1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 #include "g711.h"
28 
29 /*
30  * g711.c
31  *
32  * u-law, A-law and linear PCM conversions.
33  */
34 #define	SIGN_BIT	(0x80)		/* Sign bit for a A-law byte. */
35 #define	QUANT_MASK	(0xf)		/* Quantization field mask. */
36 #define	NSEGS		(8)		/* Number of A-law segments. */
37 #define	SEG_SHIFT	(4)		/* Left shift for segment number. */
38 #define	SEG_MASK	(0x70)		/* Segment field mask. */
39 
40 static short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF,
41 			    0xFFF, 0x1FFF, 0x3FFF, 0x7FFF};
42 
43 /* copy from CCITT G.711 specifications */
44 unsigned char _u2a[128] = {			/* u- to A-law conversions */
45 	1,	1,	2,	2,	3,	3,	4,	4,
46 	5,	5,	6,	6,	7,	7,	8,	8,
47 	9,	10,	11,	12,	13,	14,	15,	16,
48 	17,	18,	19,	20,	21,	22,	23,	24,
49 	25,	27,	29,	31,	33,	34,	35,	36,
50 	37,	38,	39,	40,	41,	42,	43,	44,
51 	46,	48,	49,	50,	51,	52,	53,	54,
52 	55,	56,	57,	58,	59,	60,	61,	62,
53 	64,	65,	66,	67,	68,	69,	70,	71,
54 	72,	73,	74,	75,	76,	77,	78,	79,
55 	81,	82,	83,	84,	85,	86,	87,	88,
56 	89,	90,	91,	92,	93,	94,	95,	96,
57 	97,	98,	99,	100,	101,	102,	103,	104,
58 	105,	106,	107,	108,	109,	110,	111,	112,
59 	113,	114,	115,	116,	117,	118,	119,	120,
60 	121,	122,	123,	124,	125,	126,	127,	128};
61 
62 unsigned char _a2u[128] = {			/* A- to u-law conversions */
63 	1,	3,	5,	7,	9,	11,	13,	15,
64 	16,	17,	18,	19,	20,	21,	22,	23,
65 	24,	25,	26,	27,	28,	29,	30,	31,
66 	32,	32,	33,	33,	34,	34,	35,	35,
67 	36,	37,	38,	39,	40,	41,	42,	43,
68 	44,	45,	46,	47,	48,	48,	49,	49,
69 	50,	51,	52,	53,	54,	55,	56,	57,
70 	58,	59,	60,	61,	62,	63,	64,	64,
71 	65,	66,	67,	68,	69,	70,	71,	72,
72 	73,	74,	75,	76,	77,	78,	79,	79,
73 	80,	81,	82,	83,	84,	85,	86,	87,
74 	88,	89,	90,	91,	92,	93,	94,	95,
75 	96,	97,	98,	99,	100,	101,	102,	103,
76 	104,	105,	106,	107,	108,	109,	110,	111,
77 	112,	113,	114,	115,	116,	117,	118,	119,
78 	120,	121,	122,	123,	124,	125,	126,	127};
79 
80 static int
search(int val,short * table,int size)81 search(
82 	int		val,
83 	short		*table,
84 	int		size)
85 {
86 	int		i;
87 
88 	for (i = 0; i < size; i++) {
89 		if (val <= *table++)
90 			return (i);
91 	}
92 	return (size);
93 }
94 
95 /*
96  * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
97  *
98  * linear2alaw() accepts an 16-bit integer and encodes it as A-law data.
99  *
100  *		Linear Input Code	Compressed Code
101  *	------------------------	---------------
102  *	0000000wxyza			000wxyz
103  *	0000001wxyza			001wxyz
104  *	000001wxyzab			010wxyz
105  *	00001wxyzabc			011wxyz
106  *	0001wxyzabcd			100wxyz
107  *	001wxyzabcde			101wxyz
108  *	01wxyzabcdef			110wxyz
109  *	1wxyzabcdefg			111wxyz
110  *
111  * For further information see John C. Bellamy's Digital Telephony, 1982,
112  * John Wiley & Sons, pps 98-111 and 472-476.
113  */
114 unsigned char
linear2alaw(int pcm_val)115 linear2alaw(
116 	int		pcm_val)	/* 2's complement (16-bit range) */
117 {
118 	int		mask;
119 	int		seg;
120 	unsigned char	aval;
121 	if (pcm_val >= 0) {
122 		mask = 0xD5;		/* sign (7th) bit = 1 */
123 	} else {
124 		mask = 0x55;		/* sign bit = 0 */
125 		pcm_val = -pcm_val - 8;
126 	}
127 
128 	/* Convert the scaled magnitude to segment number. */
129 	seg = search(pcm_val, seg_end, 8);
130 
131 	/* Combine the sign, segment, and quantization bits. */
132 
133 	if (seg >= 8)		/* out of range, return maximum value. */
134 		return (0x7F ^ mask);
135 	else {
136 		aval = seg << SEG_SHIFT;
137 		if (seg < 2)
138 			aval |= (pcm_val >> 4) & QUANT_MASK;
139 		else
140 			aval |= (pcm_val >> (seg + 3)) & QUANT_MASK;
141 		return (aval ^ mask);
142 	}
143 }
144 
145 /*
146  * alaw2linear() - Convert an A-law value to 16-bit linear PCM
147  *
148  */
149 int
alaw2linear(unsigned char a_val)150 alaw2linear(
151 	unsigned char	a_val)
152 {
153 	int		t;
154 	int		seg;
155 	/*printf(" vrednost a_val %X ", a_val);*/
156 	a_val ^= 0x55;
157 
158 	t = (a_val & QUANT_MASK) << 4;
159 	seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT;
160 	switch (seg) {
161 	case 0:
162 		t += 8;
163 		break;
164 	case 1:
165 		t += 0x108;
166 		break;
167 	default:
168 		t += 0x108;
169 		t <<= seg - 1;
170 	}
171 	/*printf("izracunan int %d in njegov hex %X \n", t,t);*/
172 	return ((a_val & SIGN_BIT) ? t : -t);
173 }
174 
175 #define	BIAS		(0x84)		/* Bias for linear code. */
176 
177 /*
178  * linear2ulaw() - Convert a linear PCM value to u-law
179  *
180  * In order to simplify the encoding process, the original linear magnitude
181  * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
182  * (33 - 8191). The result can be seen in the following encoding table:
183  *
184  *	Biased Linear Input Code	Compressed Code
185  *	------------------------	---------------
186  *	00000001wxyza			000wxyz
187  *	0000001wxyzab			001wxyz
188  *	000001wxyzabc			010wxyz
189  *	00001wxyzabcd			011wxyz
190  *	0001wxyzabcde			100wxyz
191  *	001wxyzabcdef			101wxyz
192  *	01wxyzabcdefg			110wxyz
193  *	1wxyzabcdefgh			111wxyz
194  *
195  * Each biased linear code has a leading 1 which identifies the segment
196  * number. The value of the segment number is equal to 7 minus the number
197  * of leading 0's. The quantization interval is directly available as the
198  * four bits wxyz.  * The trailing bits (a - h) are ignored.
199  *
200  * Ordinarily the complement of the resulting code word is used for
201  * transmission, and so the code word is complemented before it is returned.
202  *
203  * For further information see John C. Bellamy's Digital Telephony, 1982,
204  * John Wiley & Sons, pps 98-111 and 472-476.
205  */
206 unsigned char
linear2ulaw(int pcm_val)207 linear2ulaw(
208 	int		pcm_val)	/* 2's complement (16-bit range) */
209 {
210 	int		mask;
211 	int		seg;
212 	unsigned char	uval;
213 
214 	/* Get the sign and the magnitude of the value. */
215 	if (pcm_val < 0) {
216 		pcm_val = BIAS - pcm_val;
217 		mask = 0x7F;
218 	} else {
219 		pcm_val += BIAS;
220 		mask = 0xFF;
221 	}
222 
223 	/* Convert the scaled magnitude to segment number. */
224 	seg = search(pcm_val, seg_end, 8);
225 
226 	/*
227 	 * Combine the sign, segment, quantization bits;
228 	 * and complement the code word.
229 	 */
230 	if (seg >= 8)		/* out of range, return maximum value. */
231 		return (0x7F ^ mask);
232 	else {
233 		uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);
234 		return (uval ^ mask);
235 	}
236 
237 }
238 
239 /*
240  * ulaw2linear() - Convert a u-law value to 16-bit linear PCM
241  *
242  * First, a biased linear code is derived from the code word. An unbiased
243  * output can then be obtained by subtracting 33 from the biased code.
244  *
245  * Note that this function expects to be passed the complement of the
246  * original code word. This is in keeping with ISDN conventions.
247  */
248 int
ulaw2linear(unsigned char u_val)249 ulaw2linear(
250 	unsigned char	u_val)
251 {
252 	int		t;
253 
254 	/* Complement to obtain normal u-law value. */
255 	u_val = ~u_val;
256 
257 	/*
258 	 * Extract and bias the quantization bits. Then
259 	 * shift up by the segment number and subtract out the bias.
260 	 */
261 	t = ((u_val & QUANT_MASK) << 3) + BIAS;
262 	t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;
263 
264 	return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
265 }
266 
267 /* A-law to u-law conversion */
268 /* unsigned char
269  * alaw2ulaw(
270  * 	unsigned char	aval)
271  * {
272  * 	aval &= 0xff;
273  * 	return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) :
274  * 	    (0x7F ^ _a2u[aval ^ 0x55]));
275  * }
276  */
277 
278 /* u-law to A-law conversion */
279 /* unsigned char
280  * ulaw2alaw(
281  * 	unsigned char	uval)
282  * {
283  * 	uval &= 0xff;
284  * 	return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) :
285  * 	    (0x55 ^ (_u2a[0x7F ^ uval] - 1)));
286  * }
287  */
288 
289 /*
290  * Editor modelines  -  https://www.wireshark.org/tools/modelines.html
291  *
292  * Local variables:
293  * c-basic-offset: 8
294  * tab-width: 8
295  * indent-tabs-mode: t
296  * End:
297  *
298  * vi: set shiftwidth=8 tabstop=8 noexpandtab:
299  * :indentSize=8:tabSize=8:noTabs=false:
300  */
301