1 /* ./src_f77/csprfs.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
8 /* Table of constant values */
9 
10 static complex c_b1 = {1.f,0.f};
11 static integer c__1 = 1;
12 
csprfs_(char * uplo,integer * n,integer * nrhs,complex * ap,complex * afp,integer * ipiv,complex * b,integer * ldb,complex * x,integer * ldx,real * ferr,real * berr,complex * work,real * rwork,integer * info,ftnlen uplo_len)13 /* Subroutine */ int csprfs_(char *uplo, integer *n, integer *nrhs, complex *
14 	ap, complex *afp, integer *ipiv, complex *b, integer *ldb, complex *x,
15 	 integer *ldx, real *ferr, real *berr, complex *work, real *rwork,
16 	integer *info, ftnlen uplo_len)
17 {
18     /* System generated locals */
19     integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
20     real r__1, r__2, r__3, r__4;
21     complex q__1;
22 
23     /* Builtin functions */
24     double r_imag(complex *);
25 
26     /* Local variables */
27     static integer i__, j, k;
28     static real s;
29     static integer ik, kk;
30     static real xk;
31     static integer nz;
32     static real eps;
33     static integer kase;
34     static real safe1, safe2;
35     extern logical lsame_(char *, char *, ftnlen, ftnlen);
36     extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
37 	    complex *, integer *), caxpy_(integer *, complex *, complex *,
38 	    integer *, complex *, integer *);
39     static integer count;
40     extern /* Subroutine */ int cspmv_(char *, integer *, complex *, complex *
41 	    , complex *, integer *, complex *, complex *, integer *, ftnlen);
42     static logical upper;
43     extern /* Subroutine */ int clacon_(integer *, complex *, complex *, real
44 	    *, integer *);
45     extern doublereal slamch_(char *, ftnlen);
46     static real safmin;
47     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
48     static real lstres;
49     extern /* Subroutine */ int csptrs_(char *, integer *, integer *, complex
50 	    *, integer *, complex *, integer *, integer *, ftnlen);
51 
52 
53 /*  -- LAPACK routine (version 3.0) -- */
54 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
55 /*     Courant Institute, Argonne National Lab, and Rice University */
56 /*     September 30, 1994 */
57 
58 /*     .. Scalar Arguments .. */
59 /*     .. */
60 /*     .. Array Arguments .. */
61 /*     .. */
62 
63 /*  Purpose */
64 /*  ======= */
65 
66 /*  CSPRFS improves the computed solution to a system of linear */
67 /*  equations when the coefficient matrix is symmetric indefinite */
68 /*  and packed, and provides error bounds and backward error estimates */
69 /*  for the solution. */
70 
71 /*  Arguments */
72 /*  ========= */
73 
74 /*  UPLO    (input) CHARACTER*1 */
75 /*          = 'U':  Upper triangle of A is stored; */
76 /*          = 'L':  Lower triangle of A is stored. */
77 
78 /*  N       (input) INTEGER */
79 /*          The order of the matrix A.  N >= 0. */
80 
81 /*  NRHS    (input) INTEGER */
82 /*          The number of right hand sides, i.e., the number of columns */
83 /*          of the matrices B and X.  NRHS >= 0. */
84 
85 /*  AP      (input) COMPLEX array, dimension (N*(N+1)/2) */
86 /*          The upper or lower triangle of the symmetric matrix A, packed */
87 /*          columnwise in a linear array.  The j-th column of A is stored */
88 /*          in the array AP as follows: */
89 /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
90 /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
91 
92 /*  AFP     (input) COMPLEX array, dimension (N*(N+1)/2) */
93 /*          The factored form of the matrix A.  AFP contains the block */
94 /*          diagonal matrix D and the multipliers used to obtain the */
95 /*          factor U or L from the factorization A = U*D*U**T or */
96 /*          A = L*D*L**T as computed by CSPTRF, stored as a packed */
97 /*          triangular matrix. */
98 
99 /*  IPIV    (input) INTEGER array, dimension (N) */
100 /*          Details of the interchanges and the block structure of D */
101 /*          as determined by CSPTRF. */
102 
103 /*  B       (input) COMPLEX array, dimension (LDB,NRHS) */
104 /*          The right hand side matrix B. */
105 
106 /*  LDB     (input) INTEGER */
107 /*          The leading dimension of the array B.  LDB >= max(1,N). */
108 
109 /*  X       (input/output) COMPLEX array, dimension (LDX,NRHS) */
110 /*          On entry, the solution matrix X, as computed by CSPTRS. */
111 /*          On exit, the improved solution matrix X. */
112 
113 /*  LDX     (input) INTEGER */
114 /*          The leading dimension of the array X.  LDX >= max(1,N). */
115 
116 /*  FERR    (output) REAL array, dimension (NRHS) */
117 /*          The estimated forward error bound for each solution vector */
118 /*          X(j) (the j-th column of the solution matrix X). */
119 /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
120 /*          is an estimated upper bound for the magnitude of the largest */
121 /*          element in (X(j) - XTRUE) divided by the magnitude of the */
122 /*          largest element in X(j).  The estimate is as reliable as */
123 /*          the estimate for RCOND, and is almost always a slight */
124 /*          overestimate of the true error. */
125 
126 /*  BERR    (output) REAL array, dimension (NRHS) */
127 /*          The componentwise relative backward error of each solution */
128 /*          vector X(j) (i.e., the smallest relative change in */
129 /*          any element of A or B that makes X(j) an exact solution). */
130 
131 /*  WORK    (workspace) COMPLEX array, dimension (2*N) */
132 
133 /*  RWORK   (workspace) REAL array, dimension (N) */
134 
135 /*  INFO    (output) INTEGER */
136 /*          = 0:  successful exit */
137 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
138 
139 /*  Internal Parameters */
140 /*  =================== */
141 
142 /*  ITMAX is the maximum number of steps of iterative refinement. */
143 
144 /*  ===================================================================== */
145 
146 /*     .. Parameters .. */
147 /*     .. */
148 /*     .. Local Scalars .. */
149 /*     .. */
150 /*     .. External Subroutines .. */
151 /*     .. */
152 /*     .. Intrinsic Functions .. */
153 /*     .. */
154 /*     .. External Functions .. */
155 /*     .. */
156 /*     .. Statement Functions .. */
157 /*     .. */
158 /*     .. Statement Function definitions .. */
159 /*     .. */
160 /*     .. Executable Statements .. */
161 
162 /*     Test the input parameters. */
163 
164     /* Parameter adjustments */
165     --ap;
166     --afp;
167     --ipiv;
168     b_dim1 = *ldb;
169     b_offset = 1 + b_dim1;
170     b -= b_offset;
171     x_dim1 = *ldx;
172     x_offset = 1 + x_dim1;
173     x -= x_offset;
174     --ferr;
175     --berr;
176     --work;
177     --rwork;
178 
179     /* Function Body */
180     *info = 0;
181     upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1);
182     if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
183 	*info = -1;
184     } else if (*n < 0) {
185 	*info = -2;
186     } else if (*nrhs < 0) {
187 	*info = -3;
188     } else if (*ldb < max(1,*n)) {
189 	*info = -8;
190     } else if (*ldx < max(1,*n)) {
191 	*info = -10;
192     }
193     if (*info != 0) {
194 	i__1 = -(*info);
195 	xerbla_("CSPRFS", &i__1, (ftnlen)6);
196 	return 0;
197     }
198 
199 /*     Quick return if possible */
200 
201     if (*n == 0 || *nrhs == 0) {
202 	i__1 = *nrhs;
203 	for (j = 1; j <= i__1; ++j) {
204 	    ferr[j] = 0.f;
205 	    berr[j] = 0.f;
206 /* L10: */
207 	}
208 	return 0;
209     }
210 
211 /*     NZ = maximum number of nonzero elements in each row of A, plus 1 */
212 
213     nz = *n + 1;
214     eps = slamch_("Epsilon", (ftnlen)7);
215     safmin = slamch_("Safe minimum", (ftnlen)12);
216     safe1 = nz * safmin;
217     safe2 = safe1 / eps;
218 
219 /*     Do for each right hand side */
220 
221     i__1 = *nrhs;
222     for (j = 1; j <= i__1; ++j) {
223 
224 	count = 1;
225 	lstres = 3.f;
226 L20:
227 
228 /*        Loop until stopping criterion is satisfied. */
229 
230 /*        Compute residual R = B - A * X */
231 
232 	ccopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
233 	q__1.r = -1.f, q__1.i = -0.f;
234 	cspmv_(uplo, n, &q__1, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &
235 		work[1], &c__1, (ftnlen)1);
236 
237 /*        Compute componentwise relative backward error from formula */
238 
239 /*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
240 
241 /*        where abs(Z) is the componentwise absolute value of the matrix */
242 /*        or vector Z.  If the i-th component of the denominator is less */
243 /*        than SAFE2, then SAFE1 is added to the i-th components of the */
244 /*        numerator and denominator before dividing. */
245 
246 	i__2 = *n;
247 	for (i__ = 1; i__ <= i__2; ++i__) {
248 	    i__3 = i__ + j * b_dim1;
249 	    rwork[i__] = (r__1 = b[i__3].r, dabs(r__1)) + (r__2 = r_imag(&b[
250 		    i__ + j * b_dim1]), dabs(r__2));
251 /* L30: */
252 	}
253 
254 /*        Compute abs(A)*abs(X) + abs(B). */
255 
256 	kk = 1;
257 	if (upper) {
258 	    i__2 = *n;
259 	    for (k = 1; k <= i__2; ++k) {
260 		s = 0.f;
261 		i__3 = k + j * x_dim1;
262 		xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j
263 			* x_dim1]), dabs(r__2));
264 		ik = kk;
265 		i__3 = k - 1;
266 		for (i__ = 1; i__ <= i__3; ++i__) {
267 		    i__4 = ik;
268 		    rwork[i__] += ((r__1 = ap[i__4].r, dabs(r__1)) + (r__2 =
269 			    r_imag(&ap[ik]), dabs(r__2))) * xk;
270 		    i__4 = ik;
271 		    i__5 = i__ + j * x_dim1;
272 		    s += ((r__1 = ap[i__4].r, dabs(r__1)) + (r__2 = r_imag(&
273 			    ap[ik]), dabs(r__2))) * ((r__3 = x[i__5].r, dabs(
274 			    r__3)) + (r__4 = r_imag(&x[i__ + j * x_dim1]),
275 			    dabs(r__4)));
276 		    ++ik;
277 /* L40: */
278 		}
279 		i__3 = kk + k - 1;
280 		rwork[k] = rwork[k] + ((r__1 = ap[i__3].r, dabs(r__1)) + (
281 			r__2 = r_imag(&ap[kk + k - 1]), dabs(r__2))) * xk + s;
282 		kk += k;
283 /* L50: */
284 	    }
285 	} else {
286 	    i__2 = *n;
287 	    for (k = 1; k <= i__2; ++k) {
288 		s = 0.f;
289 		i__3 = k + j * x_dim1;
290 		xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j
291 			* x_dim1]), dabs(r__2));
292 		i__3 = kk;
293 		rwork[k] += ((r__1 = ap[i__3].r, dabs(r__1)) + (r__2 = r_imag(
294 			&ap[kk]), dabs(r__2))) * xk;
295 		ik = kk + 1;
296 		i__3 = *n;
297 		for (i__ = k + 1; i__ <= i__3; ++i__) {
298 		    i__4 = ik;
299 		    rwork[i__] += ((r__1 = ap[i__4].r, dabs(r__1)) + (r__2 =
300 			    r_imag(&ap[ik]), dabs(r__2))) * xk;
301 		    i__4 = ik;
302 		    i__5 = i__ + j * x_dim1;
303 		    s += ((r__1 = ap[i__4].r, dabs(r__1)) + (r__2 = r_imag(&
304 			    ap[ik]), dabs(r__2))) * ((r__3 = x[i__5].r, dabs(
305 			    r__3)) + (r__4 = r_imag(&x[i__ + j * x_dim1]),
306 			    dabs(r__4)));
307 		    ++ik;
308 /* L60: */
309 		}
310 		rwork[k] += s;
311 		kk += *n - k + 1;
312 /* L70: */
313 	    }
314 	}
315 	s = 0.f;
316 	i__2 = *n;
317 	for (i__ = 1; i__ <= i__2; ++i__) {
318 	    if (rwork[i__] > safe2) {
319 /* Computing MAX */
320 		i__3 = i__;
321 		r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 =
322 			r_imag(&work[i__]), dabs(r__2))) / rwork[i__];
323 		s = dmax(r__3,r__4);
324 	    } else {
325 /* Computing MAX */
326 		i__3 = i__;
327 		r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 =
328 			r_imag(&work[i__]), dabs(r__2)) + safe1) / (rwork[i__]
329 			 + safe1);
330 		s = dmax(r__3,r__4);
331 	    }
332 /* L80: */
333 	}
334 	berr[j] = s;
335 
336 /*        Test stopping criterion. Continue iterating if */
337 /*           1) The residual BERR(J) is larger than machine epsilon, and */
338 /*           2) BERR(J) decreased by at least a factor of 2 during the */
339 /*              last iteration, and */
340 /*           3) At most ITMAX iterations tried. */
341 
342 	if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) {
343 
344 /*           Update solution and try again. */
345 
346 	    csptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[1], n, info, (
347 		    ftnlen)1);
348 	    caxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
349 	    lstres = berr[j];
350 	    ++count;
351 	    goto L20;
352 	}
353 
354 /*        Bound error from formula */
355 
356 /*        norm(X - XTRUE) / norm(X) .le. FERR = */
357 /*        norm( abs(inv(A))* */
358 /*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
359 
360 /*        where */
361 /*          norm(Z) is the magnitude of the largest component of Z */
362 /*          inv(A) is the inverse of A */
363 /*          abs(Z) is the componentwise absolute value of the matrix or */
364 /*             vector Z */
365 /*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
366 /*          EPS is machine epsilon */
367 
368 /*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
369 /*        is incremented by SAFE1 if the i-th component of */
370 /*        abs(A)*abs(X) + abs(B) is less than SAFE2. */
371 
372 /*        Use CLACON to estimate the infinity-norm of the matrix */
373 /*           inv(A) * diag(W), */
374 /*        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
375 
376 	i__2 = *n;
377 	for (i__ = 1; i__ <= i__2; ++i__) {
378 	    if (rwork[i__] > safe2) {
379 		i__3 = i__;
380 		rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 =
381 			r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[
382 			i__];
383 	    } else {
384 		i__3 = i__;
385 		rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 =
386 			r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[
387 			i__] + safe1;
388 	    }
389 /* L90: */
390 	}
391 
392 	kase = 0;
393 L100:
394 	clacon_(n, &work[*n + 1], &work[1], &ferr[j], &kase);
395 	if (kase != 0) {
396 	    if (kase == 1) {
397 
398 /*              Multiply by diag(W)*inv(A'). */
399 
400 		csptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[1], n, info,
401 			(ftnlen)1);
402 		i__2 = *n;
403 		for (i__ = 1; i__ <= i__2; ++i__) {
404 		    i__3 = i__;
405 		    i__4 = i__;
406 		    i__5 = i__;
407 		    q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
408 			    * work[i__5].i;
409 		    work[i__3].r = q__1.r, work[i__3].i = q__1.i;
410 /* L110: */
411 		}
412 	    } else if (kase == 2) {
413 
414 /*              Multiply by inv(A)*diag(W). */
415 
416 		i__2 = *n;
417 		for (i__ = 1; i__ <= i__2; ++i__) {
418 		    i__3 = i__;
419 		    i__4 = i__;
420 		    i__5 = i__;
421 		    q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
422 			    * work[i__5].i;
423 		    work[i__3].r = q__1.r, work[i__3].i = q__1.i;
424 /* L120: */
425 		}
426 		csptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[1], n, info,
427 			(ftnlen)1);
428 	    }
429 	    goto L100;
430 	}
431 
432 /*        Normalize error. */
433 
434 	lstres = 0.f;
435 	i__2 = *n;
436 	for (i__ = 1; i__ <= i__2; ++i__) {
437 /* Computing MAX */
438 	    i__3 = i__ + j * x_dim1;
439 	    r__3 = lstres, r__4 = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 =
440 		    r_imag(&x[i__ + j * x_dim1]), dabs(r__2));
441 	    lstres = dmax(r__3,r__4);
442 /* L130: */
443 	}
444 	if (lstres != 0.f) {
445 	    ferr[j] /= lstres;
446 	}
447 
448 /* L140: */
449     }
450 
451     return 0;
452 
453 /*     End of CSPRFS */
454 
455 } /* csprfs_ */
456 
457