1 /* ./src_f77/slagts.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
slagts_(integer * job,integer * n,real * a,real * b,real * c__,real * d__,integer * in,real * y,real * tol,integer * info)8 /* Subroutine */ int slagts_(integer *job, integer *n, real *a, real *b, real
9 	*c__, real *d__, integer *in, real *y, real *tol, integer *info)
10 {
11     /* System generated locals */
12     integer i__1;
13     real r__1, r__2, r__3, r__4, r__5;
14 
15     /* Builtin functions */
16     double r_sign(real *, real *);
17 
18     /* Local variables */
19     static integer k;
20     static real ak, eps, temp, pert, absak, sfmin;
21     extern doublereal slamch_(char *, ftnlen);
22     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
23     static real bignum;
24 
25 
26 /*  -- LAPACK auxiliary routine (version 3.0) -- */
27 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
28 /*     Courant Institute, Argonne National Lab, and Rice University */
29 /*     October 31, 1992 */
30 
31 /*     .. Scalar Arguments .. */
32 /*     .. */
33 /*     .. Array Arguments .. */
34 /*     .. */
35 
36 /*  Purpose */
37 /*  ======= */
38 
39 /*  SLAGTS may be used to solve one of the systems of equations */
40 
41 /*     (T - lambda*I)*x = y   or   (T - lambda*I)'*x = y, */
42 
43 /*  where T is an n by n tridiagonal matrix, for x, following the */
44 /*  factorization of (T - lambda*I) as */
45 
46 /*     (T - lambda*I) = P*L*U , */
47 
48 /*  by routine SLAGTF. The choice of equation to be solved is */
49 /*  controlled by the argument JOB, and in each case there is an option */
50 /*  to perturb zero or very small diagonal elements of U, this option */
51 /*  being intended for use in applications such as inverse iteration. */
52 
53 /*  Arguments */
54 /*  ========= */
55 
56 /*  JOB     (input) INTEGER */
57 /*          Specifies the job to be performed by SLAGTS as follows: */
58 /*          =  1: The equations  (T - lambda*I)x = y  are to be solved, */
59 /*                but diagonal elements of U are not to be perturbed. */
60 /*          = -1: The equations  (T - lambda*I)x = y  are to be solved */
61 /*                and, if overflow would otherwise occur, the diagonal */
62 /*                elements of U are to be perturbed. See argument TOL */
63 /*                below. */
64 /*          =  2: The equations  (T - lambda*I)'x = y  are to be solved, */
65 /*                but diagonal elements of U are not to be perturbed. */
66 /*          = -2: The equations  (T - lambda*I)'x = y  are to be solved */
67 /*                and, if overflow would otherwise occur, the diagonal */
68 /*                elements of U are to be perturbed. See argument TOL */
69 /*                below. */
70 
71 /*  N       (input) INTEGER */
72 /*          The order of the matrix T. */
73 
74 /*  A       (input) REAL array, dimension (N) */
75 /*          On entry, A must contain the diagonal elements of U as */
76 /*          returned from SLAGTF. */
77 
78 /*  B       (input) REAL array, dimension (N-1) */
79 /*          On entry, B must contain the first super-diagonal elements of */
80 /*          U as returned from SLAGTF. */
81 
82 /*  C       (input) REAL array, dimension (N-1) */
83 /*          On entry, C must contain the sub-diagonal elements of L as */
84 /*          returned from SLAGTF. */
85 
86 /*  D       (input) REAL array, dimension (N-2) */
87 /*          On entry, D must contain the second super-diagonal elements */
88 /*          of U as returned from SLAGTF. */
89 
90 /*  IN      (input) INTEGER array, dimension (N) */
91 /*          On entry, IN must contain details of the matrix P as returned */
92 /*          from SLAGTF. */
93 
94 /*  Y       (input/output) REAL array, dimension (N) */
95 /*          On entry, the right hand side vector y. */
96 /*          On exit, Y is overwritten by the solution vector x. */
97 
98 /*  TOL     (input/output) REAL */
99 /*          On entry, with  JOB .lt. 0, TOL should be the minimum */
100 /*          perturbation to be made to very small diagonal elements of U. */
101 /*          TOL should normally be chosen as about eps*norm(U), where eps */
102 /*          is the relative machine precision, but if TOL is supplied as */
103 /*          non-positive, then it is reset to eps*max( abs( u(i,j) ) ). */
104 /*          If  JOB .gt. 0  then TOL is not referenced. */
105 
106 /*          On exit, TOL is changed as described above, only if TOL is */
107 /*          non-positive on entry. Otherwise TOL is unchanged. */
108 
109 /*  INFO    (output) INTEGER */
110 /*          = 0   : successful exit */
111 /*          .lt. 0: if INFO = -i, the i-th argument had an illegal value */
112 /*          .gt. 0: overflow would occur when computing the INFO(th) */
113 /*                  element of the solution vector x. This can only occur */
114 /*                  when JOB is supplied as positive and either means */
115 /*                  that a diagonal element of U is very small, or that */
116 /*                  the elements of the right-hand side vector y are very */
117 /*                  large. */
118 
119 /*  ===================================================================== */
120 
121 /*     .. Parameters .. */
122 /*     .. */
123 /*     .. Local Scalars .. */
124 /*     .. */
125 /*     .. Intrinsic Functions .. */
126 /*     .. */
127 /*     .. External Functions .. */
128 /*     .. */
129 /*     .. External Subroutines .. */
130 /*     .. */
131 /*     .. Executable Statements .. */
132 
133     /* Parameter adjustments */
134     --y;
135     --in;
136     --d__;
137     --c__;
138     --b;
139     --a;
140 
141     /* Function Body */
142     *info = 0;
143     if (abs(*job) > 2 || *job == 0) {
144 	*info = -1;
145     } else if (*n < 0) {
146 	*info = -2;
147     }
148     if (*info != 0) {
149 	i__1 = -(*info);
150 	xerbla_("SLAGTS", &i__1, (ftnlen)6);
151 	return 0;
152     }
153 
154     if (*n == 0) {
155 	return 0;
156     }
157 
158     eps = slamch_("Epsilon", (ftnlen)7);
159     sfmin = slamch_("Safe minimum", (ftnlen)12);
160     bignum = 1.f / sfmin;
161 
162     if (*job < 0) {
163 	if (*tol <= 0.f) {
164 	    *tol = dabs(a[1]);
165 	    if (*n > 1) {
166 /* Computing MAX */
167 		r__1 = *tol, r__2 = dabs(a[2]), r__1 = max(r__1,r__2), r__2 =
168 			dabs(b[1]);
169 		*tol = dmax(r__1,r__2);
170 	    }
171 	    i__1 = *n;
172 	    for (k = 3; k <= i__1; ++k) {
173 /* Computing MAX */
174 		r__4 = *tol, r__5 = (r__1 = a[k], dabs(r__1)), r__4 = max(
175 			r__4,r__5), r__5 = (r__2 = b[k - 1], dabs(r__2)),
176 			r__4 = max(r__4,r__5), r__5 = (r__3 = d__[k - 2],
177 			dabs(r__3));
178 		*tol = dmax(r__4,r__5);
179 /* L10: */
180 	    }
181 	    *tol *= eps;
182 	    if (*tol == 0.f) {
183 		*tol = eps;
184 	    }
185 	}
186     }
187 
188     if (abs(*job) == 1) {
189 	i__1 = *n;
190 	for (k = 2; k <= i__1; ++k) {
191 	    if (in[k - 1] == 0) {
192 		y[k] -= c__[k - 1] * y[k - 1];
193 	    } else {
194 		temp = y[k - 1];
195 		y[k - 1] = y[k];
196 		y[k] = temp - c__[k - 1] * y[k];
197 	    }
198 /* L20: */
199 	}
200 	if (*job == 1) {
201 	    for (k = *n; k >= 1; --k) {
202 		if (k <= *n - 2) {
203 		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
204 		} else if (k == *n - 1) {
205 		    temp = y[k] - b[k] * y[k + 1];
206 		} else {
207 		    temp = y[k];
208 		}
209 		ak = a[k];
210 		absak = dabs(ak);
211 		if (absak < 1.f) {
212 		    if (absak < sfmin) {
213 			if (absak == 0.f || dabs(temp) * sfmin > absak) {
214 			    *info = k;
215 			    return 0;
216 			} else {
217 			    temp *= bignum;
218 			    ak *= bignum;
219 			}
220 		    } else if (dabs(temp) > absak * bignum) {
221 			*info = k;
222 			return 0;
223 		    }
224 		}
225 		y[k] = temp / ak;
226 /* L30: */
227 	    }
228 	} else {
229 	    for (k = *n; k >= 1; --k) {
230 		if (k <= *n - 2) {
231 		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
232 		} else if (k == *n - 1) {
233 		    temp = y[k] - b[k] * y[k + 1];
234 		} else {
235 		    temp = y[k];
236 		}
237 		ak = a[k];
238 		pert = r_sign(tol, &ak);
239 L40:
240 		absak = dabs(ak);
241 		if (absak < 1.f) {
242 		    if (absak < sfmin) {
243 			if (absak == 0.f || dabs(temp) * sfmin > absak) {
244 			    ak += pert;
245 			    pert *= 2;
246 			    goto L40;
247 			} else {
248 			    temp *= bignum;
249 			    ak *= bignum;
250 			}
251 		    } else if (dabs(temp) > absak * bignum) {
252 			ak += pert;
253 			pert *= 2;
254 			goto L40;
255 		    }
256 		}
257 		y[k] = temp / ak;
258 /* L50: */
259 	    }
260 	}
261     } else {
262 
263 /*        Come to here if  JOB = 2 or -2 */
264 
265 	if (*job == 2) {
266 	    i__1 = *n;
267 	    for (k = 1; k <= i__1; ++k) {
268 		if (k >= 3) {
269 		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
270 		} else if (k == 2) {
271 		    temp = y[k] - b[k - 1] * y[k - 1];
272 		} else {
273 		    temp = y[k];
274 		}
275 		ak = a[k];
276 		absak = dabs(ak);
277 		if (absak < 1.f) {
278 		    if (absak < sfmin) {
279 			if (absak == 0.f || dabs(temp) * sfmin > absak) {
280 			    *info = k;
281 			    return 0;
282 			} else {
283 			    temp *= bignum;
284 			    ak *= bignum;
285 			}
286 		    } else if (dabs(temp) > absak * bignum) {
287 			*info = k;
288 			return 0;
289 		    }
290 		}
291 		y[k] = temp / ak;
292 /* L60: */
293 	    }
294 	} else {
295 	    i__1 = *n;
296 	    for (k = 1; k <= i__1; ++k) {
297 		if (k >= 3) {
298 		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
299 		} else if (k == 2) {
300 		    temp = y[k] - b[k - 1] * y[k - 1];
301 		} else {
302 		    temp = y[k];
303 		}
304 		ak = a[k];
305 		pert = r_sign(tol, &ak);
306 L70:
307 		absak = dabs(ak);
308 		if (absak < 1.f) {
309 		    if (absak < sfmin) {
310 			if (absak == 0.f || dabs(temp) * sfmin > absak) {
311 			    ak += pert;
312 			    pert *= 2;
313 			    goto L70;
314 			} else {
315 			    temp *= bignum;
316 			    ak *= bignum;
317 			}
318 		    } else if (dabs(temp) > absak * bignum) {
319 			ak += pert;
320 			pert *= 2;
321 			goto L70;
322 		    }
323 		}
324 		y[k] = temp / ak;
325 /* L80: */
326 	    }
327 	}
328 
329 	for (k = *n; k >= 2; --k) {
330 	    if (in[k - 1] == 0) {
331 		y[k - 1] -= c__[k - 1] * y[k];
332 	    } else {
333 		temp = y[k - 1];
334 		y[k - 1] = y[k];
335 		y[k] = temp - c__[k - 1] * y[k];
336 	    }
337 /* L90: */
338 	}
339     }
340 
341 /*     End of SLAGTS */
342 
343     return 0;
344 } /* slagts_ */
345 
346