1      SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
2     $                   CNORM, INFO )
3*
4*  -- LAPACK auxiliary routine (version 3.0) --
5*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6*     Courant Institute, Argonne National Lab, and Rice University
7*     June 30, 1992
8*
9*     .. Scalar Arguments ..
10      CHARACTER          DIAG, NORMIN, TRANS, UPLO
11      INTEGER            INFO, LDA, N
12      DOUBLE PRECISION   SCALE
13*     ..
14*     .. Array Arguments ..
15      DOUBLE PRECISION   A( LDA, * ), CNORM( * ), X( * )
16*     ..
17*
18*  Purpose
19*  =======
20*
21*  DLATRS solves one of the triangular systems
22*
23*     A *x = s*b  or  A'*x = s*b
24*
25*  with scaling to prevent overflow.  Here A is an upper or lower
26*  triangular matrix, A' denotes the transpose of A, x and b are
27*  n-element vectors, and s is a scaling factor, usually less than
28*  or equal to 1, chosen so that the components of x will be less than
29*  the overflow threshold.  If the unscaled problem will not cause
30*  overflow, the Level 2 BLAS routine DTRSV is called.  If the matrix A
31*  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
32*  non-trivial solution to A*x = 0 is returned.
33*
34*  Arguments
35*  =========
36*
37*  UPLO    (input) CHARACTER*1
38*          Specifies whether the matrix A is upper or lower triangular.
39*          = 'U':  Upper triangular
40*          = 'L':  Lower triangular
41*
42*  TRANS   (input) CHARACTER*1
43*          Specifies the operation applied to A.
44*          = 'N':  Solve A * x = s*b  (No transpose)
45*          = 'T':  Solve A'* x = s*b  (Transpose)
46*          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)
47*
48*  DIAG    (input) CHARACTER*1
49*          Specifies whether or not the matrix A is unit triangular.
50*          = 'N':  Non-unit triangular
51*          = 'U':  Unit triangular
52*
53*  NORMIN  (input) CHARACTER*1
54*          Specifies whether CNORM has been set or not.
55*          = 'Y':  CNORM contains the column norms on entry
56*          = 'N':  CNORM is not set on entry.  On exit, the norms will
57*                  be computed and stored in CNORM.
58*
59*  N       (input) INTEGER
60*          The order of the matrix A.  N >= 0.
61*
62*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
63*          The triangular matrix A.  If UPLO = 'U', the leading n by n
64*          upper triangular part of the array A contains the upper
65*          triangular matrix, and the strictly lower triangular part of
66*          A is not referenced.  If UPLO = 'L', the leading n by n lower
67*          triangular part of the array A contains the lower triangular
68*          matrix, and the strictly upper triangular part of A is not
69*          referenced.  If DIAG = 'U', the diagonal elements of A are
70*          also not referenced and are assumed to be 1.
71*
72*  LDA     (input) INTEGER
73*          The leading dimension of the array A.  LDA >= max (1,N).
74*
75*  X       (input/output) DOUBLE PRECISION array, dimension (N)
76*          On entry, the right hand side b of the triangular system.
77*          On exit, X is overwritten by the solution vector x.
78*
79*  SCALE   (output) DOUBLE PRECISION
80*          The scaling factor s for the triangular system
81*             A * x = s*b  or  A'* x = s*b.
82*          If SCALE = 0, the matrix A is singular or badly scaled, and
83*          the vector x is an exact or approximate solution to A*x = 0.
84*
85*  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
86*
87*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
88*          contains the norm of the off-diagonal part of the j-th column
89*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
90*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
91*          must be greater than or equal to the 1-norm.
92*
93*          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
94*          returns the 1-norm of the offdiagonal part of the j-th column
95*          of A.
96*
97*  INFO    (output) INTEGER
98*          = 0:  successful exit
99*          < 0:  if INFO = -k, the k-th argument had an illegal value
100*
101*  Further Details
102*  ======= =======
103*
104*  A rough bound on x is computed; if that is less than overflow, DTRSV
105*  is called, otherwise, specific code is used which checks for possible
106*  overflow or divide-by-zero at every operation.
107*
108*  A columnwise scheme is used for solving A*x = b.  The basic algorithm
109*  if A is lower triangular is
110*
111*       x[1:n] := b[1:n]
112*       for j = 1, ..., n
113*            x(j) := x(j) / A(j,j)
114*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
115*       end
116*
117*  Define bounds on the components of x after j iterations of the loop:
118*     M(j) = bound on x[1:j]
119*     G(j) = bound on x[j+1:n]
120*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
121*
122*  Then for iteration j+1 we have
123*     M(j+1) <= G(j) / | A(j+1,j+1) |
124*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
125*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
126*
127*  where CNORM(j+1) is greater than or equal to the infinity-norm of
128*  column j+1 of A, not counting the diagonal.  Hence
129*
130*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
131*                  1<=i<=j
132*  and
133*
134*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
135*                                   1<=i< j
136*
137*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
138*  reciprocal of the largest M(j), j=1,..,n, is larger than
139*  max(underflow, 1/overflow).
140*
141*  The bound on x(j) is also used to determine when a step in the
142*  columnwise method can be performed without fear of overflow.  If
143*  the computed bound is greater than a large constant, x is scaled to
144*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
145*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
146*
147*  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic
148*  algorithm for A upper triangular is
149*
150*       for j = 1, ..., n
151*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
152*       end
153*
154*  We simultaneously compute two bounds
155*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
156*       M(j) = bound on x(i), 1<=i<=j
157*
158*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
159*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
160*  Then the bound on x(j) is
161*
162*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
163*
164*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
165*                      1<=i<=j
166*
167*  and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
168*  than max(underflow, 1/overflow).
169*
170*  =====================================================================
171*
172*     .. Parameters ..
173      DOUBLE PRECISION   ZERO, HALF, ONE
174      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
175*     ..
176*     .. Local Scalars ..
177      LOGICAL            NOTRAN, NOUNIT, UPPER
178      INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
179      DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
180     $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
181*     ..
182*     .. External Functions ..
183      LOGICAL            LSAME
184      INTEGER            IDAMAX
185      DOUBLE PRECISION   DASUM, DDOT, DLAMCH
186      EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
187*     ..
188*     .. External Subroutines ..
189      EXTERNAL           DAXPY, DSCAL, DTRSV, XERBLA
190*     ..
191*     .. Intrinsic Functions ..
192      INTRINSIC          ABS, MAX, MIN
193*     ..
194*     .. Executable Statements ..
195*
196      INFO = 0
197      UPPER = LSAME( UPLO, 'U' )
198      NOTRAN = LSAME( TRANS, 'N' )
199      NOUNIT = LSAME( DIAG, 'N' )
200*
201*     Test the input parameters.
202*
203      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
204         INFO = -1
205      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
206     $         LSAME( TRANS, 'C' ) ) THEN
207         INFO = -2
208      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
209         INFO = -3
210      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
211     $         LSAME( NORMIN, 'N' ) ) THEN
212         INFO = -4
213      ELSE IF( N.LT.0 ) THEN
214         INFO = -5
215      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
216         INFO = -7
217      END IF
218      IF( INFO.NE.0 ) THEN
219         CALL XERBLA( 'DLATRS', -INFO )
220         RETURN
221      END IF
222*
223*     Quick return if possible
224*
225      IF( N.EQ.0 )
226     $   RETURN
227*
228*     Determine machine dependent parameters to control overflow.
229*
230      SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
231      BIGNUM = ONE / SMLNUM
232      SCALE = ONE
233*
234      IF( LSAME( NORMIN, 'N' ) ) THEN
235*
236*        Compute the 1-norm of each column, not including the diagonal.
237*
238         IF( UPPER ) THEN
239*
240*           A is upper triangular.
241*
242            DO 10 J = 1, N
243               CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
244   10       CONTINUE
245         ELSE
246*
247*           A is lower triangular.
248*
249            DO 20 J = 1, N - 1
250               CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
251   20       CONTINUE
252            CNORM( N ) = ZERO
253         END IF
254      END IF
255*
256*     Scale the column norms by TSCAL if the maximum element in CNORM is
257*     greater than BIGNUM.
258*
259      IMAX = IDAMAX( N, CNORM, 1 )
260      TMAX = CNORM( IMAX )
261      IF( TMAX.LE.BIGNUM ) THEN
262         TSCAL = ONE
263      ELSE
264         TSCAL = ONE / ( SMLNUM*TMAX )
265         CALL DSCAL( N, TSCAL, CNORM, 1 )
266      END IF
267*
268*     Compute a bound on the computed solution vector to see if the
269*     Level 2 BLAS routine DTRSV can be used.
270*
271      J = IDAMAX( N, X, 1 )
272      XMAX = ABS( X( J ) )
273      XBND = XMAX
274      IF( NOTRAN ) THEN
275*
276*        Compute the growth in A * x = b.
277*
278         IF( UPPER ) THEN
279            JFIRST = N
280            JLAST = 1
281            JINC = -1
282         ELSE
283            JFIRST = 1
284            JLAST = N
285            JINC = 1
286         END IF
287*
288         IF( TSCAL.NE.ONE ) THEN
289            GROW = ZERO
290            GO TO 50
291         END IF
292*
293         IF( NOUNIT ) THEN
294*
295*           A is non-unit triangular.
296*
297*           Compute GROW = 1/G(j) and XBND = 1/M(j).
298*           Initially, G(0) = max{x(i), i=1,...,n}.
299*
300            GROW = ONE / MAX( XBND, SMLNUM )
301            XBND = GROW
302            DO 30 J = JFIRST, JLAST, JINC
303*
304*              Exit the loop if the growth factor is too small.
305*
306               IF( GROW.LE.SMLNUM )
307     $            GO TO 50
308*
309*              M(j) = G(j-1) / abs(A(j,j))
310*
311               TJJ = ABS( A( J, J ) )
312               XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
313               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
314*
315*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
316*
317                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
318               ELSE
319*
320*                 G(j) could overflow, set GROW to 0.
321*
322                  GROW = ZERO
323               END IF
324   30       CONTINUE
325            GROW = XBND
326         ELSE
327*
328*           A is unit triangular.
329*
330*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
331*
332            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
333            DO 40 J = JFIRST, JLAST, JINC
334*
335*              Exit the loop if the growth factor is too small.
336*
337               IF( GROW.LE.SMLNUM )
338     $            GO TO 50
339*
340*              G(j) = G(j-1)*( 1 + CNORM(j) )
341*
342               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
343   40       CONTINUE
344         END IF
345   50    CONTINUE
346*
347      ELSE
348*
349*        Compute the growth in A' * x = b.
350*
351         IF( UPPER ) THEN
352            JFIRST = 1
353            JLAST = N
354            JINC = 1
355         ELSE
356            JFIRST = N
357            JLAST = 1
358            JINC = -1
359         END IF
360*
361         IF( TSCAL.NE.ONE ) THEN
362            GROW = ZERO
363            GO TO 80
364         END IF
365*
366         IF( NOUNIT ) THEN
367*
368*           A is non-unit triangular.
369*
370*           Compute GROW = 1/G(j) and XBND = 1/M(j).
371*           Initially, M(0) = max{x(i), i=1,...,n}.
372*
373            GROW = ONE / MAX( XBND, SMLNUM )
374            XBND = GROW
375            DO 60 J = JFIRST, JLAST, JINC
376*
377*              Exit the loop if the growth factor is too small.
378*
379               IF( GROW.LE.SMLNUM )
380     $            GO TO 80
381*
382*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
383*
384               XJ = ONE + CNORM( J )
385               GROW = MIN( GROW, XBND / XJ )
386*
387*              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
388*
389               TJJ = ABS( A( J, J ) )
390               IF( XJ.GT.TJJ )
391     $            XBND = XBND*( TJJ / XJ )
392   60       CONTINUE
393            GROW = MIN( GROW, XBND )
394         ELSE
395*
396*           A is unit triangular.
397*
398*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
399*
400            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
401            DO 70 J = JFIRST, JLAST, JINC
402*
403*              Exit the loop if the growth factor is too small.
404*
405               IF( GROW.LE.SMLNUM )
406     $            GO TO 80
407*
408*              G(j) = ( 1 + CNORM(j) )*G(j-1)
409*
410               XJ = ONE + CNORM( J )
411               GROW = GROW / XJ
412   70       CONTINUE
413         END IF
414   80    CONTINUE
415      END IF
416*
417      IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
418*
419*        Use the Level 2 BLAS solve if the reciprocal of the bound on
420*        elements of X is not too small.
421*
422         CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
423      ELSE
424*
425*        Use a Level 1 BLAS solve, scaling intermediate results.
426*
427         IF( XMAX.GT.BIGNUM ) THEN
428*
429*           Scale X so that its components are less than or equal to
430*           BIGNUM in absolute value.
431*
432            SCALE = BIGNUM / XMAX
433            CALL DSCAL( N, SCALE, X, 1 )
434            XMAX = BIGNUM
435         END IF
436*
437         IF( NOTRAN ) THEN
438*
439*           Solve A * x = b
440*
441            DO 110 J = JFIRST, JLAST, JINC
442*
443*              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
444*
445               XJ = ABS( X( J ) )
446               IF( NOUNIT ) THEN
447                  TJJS = A( J, J )*TSCAL
448               ELSE
449                  TJJS = TSCAL
450                  IF( TSCAL.EQ.ONE )
451     $               GO TO 100
452               END IF
453               TJJ = ABS( TJJS )
454               IF( TJJ.GT.SMLNUM ) THEN
455*
456*                    abs(A(j,j)) > SMLNUM:
457*
458                  IF( TJJ.LT.ONE ) THEN
459                     IF( XJ.GT.TJJ*BIGNUM ) THEN
460*
461*                          Scale x by 1/b(j).
462*
463                        REC = ONE / XJ
464                        CALL DSCAL( N, REC, X, 1 )
465                        SCALE = SCALE*REC
466                        XMAX = XMAX*REC
467                     END IF
468                  END IF
469                  X( J ) = X( J ) / TJJS
470                  XJ = ABS( X( J ) )
471               ELSE IF( TJJ.GT.ZERO ) THEN
472*
473*                    0 < abs(A(j,j)) <= SMLNUM:
474*
475                  IF( XJ.GT.TJJ*BIGNUM ) THEN
476*
477*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
478*                       to avoid overflow when dividing by A(j,j).
479*
480                     REC = ( TJJ*BIGNUM ) / XJ
481                     IF( CNORM( J ).GT.ONE ) THEN
482*
483*                          Scale by 1/CNORM(j) to avoid overflow when
484*                          multiplying x(j) times column j.
485*
486                        REC = REC / CNORM( J )
487                     END IF
488                     CALL DSCAL( N, REC, X, 1 )
489                     SCALE = SCALE*REC
490                     XMAX = XMAX*REC
491                  END IF
492                  X( J ) = X( J ) / TJJS
493                  XJ = ABS( X( J ) )
494               ELSE
495*
496*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
497*                    scale = 0, and compute a solution to A*x = 0.
498*
499                  DO 90 I = 1, N
500                     X( I ) = ZERO
501   90             CONTINUE
502                  X( J ) = ONE
503                  XJ = ONE
504                  SCALE = ZERO
505                  XMAX = ZERO
506               END IF
507  100          CONTINUE
508*
509*              Scale x if necessary to avoid overflow when adding a
510*              multiple of column j of A.
511*
512               IF( XJ.GT.ONE ) THEN
513                  REC = ONE / XJ
514                  IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
515*
516*                    Scale x by 1/(2*abs(x(j))).
517*
518                     REC = REC*HALF
519                     CALL DSCAL( N, REC, X, 1 )
520                     SCALE = SCALE*REC
521                  END IF
522               ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
523*
524*                 Scale x by 1/2.
525*
526                  CALL DSCAL( N, HALF, X, 1 )
527                  SCALE = SCALE*HALF
528               END IF
529*
530               IF( UPPER ) THEN
531                  IF( J.GT.1 ) THEN
532*
533*                    Compute the update
534*                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
535*
536                     CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
537     $                           1 )
538                     I = IDAMAX( J-1, X, 1 )
539                     XMAX = ABS( X( I ) )
540                  END IF
541               ELSE
542                  IF( J.LT.N ) THEN
543*
544*                    Compute the update
545*                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
546*
547                     CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
548     $                           X( J+1 ), 1 )
549                     I = J + IDAMAX( N-J, X( J+1 ), 1 )
550                     XMAX = ABS( X( I ) )
551                  END IF
552               END IF
553  110       CONTINUE
554*
555         ELSE
556*
557*           Solve A' * x = b
558*
559            DO 160 J = JFIRST, JLAST, JINC
560*
561*              Compute x(j) = b(j) - sum A(k,j)*x(k).
562*                                    k<>j
563*
564               XJ = ABS( X( J ) )
565               USCAL = TSCAL
566               REC = ONE / MAX( XMAX, ONE )
567               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
568*
569*                 If x(j) could overflow, scale x by 1/(2*XMAX).
570*
571                  REC = REC*HALF
572                  IF( NOUNIT ) THEN
573                     TJJS = A( J, J )*TSCAL
574                  ELSE
575                     TJJS = TSCAL
576                  END IF
577                  TJJ = ABS( TJJS )
578                  IF( TJJ.GT.ONE ) THEN
579*
580*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
581*
582                     REC = MIN( ONE, REC*TJJ )
583                     USCAL = USCAL / TJJS
584                  END IF
585                  IF( REC.LT.ONE ) THEN
586                     CALL DSCAL( N, REC, X, 1 )
587                     SCALE = SCALE*REC
588                     XMAX = XMAX*REC
589                  END IF
590               END IF
591*
592               SUMJ = ZERO
593               IF( USCAL.EQ.ONE ) THEN
594*
595*                 If the scaling needed for A in the dot product is 1,
596*                 call DDOT to perform the dot product.
597*
598                  IF( UPPER ) THEN
599                     SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
600                  ELSE IF( J.LT.N ) THEN
601                     SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
602                  END IF
603               ELSE
604*
605*                 Otherwise, use in-line code for the dot product.
606*
607                  IF( UPPER ) THEN
608                     DO 120 I = 1, J - 1
609                        SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
610  120                CONTINUE
611                  ELSE IF( J.LT.N ) THEN
612                     DO 130 I = J + 1, N
613                        SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
614  130                CONTINUE
615                  END IF
616               END IF
617*
618               IF( USCAL.EQ.TSCAL ) THEN
619*
620*                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
621*                 was not used to scale the dotproduct.
622*
623                  X( J ) = X( J ) - SUMJ
624                  XJ = ABS( X( J ) )
625                  IF( NOUNIT ) THEN
626                     TJJS = A( J, J )*TSCAL
627                  ELSE
628                     TJJS = TSCAL
629                     IF( TSCAL.EQ.ONE )
630     $                  GO TO 150
631                  END IF
632*
633*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
634*
635                  TJJ = ABS( TJJS )
636                  IF( TJJ.GT.SMLNUM ) THEN
637*
638*                       abs(A(j,j)) > SMLNUM:
639*
640                     IF( TJJ.LT.ONE ) THEN
641                        IF( XJ.GT.TJJ*BIGNUM ) THEN
642*
643*                             Scale X by 1/abs(x(j)).
644*
645                           REC = ONE / XJ
646                           CALL DSCAL( N, REC, X, 1 )
647                           SCALE = SCALE*REC
648                           XMAX = XMAX*REC
649                        END IF
650                     END IF
651                     X( J ) = X( J ) / TJJS
652                  ELSE IF( TJJ.GT.ZERO ) THEN
653*
654*                       0 < abs(A(j,j)) <= SMLNUM:
655*
656                     IF( XJ.GT.TJJ*BIGNUM ) THEN
657*
658*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
659*
660                        REC = ( TJJ*BIGNUM ) / XJ
661                        CALL DSCAL( N, REC, X, 1 )
662                        SCALE = SCALE*REC
663                        XMAX = XMAX*REC
664                     END IF
665                     X( J ) = X( J ) / TJJS
666                  ELSE
667*
668*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
669*                       scale = 0, and compute a solution to A'*x = 0.
670*
671                     DO 140 I = 1, N
672                        X( I ) = ZERO
673  140                CONTINUE
674                     X( J ) = ONE
675                     SCALE = ZERO
676                     XMAX = ZERO
677                  END IF
678  150             CONTINUE
679               ELSE
680*
681*                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
682*                 product has already been divided by 1/A(j,j).
683*
684                  X( J ) = X( J ) / TJJS - SUMJ
685               END IF
686               XMAX = MAX( XMAX, ABS( X( J ) ) )
687  160       CONTINUE
688         END IF
689         SCALE = SCALE / TSCAL
690      END IF
691*
692*     Scale the column norms by 1/TSCAL for return.
693*
694      IF( TSCAL.NE.ONE ) THEN
695         CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
696      END IF
697*
698      RETURN
699*
700*     End of DLATRS
701*
702      END
703