1 /* ./src_f77/dsteqr.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
8 /* Table of constant values */
9 
10 static doublereal c_b9 = 0.;
11 static doublereal c_b10 = 1.;
12 static integer c__0 = 0;
13 static integer c__1 = 1;
14 static integer c__2 = 2;
15 
dsteqr_(char * compz,integer * n,doublereal * d__,doublereal * e,doublereal * z__,integer * ldz,doublereal * work,integer * info,ftnlen compz_len)16 /* Subroutine */ int dsteqr_(char *compz, integer *n, doublereal *d__,
17 	doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
18 	integer *info, ftnlen compz_len)
19 {
20     /* System generated locals */
21     integer z_dim1, z_offset, i__1, i__2;
22     doublereal d__1, d__2;
23 
24     /* Builtin functions */
25     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
26 
27     /* Local variables */
28     static doublereal b, c__, f, g;
29     static integer i__, j, k, l, m;
30     static doublereal p, r__, s;
31     static integer l1, ii, mm, lm1, mm1, nm1;
32     static doublereal rt1, rt2, eps;
33     static integer lsv;
34     static doublereal tst, eps2;
35     static integer lend, jtot;
36     extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal
37 	    *, doublereal *, doublereal *);
38     extern logical lsame_(char *, char *, ftnlen, ftnlen);
39     extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
40 	    integer *, doublereal *, doublereal *, doublereal *, integer *,
41 	    ftnlen, ftnlen, ftnlen);
42     static doublereal anorm;
43     extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
44 	    doublereal *, integer *), dlaev2_(doublereal *, doublereal *,
45 	    doublereal *, doublereal *, doublereal *, doublereal *,
46 	    doublereal *);
47     static integer lendm1, lendp1;
48     extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *,
49 	    ftnlen);
50     static integer iscale;
51     extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
52 	    doublereal *, doublereal *, integer *, integer *, doublereal *,
53 	    integer *, integer *, ftnlen), dlaset_(char *, integer *, integer
54 	    *, doublereal *, doublereal *, doublereal *, integer *, ftnlen);
55     static doublereal safmin;
56     extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
57 	    doublereal *, doublereal *, doublereal *);
58     static doublereal safmax;
59     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
60     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *,
61 	    ftnlen);
62     extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
63 	    integer *, ftnlen);
64     static integer lendsv;
65     static doublereal ssfmin;
66     static integer nmaxit, icompz;
67     static doublereal ssfmax;
68 
69 
70 /*  -- LAPACK routine (version 3.0) -- */
71 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
72 /*     Courant Institute, Argonne National Lab, and Rice University */
73 /*     September 30, 1994 */
74 
75 /*     .. Scalar Arguments .. */
76 /*     .. */
77 /*     .. Array Arguments .. */
78 /*     .. */
79 
80 /*  Purpose */
81 /*  ======= */
82 
83 /*  DSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
84 /*  symmetric tridiagonal matrix using the implicit QL or QR method. */
85 /*  The eigenvectors of a full or band symmetric matrix can also be found */
86 /*  if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to */
87 /*  tridiagonal form. */
88 
89 /*  Arguments */
90 /*  ========= */
91 
92 /*  COMPZ   (input) CHARACTER*1 */
93 /*          = 'N':  Compute eigenvalues only. */
94 /*          = 'V':  Compute eigenvalues and eigenvectors of the original */
95 /*                  symmetric matrix.  On entry, Z must contain the */
96 /*                  orthogonal matrix used to reduce the original matrix */
97 /*                  to tridiagonal form. */
98 /*          = 'I':  Compute eigenvalues and eigenvectors of the */
99 /*                  tridiagonal matrix.  Z is initialized to the identity */
100 /*                  matrix. */
101 
102 /*  N       (input) INTEGER */
103 /*          The order of the matrix.  N >= 0. */
104 
105 /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
106 /*          On entry, the diagonal elements of the tridiagonal matrix. */
107 /*          On exit, if INFO = 0, the eigenvalues in ascending order. */
108 
109 /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
110 /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
111 /*          matrix. */
112 /*          On exit, E has been destroyed. */
113 
114 /*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
115 /*          On entry, if  COMPZ = 'V', then Z contains the orthogonal */
116 /*          matrix used in the reduction to tridiagonal form. */
117 /*          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the */
118 /*          orthonormal eigenvectors of the original symmetric matrix, */
119 /*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
120 /*          of the symmetric tridiagonal matrix. */
121 /*          If COMPZ = 'N', then Z is not referenced. */
122 
123 /*  LDZ     (input) INTEGER */
124 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
125 /*          eigenvectors are desired, then  LDZ >= max(1,N). */
126 
127 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2)) */
128 /*          If COMPZ = 'N', then WORK is not referenced. */
129 
130 /*  INFO    (output) INTEGER */
131 /*          = 0:  successful exit */
132 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
133 /*          > 0:  the algorithm has failed to find all the eigenvalues in */
134 /*                a total of 30*N iterations; if INFO = i, then i */
135 /*                elements of E have not converged to zero; on exit, D */
136 /*                and E contain the elements of a symmetric tridiagonal */
137 /*                matrix which is orthogonally similar to the original */
138 /*                matrix. */
139 
140 /*  ===================================================================== */
141 
142 /*     .. Parameters .. */
143 /*     .. */
144 /*     .. Local Scalars .. */
145 /*     .. */
146 /*     .. External Functions .. */
147 /*     .. */
148 /*     .. External Subroutines .. */
149 /*     .. */
150 /*     .. Intrinsic Functions .. */
151 /*     .. */
152 /*     .. Executable Statements .. */
153 
154 /*     Test the input parameters. */
155 
156     /* Parameter adjustments */
157     --d__;
158     --e;
159     z_dim1 = *ldz;
160     z_offset = 1 + z_dim1;
161     z__ -= z_offset;
162     --work;
163 
164     /* Function Body */
165     *info = 0;
166 
167     if (lsame_(compz, "N", (ftnlen)1, (ftnlen)1)) {
168 	icompz = 0;
169     } else if (lsame_(compz, "V", (ftnlen)1, (ftnlen)1)) {
170 	icompz = 1;
171     } else if (lsame_(compz, "I", (ftnlen)1, (ftnlen)1)) {
172 	icompz = 2;
173     } else {
174 	icompz = -1;
175     }
176     if (icompz < 0) {
177 	*info = -1;
178     } else if (*n < 0) {
179 	*info = -2;
180     } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
181 	*info = -6;
182     }
183     if (*info != 0) {
184 	i__1 = -(*info);
185 	xerbla_("DSTEQR", &i__1, (ftnlen)6);
186 	return 0;
187     }
188 
189 /*     Quick return if possible */
190 
191     if (*n == 0) {
192 	return 0;
193     }
194 
195     if (*n == 1) {
196 	if (icompz == 2) {
197 	    z__[z_dim1 + 1] = 1.;
198 	}
199 	return 0;
200     }
201 
202 /*     Determine the unit roundoff and over/underflow thresholds. */
203 
204     eps = dlamch_("E", (ftnlen)1);
205 /* Computing 2nd power */
206     d__1 = eps;
207     eps2 = d__1 * d__1;
208     safmin = dlamch_("S", (ftnlen)1);
209     safmax = 1. / safmin;
210     ssfmax = sqrt(safmax) / 3.;
211     ssfmin = sqrt(safmin) / eps2;
212 
213 /*     Compute the eigenvalues and eigenvectors of the tridiagonal */
214 /*     matrix. */
215 
216     if (icompz == 2) {
217 	dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz, (ftnlen)4);
218     }
219 
220     nmaxit = *n * 30;
221     jtot = 0;
222 
223 /*     Determine where the matrix splits and choose QL or QR iteration */
224 /*     for each block, according to whether top or bottom diagonal */
225 /*     element is smaller. */
226 
227     l1 = 1;
228     nm1 = *n - 1;
229 
230 L10:
231     if (l1 > *n) {
232 	goto L160;
233     }
234     if (l1 > 1) {
235 	e[l1 - 1] = 0.;
236     }
237     if (l1 <= nm1) {
238 	i__1 = nm1;
239 	for (m = l1; m <= i__1; ++m) {
240 	    tst = (d__1 = e[m], abs(d__1));
241 	    if (tst == 0.) {
242 		goto L30;
243 	    }
244 	    if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
245 		    + 1], abs(d__2))) * eps) {
246 		e[m] = 0.;
247 		goto L30;
248 	    }
249 /* L20: */
250 	}
251     }
252     m = *n;
253 
254 L30:
255     l = l1;
256     lsv = l;
257     lend = m;
258     lendsv = lend;
259     l1 = m + 1;
260     if (lend == l) {
261 	goto L10;
262     }
263 
264 /*     Scale submatrix in rows and columns L to LEND */
265 
266     i__1 = lend - l + 1;
267     anorm = dlanst_("I", &i__1, &d__[l], &e[l], (ftnlen)1);
268     iscale = 0;
269     if (anorm == 0.) {
270 	goto L10;
271     }
272     if (anorm > ssfmax) {
273 	iscale = 1;
274 	i__1 = lend - l + 1;
275 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
276 		info, (ftnlen)1);
277 	i__1 = lend - l;
278 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
279 		info, (ftnlen)1);
280     } else if (anorm < ssfmin) {
281 	iscale = 2;
282 	i__1 = lend - l + 1;
283 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
284 		info, (ftnlen)1);
285 	i__1 = lend - l;
286 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
287 		info, (ftnlen)1);
288     }
289 
290 /*     Choose between QL and QR iteration */
291 
292     if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
293 	lend = lsv;
294 	l = lendsv;
295     }
296 
297     if (lend > l) {
298 
299 /*        QL Iteration */
300 
301 /*        Look for small subdiagonal element. */
302 
303 L40:
304 	if (l != lend) {
305 	    lendm1 = lend - 1;
306 	    i__1 = lendm1;
307 	    for (m = l; m <= i__1; ++m) {
308 /* Computing 2nd power */
309 		d__2 = (d__1 = e[m], abs(d__1));
310 		tst = d__2 * d__2;
311 		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
312 			+ 1], abs(d__2)) + safmin) {
313 		    goto L60;
314 		}
315 /* L50: */
316 	    }
317 	}
318 
319 	m = lend;
320 
321 L60:
322 	if (m < lend) {
323 	    e[m] = 0.;
324 	}
325 	p = d__[l];
326 	if (m == l) {
327 	    goto L80;
328 	}
329 
330 /*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
331 /*        to compute its eigensystem. */
332 
333 	if (m == l + 1) {
334 	    if (icompz > 0) {
335 		dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
336 		work[l] = c__;
337 		work[*n - 1 + l] = s;
338 		dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
339 			z__[l * z_dim1 + 1], ldz, (ftnlen)1, (ftnlen)1, (
340 			ftnlen)1);
341 	    } else {
342 		dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
343 	    }
344 	    d__[l] = rt1;
345 	    d__[l + 1] = rt2;
346 	    e[l] = 0.;
347 	    l += 2;
348 	    if (l <= lend) {
349 		goto L40;
350 	    }
351 	    goto L140;
352 	}
353 
354 	if (jtot == nmaxit) {
355 	    goto L140;
356 	}
357 	++jtot;
358 
359 /*        Form shift. */
360 
361 	g = (d__[l + 1] - p) / (e[l] * 2.);
362 	r__ = dlapy2_(&g, &c_b10);
363 	g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
364 
365 	s = 1.;
366 	c__ = 1.;
367 	p = 0.;
368 
369 /*        Inner loop */
370 
371 	mm1 = m - 1;
372 	i__1 = l;
373 	for (i__ = mm1; i__ >= i__1; --i__) {
374 	    f = s * e[i__];
375 	    b = c__ * e[i__];
376 	    dlartg_(&g, &f, &c__, &s, &r__);
377 	    if (i__ != m - 1) {
378 		e[i__ + 1] = r__;
379 	    }
380 	    g = d__[i__ + 1] - p;
381 	    r__ = (d__[i__] - g) * s + c__ * 2. * b;
382 	    p = s * r__;
383 	    d__[i__ + 1] = g + p;
384 	    g = c__ * r__ - b;
385 
386 /*           If eigenvectors are desired, then save rotations. */
387 
388 	    if (icompz > 0) {
389 		work[i__] = c__;
390 		work[*n - 1 + i__] = -s;
391 	    }
392 
393 /* L70: */
394 	}
395 
396 /*        If eigenvectors are desired, then apply saved rotations. */
397 
398 	if (icompz > 0) {
399 	    mm = m - l + 1;
400 	    dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
401 		    * z_dim1 + 1], ldz, (ftnlen)1, (ftnlen)1, (ftnlen)1);
402 	}
403 
404 	d__[l] -= p;
405 	e[l] = g;
406 	goto L40;
407 
408 /*        Eigenvalue found. */
409 
410 L80:
411 	d__[l] = p;
412 
413 	++l;
414 	if (l <= lend) {
415 	    goto L40;
416 	}
417 	goto L140;
418 
419     } else {
420 
421 /*        QR Iteration */
422 
423 /*        Look for small superdiagonal element. */
424 
425 L90:
426 	if (l != lend) {
427 	    lendp1 = lend + 1;
428 	    i__1 = lendp1;
429 	    for (m = l; m >= i__1; --m) {
430 /* Computing 2nd power */
431 		d__2 = (d__1 = e[m - 1], abs(d__1));
432 		tst = d__2 * d__2;
433 		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
434 			- 1], abs(d__2)) + safmin) {
435 		    goto L110;
436 		}
437 /* L100: */
438 	    }
439 	}
440 
441 	m = lend;
442 
443 L110:
444 	if (m > lend) {
445 	    e[m - 1] = 0.;
446 	}
447 	p = d__[l];
448 	if (m == l) {
449 	    goto L130;
450 	}
451 
452 /*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
453 /*        to compute its eigensystem. */
454 
455 	if (m == l - 1) {
456 	    if (icompz > 0) {
457 		dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
458 			;
459 		work[m] = c__;
460 		work[*n - 1 + m] = s;
461 		dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
462 			z__[(l - 1) * z_dim1 + 1], ldz, (ftnlen)1, (ftnlen)1,
463 			(ftnlen)1);
464 	    } else {
465 		dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
466 	    }
467 	    d__[l - 1] = rt1;
468 	    d__[l] = rt2;
469 	    e[l - 1] = 0.;
470 	    l += -2;
471 	    if (l >= lend) {
472 		goto L90;
473 	    }
474 	    goto L140;
475 	}
476 
477 	if (jtot == nmaxit) {
478 	    goto L140;
479 	}
480 	++jtot;
481 
482 /*        Form shift. */
483 
484 	g = (d__[l - 1] - p) / (e[l - 1] * 2.);
485 	r__ = dlapy2_(&g, &c_b10);
486 	g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
487 
488 	s = 1.;
489 	c__ = 1.;
490 	p = 0.;
491 
492 /*        Inner loop */
493 
494 	lm1 = l - 1;
495 	i__1 = lm1;
496 	for (i__ = m; i__ <= i__1; ++i__) {
497 	    f = s * e[i__];
498 	    b = c__ * e[i__];
499 	    dlartg_(&g, &f, &c__, &s, &r__);
500 	    if (i__ != m) {
501 		e[i__ - 1] = r__;
502 	    }
503 	    g = d__[i__] - p;
504 	    r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
505 	    p = s * r__;
506 	    d__[i__] = g + p;
507 	    g = c__ * r__ - b;
508 
509 /*           If eigenvectors are desired, then save rotations. */
510 
511 	    if (icompz > 0) {
512 		work[i__] = c__;
513 		work[*n - 1 + i__] = s;
514 	    }
515 
516 /* L120: */
517 	}
518 
519 /*        If eigenvectors are desired, then apply saved rotations. */
520 
521 	if (icompz > 0) {
522 	    mm = l - m + 1;
523 	    dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
524 		    * z_dim1 + 1], ldz, (ftnlen)1, (ftnlen)1, (ftnlen)1);
525 	}
526 
527 	d__[l] -= p;
528 	e[lm1] = g;
529 	goto L90;
530 
531 /*        Eigenvalue found. */
532 
533 L130:
534 	d__[l] = p;
535 
536 	--l;
537 	if (l >= lend) {
538 	    goto L90;
539 	}
540 	goto L140;
541 
542     }
543 
544 /*     Undo scaling if necessary */
545 
546 L140:
547     if (iscale == 1) {
548 	i__1 = lendsv - lsv + 1;
549 	dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
550 		n, info, (ftnlen)1);
551 	i__1 = lendsv - lsv;
552 	dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
553 		info, (ftnlen)1);
554     } else if (iscale == 2) {
555 	i__1 = lendsv - lsv + 1;
556 	dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
557 		n, info, (ftnlen)1);
558 	i__1 = lendsv - lsv;
559 	dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
560 		info, (ftnlen)1);
561     }
562 
563 /*     Check for no convergence to an eigenvalue after a total */
564 /*     of N*MAXIT iterations. */
565 
566     if (jtot < nmaxit) {
567 	goto L10;
568     }
569     i__1 = *n - 1;
570     for (i__ = 1; i__ <= i__1; ++i__) {
571 	if (e[i__] != 0.) {
572 	    ++(*info);
573 	}
574 /* L150: */
575     }
576     goto L190;
577 
578 /*     Order eigenvalues and eigenvectors. */
579 
580 L160:
581     if (icompz == 0) {
582 
583 /*        Use Quick Sort */
584 
585 	dlasrt_("I", n, &d__[1], info, (ftnlen)1);
586 
587     } else {
588 
589 /*        Use Selection Sort to minimize swaps of eigenvectors */
590 
591 	i__1 = *n;
592 	for (ii = 2; ii <= i__1; ++ii) {
593 	    i__ = ii - 1;
594 	    k = i__;
595 	    p = d__[i__];
596 	    i__2 = *n;
597 	    for (j = ii; j <= i__2; ++j) {
598 		if (d__[j] < p) {
599 		    k = j;
600 		    p = d__[j];
601 		}
602 /* L170: */
603 	    }
604 	    if (k != i__) {
605 		d__[k] = d__[i__];
606 		d__[i__] = p;
607 		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
608 			 &c__1);
609 	    }
610 /* L180: */
611 	}
612     }
613 
614 L190:
615     return 0;
616 
617 /*     End of DSTEQR */
618 
619 } /* dsteqr_ */
620 
621