1 /* ./src_f77/cgerq2.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
cgerq2_(integer * m,integer * n,complex * a,integer * lda,complex * tau,complex * work,integer * info)8 /* Subroutine */ int cgerq2_(integer *m, integer *n, complex *a, integer *lda,
9 	 complex *tau, complex *work, integer *info)
10 {
11     /* System generated locals */
12     integer a_dim1, a_offset, i__1, i__2;
13 
14     /* Local variables */
15     static integer i__, k;
16     static complex alpha;
17     extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
18 	    , integer *, complex *, complex *, integer *, complex *, ftnlen),
19 	    clarfg_(integer *, complex *, complex *, integer *, complex *),
20 	    clacgv_(integer *, complex *, integer *), xerbla_(char *, integer
21 	    *, ftnlen);
22 
23 
24 /*  -- LAPACK routine (version 3.0) -- */
25 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
26 /*     Courant Institute, Argonne National Lab, and Rice University */
27 /*     September 30, 1994 */
28 
29 /*     .. Scalar Arguments .. */
30 /*     .. */
31 /*     .. Array Arguments .. */
32 /*     .. */
33 
34 /*  Purpose */
35 /*  ======= */
36 
37 /*  CGERQ2 computes an RQ factorization of a complex m by n matrix A: */
38 /*  A = R * Q. */
39 
40 /*  Arguments */
41 /*  ========= */
42 
43 /*  M       (input) INTEGER */
44 /*          The number of rows of the matrix A.  M >= 0. */
45 
46 /*  N       (input) INTEGER */
47 /*          The number of columns of the matrix A.  N >= 0. */
48 
49 /*  A       (input/output) COMPLEX array, dimension (LDA,N) */
50 /*          On entry, the m by n matrix A. */
51 /*          On exit, if m <= n, the upper triangle of the subarray */
52 /*          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; */
53 /*          if m >= n, the elements on and above the (m-n)-th subdiagonal */
54 /*          contain the m by n upper trapezoidal matrix R; the remaining */
55 /*          elements, with the array TAU, represent the unitary matrix */
56 /*          Q as a product of elementary reflectors (see Further */
57 /*          Details). */
58 
59 /*  LDA     (input) INTEGER */
60 /*          The leading dimension of the array A.  LDA >= max(1,M). */
61 
62 /*  TAU     (output) COMPLEX array, dimension (min(M,N)) */
63 /*          The scalar factors of the elementary reflectors (see Further */
64 /*          Details). */
65 
66 /*  WORK    (workspace) COMPLEX array, dimension (M) */
67 
68 /*  INFO    (output) INTEGER */
69 /*          = 0: successful exit */
70 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
71 
72 /*  Further Details */
73 /*  =============== */
74 
75 /*  The matrix Q is represented as a product of elementary reflectors */
76 
77 /*     Q = H(1)' H(2)' . . . H(k)', where k = min(m,n). */
78 
79 /*  Each H(i) has the form */
80 
81 /*     H(i) = I - tau * v * v' */
82 
83 /*  where tau is a complex scalar, and v is a complex vector with */
84 /*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on */
85 /*  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). */
86 
87 /*  ===================================================================== */
88 
89 /*     .. Parameters .. */
90 /*     .. */
91 /*     .. Local Scalars .. */
92 /*     .. */
93 /*     .. External Subroutines .. */
94 /*     .. */
95 /*     .. Intrinsic Functions .. */
96 /*     .. */
97 /*     .. Executable Statements .. */
98 
99 /*     Test the input arguments */
100 
101     /* Parameter adjustments */
102     a_dim1 = *lda;
103     a_offset = 1 + a_dim1;
104     a -= a_offset;
105     --tau;
106     --work;
107 
108     /* Function Body */
109     *info = 0;
110     if (*m < 0) {
111 	*info = -1;
112     } else if (*n < 0) {
113 	*info = -2;
114     } else if (*lda < max(1,*m)) {
115 	*info = -4;
116     }
117     if (*info != 0) {
118 	i__1 = -(*info);
119 	xerbla_("CGERQ2", &i__1, (ftnlen)6);
120 	return 0;
121     }
122 
123     k = min(*m,*n);
124 
125     for (i__ = k; i__ >= 1; --i__) {
126 
127 /*        Generate elementary reflector H(i) to annihilate */
128 /*        A(m-k+i,1:n-k+i-1) */
129 
130 	i__1 = *n - k + i__;
131 	clacgv_(&i__1, &a[*m - k + i__ + a_dim1], lda);
132 	i__1 = *m - k + i__ + (*n - k + i__) * a_dim1;
133 	alpha.r = a[i__1].r, alpha.i = a[i__1].i;
134 	i__1 = *n - k + i__;
135 	clarfg_(&i__1, &alpha, &a[*m - k + i__ + a_dim1], lda, &tau[i__]);
136 
137 /*        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right */
138 
139 	i__1 = *m - k + i__ + (*n - k + i__) * a_dim1;
140 	a[i__1].r = 1.f, a[i__1].i = 0.f;
141 	i__1 = *m - k + i__ - 1;
142 	i__2 = *n - k + i__;
143 	clarf_("Right", &i__1, &i__2, &a[*m - k + i__ + a_dim1], lda, &tau[
144 		i__], &a[a_offset], lda, &work[1], (ftnlen)5);
145 	i__1 = *m - k + i__ + (*n - k + i__) * a_dim1;
146 	a[i__1].r = alpha.r, a[i__1].i = alpha.i;
147 	i__1 = *n - k + i__ - 1;
148 	clacgv_(&i__1, &a[*m - k + i__ + a_dim1], lda);
149 /* L10: */
150     }
151     return 0;
152 
153 /*     End of CGERQ2 */
154 
155 } /* cgerq2_ */
156 
157