1 /* ./src_f77/dgehrd.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
8 /* Table of constant values */
9 
10 static integer c__1 = 1;
11 static integer c_n1 = -1;
12 static integer c__3 = 3;
13 static integer c__2 = 2;
14 static integer c__65 = 65;
15 static doublereal c_b25 = -1.;
16 static doublereal c_b26 = 1.;
17 
dgehrd_(integer * n,integer * ilo,integer * ihi,doublereal * a,integer * lda,doublereal * tau,doublereal * work,integer * lwork,integer * info)18 /* Subroutine */ int dgehrd_(integer *n, integer *ilo, integer *ihi,
19 	doublereal *a, integer *lda, doublereal *tau, doublereal *work,
20 	integer *lwork, integer *info)
21 {
22     /* System generated locals */
23     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
24 
25     /* Local variables */
26     static integer i__;
27     static doublereal t[4160]	/* was [65][64] */;
28     static integer ib;
29     static doublereal ei;
30     static integer nb, nh, nx, iws;
31     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
32 	    integer *, doublereal *, doublereal *, integer *, doublereal *,
33 	    integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen);
34     static integer nbmin, iinfo;
35     extern /* Subroutine */ int dgehd2_(integer *, integer *, integer *,
36 	    doublereal *, integer *, doublereal *, doublereal *, integer *),
37 	    dlarfb_(char *, char *, char *, char *, integer *, integer *,
38 	    integer *, doublereal *, integer *, doublereal *, integer *,
39 	    doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen,
40 	    ftnlen, ftnlen), dlahrd_(integer *, integer *, integer *,
41 	    doublereal *, integer *, doublereal *, doublereal *, integer *,
42 	    doublereal *, integer *), xerbla_(char *, integer *, ftnlen);
43     extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
44 	    integer *, integer *, ftnlen, ftnlen);
45     static integer ldwork, lwkopt;
46     static logical lquery;
47 
48 
49 /*  -- LAPACK routine (version 3.0) -- */
50 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
51 /*     Courant Institute, Argonne National Lab, and Rice University */
52 /*     June 30, 1999 */
53 
54 /*     .. Scalar Arguments .. */
55 /*     .. */
56 /*     .. Array Arguments .. */
57 /*     .. */
58 
59 /*  Purpose */
60 /*  ======= */
61 
62 /*  DGEHRD reduces a real general matrix A to upper Hessenberg form H by */
63 /*  an orthogonal similarity transformation:  Q' * A * Q = H . */
64 
65 /*  Arguments */
66 /*  ========= */
67 
68 /*  N       (input) INTEGER */
69 /*          The order of the matrix A.  N >= 0. */
70 
71 /*  ILO     (input) INTEGER */
72 /*  IHI     (input) INTEGER */
73 /*          It is assumed that A is already upper triangular in rows */
74 /*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
75 /*          set by a previous call to DGEBAL; otherwise they should be */
76 /*          set to 1 and N respectively. See Further Details. */
77 /*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
78 
79 /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
80 /*          On entry, the N-by-N general matrix to be reduced. */
81 /*          On exit, the upper triangle and the first subdiagonal of A */
82 /*          are overwritten with the upper Hessenberg matrix H, and the */
83 /*          elements below the first subdiagonal, with the array TAU, */
84 /*          represent the orthogonal matrix Q as a product of elementary */
85 /*          reflectors. See Further Details. */
86 
87 /*  LDA     (input) INTEGER */
88 /*          The leading dimension of the array A.  LDA >= max(1,N). */
89 
90 /*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
91 /*          The scalar factors of the elementary reflectors (see Further */
92 /*          Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to */
93 /*          zero. */
94 
95 /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
96 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
97 
98 /*  LWORK   (input) INTEGER */
99 /*          The length of the array WORK.  LWORK >= max(1,N). */
100 /*          For optimum performance LWORK >= N*NB, where NB is the */
101 /*          optimal blocksize. */
102 
103 /*          If LWORK = -1, then a workspace query is assumed; the routine */
104 /*          only calculates the optimal size of the WORK array, returns */
105 /*          this value as the first entry of the WORK array, and no error */
106 /*          message related to LWORK is issued by XERBLA. */
107 
108 /*  INFO    (output) INTEGER */
109 /*          = 0:  successful exit */
110 /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
111 
112 /*  Further Details */
113 /*  =============== */
114 
115 /*  The matrix Q is represented as a product of (ihi-ilo) elementary */
116 /*  reflectors */
117 
118 /*     Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
119 
120 /*  Each H(i) has the form */
121 
122 /*     H(i) = I - tau * v * v' */
123 
124 /*  where tau is a real scalar, and v is a real vector with */
125 /*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
126 /*  exit in A(i+2:ihi,i), and tau in TAU(i). */
127 
128 /*  The contents of A are illustrated by the following example, with */
129 /*  n = 7, ilo = 2 and ihi = 6: */
130 
131 /*  on entry,                        on exit, */
132 
133 /*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a ) */
134 /*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a ) */
135 /*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h ) */
136 /*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h ) */
137 /*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h ) */
138 /*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h ) */
139 /*  (                         a )    (                          a ) */
140 
141 /*  where a denotes an element of the original matrix A, h denotes a */
142 /*  modified element of the upper Hessenberg matrix H, and vi denotes an */
143 /*  element of the vector defining H(i). */
144 
145 /*  ===================================================================== */
146 
147 /*     .. Parameters .. */
148 /*     .. */
149 /*     .. Local Scalars .. */
150 /*     .. */
151 /*     .. Local Arrays .. */
152 /*     .. */
153 /*     .. External Subroutines .. */
154 /*     .. */
155 /*     .. Intrinsic Functions .. */
156 /*     .. */
157 /*     .. External Functions .. */
158 /*     .. */
159 /*     .. Executable Statements .. */
160 
161 /*     Test the input parameters */
162 
163     /* Parameter adjustments */
164     a_dim1 = *lda;
165     a_offset = 1 + a_dim1;
166     a -= a_offset;
167     --tau;
168     --work;
169 
170     /* Function Body */
171     *info = 0;
172 /* Computing MIN */
173     i__1 = 64, i__2 = ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1, (
174 	    ftnlen)6, (ftnlen)1);
175     nb = min(i__1,i__2);
176     lwkopt = *n * nb;
177     work[1] = (doublereal) lwkopt;
178     lquery = *lwork == -1;
179     if (*n < 0) {
180 	*info = -1;
181     } else if (*ilo < 1 || *ilo > max(1,*n)) {
182 	*info = -2;
183     } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
184 	*info = -3;
185     } else if (*lda < max(1,*n)) {
186 	*info = -5;
187     } else if (*lwork < max(1,*n) && ! lquery) {
188 	*info = -8;
189     }
190     if (*info != 0) {
191 	i__1 = -(*info);
192 	xerbla_("DGEHRD", &i__1, (ftnlen)6);
193 	return 0;
194     } else if (lquery) {
195 	return 0;
196     }
197 
198 /*     Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */
199 
200     i__1 = *ilo - 1;
201     for (i__ = 1; i__ <= i__1; ++i__) {
202 	tau[i__] = 0.;
203 /* L10: */
204     }
205     i__1 = *n - 1;
206     for (i__ = max(1,*ihi); i__ <= i__1; ++i__) {
207 	tau[i__] = 0.;
208 /* L20: */
209     }
210 
211 /*     Quick return if possible */
212 
213     nh = *ihi - *ilo + 1;
214     if (nh <= 1) {
215 	work[1] = 1.;
216 	return 0;
217     }
218 
219 /*     Determine the block size. */
220 
221 /* Computing MIN */
222     i__1 = 64, i__2 = ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1, (
223 	    ftnlen)6, (ftnlen)1);
224     nb = min(i__1,i__2);
225     nbmin = 2;
226     iws = 1;
227     if (nb > 1 && nb < nh) {
228 
229 /*        Determine when to cross over from blocked to unblocked code */
230 /*        (last block is always handled by unblocked code). */
231 
232 /* Computing MAX */
233 	i__1 = nb, i__2 = ilaenv_(&c__3, "DGEHRD", " ", n, ilo, ihi, &c_n1, (
234 		ftnlen)6, (ftnlen)1);
235 	nx = max(i__1,i__2);
236 	if (nx < nh) {
237 
238 /*           Determine if workspace is large enough for blocked code. */
239 
240 	    iws = *n * nb;
241 	    if (*lwork < iws) {
242 
243 /*              Not enough workspace to use optimal NB:  determine the */
244 /*              minimum value of NB, and reduce NB or force use of */
245 /*              unblocked code. */
246 
247 /* Computing MAX */
248 		i__1 = 2, i__2 = ilaenv_(&c__2, "DGEHRD", " ", n, ilo, ihi, &
249 			c_n1, (ftnlen)6, (ftnlen)1);
250 		nbmin = max(i__1,i__2);
251 		if (*lwork >= *n * nbmin) {
252 		    nb = *lwork / *n;
253 		} else {
254 		    nb = 1;
255 		}
256 	    }
257 	}
258     }
259     ldwork = *n;
260 
261     if (nb < nbmin || nb >= nh) {
262 
263 /*        Use unblocked code below */
264 
265 	i__ = *ilo;
266 
267     } else {
268 
269 /*        Use blocked code */
270 
271 	i__1 = *ihi - 1 - nx;
272 	i__2 = nb;
273 	for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
274 /* Computing MIN */
275 	    i__3 = nb, i__4 = *ihi - i__;
276 	    ib = min(i__3,i__4);
277 
278 /*           Reduce columns i:i+ib-1 to Hessenberg form, returning the */
279 /*           matrices V and T of the block reflector H = I - V*T*V' */
280 /*           which performs the reduction, and also the matrix Y = A*V*T */
281 
282 	    dlahrd_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, &
283 		    c__65, &work[1], &ldwork);
284 
285 /*           Apply the block reflector H to A(1:ihi,i+ib:ihi) from the */
286 /*           right, computing  A := A - Y * V'. V(i+ib,ib-1) must be set */
287 /*           to 1. */
288 
289 	    ei = a[i__ + ib + (i__ + ib - 1) * a_dim1];
290 	    a[i__ + ib + (i__ + ib - 1) * a_dim1] = 1.;
291 	    i__3 = *ihi - i__ - ib + 1;
292 	    dgemm_("No transpose", "Transpose", ihi, &i__3, &ib, &c_b25, &
293 		    work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, &
294 		    c_b26, &a[(i__ + ib) * a_dim1 + 1], lda, (ftnlen)12, (
295 		    ftnlen)9);
296 	    a[i__ + ib + (i__ + ib - 1) * a_dim1] = ei;
297 
298 /*           Apply the block reflector H to A(i+1:ihi,i+ib:n) from the */
299 /*           left */
300 
301 	    i__3 = *ihi - i__;
302 	    i__4 = *n - i__ - ib + 1;
303 	    dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
304 		    i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, &c__65, &a[
305 		    i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], &ldwork, (
306 		    ftnlen)4, (ftnlen)9, (ftnlen)7, (ftnlen)10);
307 /* L30: */
308 	}
309     }
310 
311 /*     Use unblocked code to reduce the rest of the matrix */
312 
313     dgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
314     work[1] = (doublereal) iws;
315 
316     return 0;
317 
318 /*     End of DGEHRD */
319 
320 } /* dgehrd_ */
321 
322