRSHV },
13496 	{ "shdr_ip",         smp_fetch_hdr_ip,         ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRSHV },
13497 	{ "shdr_val",        smp_fetch_hdr_val,        ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV },
13498 
13499 	{ "status",          smp_fetch_stcode,         0,                NULL,    SMP_T_SINT, SMP_USE_HRSHP },
13500 	{ "unique-id",       smp_fetch_uniqueid,       0,                NULL,    SMP_T_STR,  SMP_SRC_L4SRV },
13501 	{ "url",             smp_fetch_url,            0,                NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13502 	{ "url32",           smp_fetch_url32,          0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13503 	{ "url32+src",       smp_fetch_url32_src,      0,                NULL,    SMP_T_BIN,  SMP_USE_HRQHV },
13504 	{ "url_ip",          smp_fetch_url_ip,         0,                NULL,    SMP_T_IPV4, SMP_USE_HRQHV },
13505 	{ "url_port",        smp_fetch_url_port,       0,                NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13506 	{ "url_param",       smp_fetch_url_param,      ARG2(0,STR,STR),  NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13507 	{ "urlp"     ,       smp_fetch_url_param,      ARG2(0,STR,STR),  NULL,    SMP_T_STR,  SMP_USE_HRQHV },
13508 	{ "urlp_val",        smp_fetch_url_param_val,  ARG2(0,STR,STR),  NULL,    SMP_T_SINT, SMP_USE_HRQHV },
13509 	{ /* END */ },
13510 }};
13511 
13512 
13513 /************************************************************************/
13514 /*        All supported converter keywords must be declared here.       */
13515 /************************************************************************/
13516 /* Note: must not be declared <const> as its list will be overwritten */
13517 static struct sample_conv_kw_list sample_conv_kws = {ILH, {
13518 	{ "http_date", sample_conv_http_date,  ARG1(0,SINT),     NULL, SMP_T_SINT, SMP_T_STR},
13519 	{ "language",  sample_conv_q_prefered, ARG2(1,STR,STR),  NULL, SMP_T_STR,  SMP_T_STR},
13520 	{ "capture-req", smp_conv_req_capture, ARG1(1,SINT),     NULL, SMP_T_STR,  SMP_T_STR},
13521 	{ "capture-res", smp_conv_res_capture, ARG1(1,SINT),     NULL, SMP_T_STR,  SMP_T_STR},
13522 	{ "url_dec",   sample_conv_url_dec,    0,                NULL, SMP_T_STR,  SMP_T_STR},
13523 	{ NULL, NULL, 0, 0, 0 },
13524 }};
13525 
13526 
13527 /************************************************************************/
13528 /*   All supported http-request action keywords must be declared here.  */
13529 /************************************************************************/
13530 struct action_kw_list http_req_actions = {
13531 	.kw = {
13532 		{ "capture",    parse_http_req_capture },
13533 		{ "set-method", parse_set_req_line },
13534 		{ "set-path",   parse_set_req_line },
13535 		{ "set-query",  parse_set_req_line },
13536 		{ "set-uri",    parse_set_req_line },
13537 		{ NULL, NULL }
13538 	}
13539 };
13540 
13541 struct action_kw_list http_res_actions = {
13542 	.kw = {
13543 		{ "capture",    parse_http_res_capture },
13544 		{ "set-status", parse_http_set_status },
13545 		{ NULL, NULL }
13546 	}
13547 };
13548 
13549 __attribute__((constructor))
__http_protocol_init(void)13550 static void __http_protocol_init(void)
13551 {
13552 	acl_register_keywords(&acl_kws);
13553 	sample_register_fetches(&sample_fetch_keywords);
13554 	sample_register_convs(&sample_conv_kws);
13555 	http_req_keywords_register(&http_req_actions);
13556 	http_res_keywords_register(&http_res_actions);
13557 	cli_register_kw(&cli_kws);
13558 }
13559 
13560 
13561 /*
13562  * Local variables:
13563  *  c-indent-level: 8
13564  *  c-basic-offset: 8
13565  * End:
13566  */
13567