1 /* ./src_f77/slasd7.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
8 /* Table of constant values */
9 
10 static integer c__1 = 1;
11 
slasd7_(integer * icompq,integer * nl,integer * nr,integer * sqre,integer * k,real * d__,real * z__,real * zw,real * vf,real * vfw,real * vl,real * vlw,real * alpha,real * beta,real * dsigma,integer * idx,integer * idxp,integer * idxq,integer * perm,integer * givptr,integer * givcol,integer * ldgcol,real * givnum,integer * ldgnum,real * c__,real * s,integer * info)12 /* Subroutine */ int slasd7_(integer *icompq, integer *nl, integer *nr,
13 	integer *sqre, integer *k, real *d__, real *z__, real *zw, real *vf,
14 	real *vfw, real *vl, real *vlw, real *alpha, real *beta, real *dsigma,
15 	 integer *idx, integer *idxp, integer *idxq, integer *perm, integer *
16 	givptr, integer *givcol, integer *ldgcol, real *givnum, integer *
17 	ldgnum, real *c__, real *s, integer *info)
18 {
19     /* System generated locals */
20     integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
21     real r__1, r__2;
22 
23     /* Local variables */
24     static integer i__, j, m, n, k2;
25     static real z1;
26     static integer jp;
27     static real eps, tau, tol;
28     static integer nlp1, nlp2, idxi, idxj;
29     extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
30 	    integer *, real *, real *);
31     static integer idxjp, jprev;
32     extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
33 	    integer *);
34     extern doublereal slapy2_(real *, real *), slamch_(char *, ftnlen);
35     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slamrg_(
36 	    integer *, integer *, real *, integer *, integer *, integer *);
37     static real hlftol;
38 
39 
40 /*  -- LAPACK auxiliary routine (version 3.0) -- */
41 /*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab, */
42 /*     Courant Institute, NAG Ltd., and Rice University */
43 /*     June 30, 1999 */
44 
45 /*     .. Scalar Arguments .. */
46 /*     .. */
47 /*     .. Array Arguments .. */
48 /*     .. */
49 
50 /*  Purpose */
51 /*  ======= */
52 
53 /*  SLASD7 merges the two sets of singular values together into a single */
54 /*  sorted set. Then it tries to deflate the size of the problem. There */
55 /*  are two ways in which deflation can occur:  when two or more singular */
56 /*  values are close together or if there is a tiny entry in the Z */
57 /*  vector. For each such occurrence the order of the related */
58 /*  secular equation problem is reduced by one. */
59 
60 /*  SLASD7 is called from SLASD6. */
61 
62 /*  Arguments */
63 /*  ========= */
64 
65 /*  ICOMPQ  (input) INTEGER */
66 /*          Specifies whether singular vectors are to be computed */
67 /*          in compact form, as follows: */
68 /*          = 0: Compute singular values only. */
69 /*          = 1: Compute singular vectors of upper */
70 /*               bidiagonal matrix in compact form. */
71 
72 /*  NL     (input) INTEGER */
73 /*         The row dimension of the upper block. NL >= 1. */
74 
75 /*  NR     (input) INTEGER */
76 /*         The row dimension of the lower block. NR >= 1. */
77 
78 /*  SQRE   (input) INTEGER */
79 /*         = 0: the lower block is an NR-by-NR square matrix. */
80 /*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
81 
82 /*         The bidiagonal matrix has */
83 /*         N = NL + NR + 1 rows and */
84 /*         M = N + SQRE >= N columns. */
85 
86 /*  K      (output) INTEGER */
87 /*         Contains the dimension of the non-deflated matrix, this is */
88 /*         the order of the related secular equation. 1 <= K <=N. */
89 
90 /*  D      (input/output) REAL array, dimension ( N ) */
91 /*         On entry D contains the singular values of the two submatrices */
92 /*         to be combined. On exit D contains the trailing (N-K) updated */
93 /*         singular values (those which were deflated) sorted into */
94 /*         increasing order. */
95 
96 /*  Z      (output) REAL array, dimension ( M ) */
97 /*         On exit Z contains the updating row vector in the secular */
98 /*         equation. */
99 
100 /*  ZW     (workspace) REAL array, dimension ( M ) */
101 /*         Workspace for Z. */
102 
103 /*  VF     (input/output) REAL array, dimension ( M ) */
104 /*         On entry, VF(1:NL+1) contains the first components of all */
105 /*         right singular vectors of the upper block; and VF(NL+2:M) */
106 /*         contains the first components of all right singular vectors */
107 /*         of the lower block. On exit, VF contains the first components */
108 /*         of all right singular vectors of the bidiagonal matrix. */
109 
110 /*  VFW    (workspace) REAL array, dimension ( M ) */
111 /*         Workspace for VF. */
112 
113 /*  VL     (input/output) REAL array, dimension ( M ) */
114 /*         On entry, VL(1:NL+1) contains the  last components of all */
115 /*         right singular vectors of the upper block; and VL(NL+2:M) */
116 /*         contains the last components of all right singular vectors */
117 /*         of the lower block. On exit, VL contains the last components */
118 /*         of all right singular vectors of the bidiagonal matrix. */
119 
120 /*  VLW    (workspace) REAL array, dimension ( M ) */
121 /*         Workspace for VL. */
122 
123 /*  ALPHA  (input) REAL */
124 /*         Contains the diagonal element associated with the added row. */
125 
126 /*  BETA   (input) REAL */
127 /*         Contains the off-diagonal element associated with the added */
128 /*         row. */
129 
130 /*  DSIGMA (output) REAL array, dimension ( N ) */
131 /*         Contains a copy of the diagonal elements (K-1 singular values */
132 /*         and one zero) in the secular equation. */
133 
134 /*  IDX    (workspace) INTEGER array, dimension ( N ) */
135 /*         This will contain the permutation used to sort the contents of */
136 /*         D into ascending order. */
137 
138 /*  IDXP   (workspace) INTEGER array, dimension ( N ) */
139 /*         This will contain the permutation used to place deflated */
140 /*         values of D at the end of the array. On output IDXP(2:K) */
141 /*         points to the nondeflated D-values and IDXP(K+1:N) */
142 /*         points to the deflated singular values. */
143 
144 /*  IDXQ   (input) INTEGER array, dimension ( N ) */
145 /*         This contains the permutation which separately sorts the two */
146 /*         sub-problems in D into ascending order.  Note that entries in */
147 /*         the first half of this permutation must first be moved one */
148 /*         position backward; and entries in the second half */
149 /*         must first have NL+1 added to their values. */
150 
151 /*  PERM   (output) INTEGER array, dimension ( N ) */
152 /*         The permutations (from deflation and sorting) to be applied */
153 /*         to each singular block. Not referenced if ICOMPQ = 0. */
154 
155 /*  GIVPTR (output) INTEGER */
156 /*         The number of Givens rotations which took place in this */
157 /*         subproblem. Not referenced if ICOMPQ = 0. */
158 
159 /*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) */
160 /*         Each pair of numbers indicates a pair of columns to take place */
161 /*         in a Givens rotation. Not referenced if ICOMPQ = 0. */
162 
163 /*  LDGCOL (input) INTEGER */
164 /*         The leading dimension of GIVCOL, must be at least N. */
165 
166 /*  GIVNUM (output) REAL array, dimension ( LDGNUM, 2 ) */
167 /*         Each number indicates the C or S value to be used in the */
168 /*         corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
169 
170 /*  LDGNUM (input) INTEGER */
171 /*         The leading dimension of GIVNUM, must be at least N. */
172 
173 /*  C      (output) REAL */
174 /*         C contains garbage if SQRE =0 and the C-value of a Givens */
175 /*         rotation related to the right null space if SQRE = 1. */
176 
177 /*  S      (output) REAL */
178 /*         S contains garbage if SQRE =0 and the S-value of a Givens */
179 /*         rotation related to the right null space if SQRE = 1. */
180 
181 /*  INFO   (output) INTEGER */
182 /*         = 0:  successful exit. */
183 /*         < 0:  if INFO = -i, the i-th argument had an illegal value. */
184 
185 /*  Further Details */
186 /*  =============== */
187 
188 /*  Based on contributions by */
189 /*     Ming Gu and Huan Ren, Computer Science Division, University of */
190 /*     California at Berkeley, USA */
191 
192 /*  ===================================================================== */
193 
194 /*     .. Parameters .. */
195 /*     .. */
196 /*     .. Local Scalars .. */
197 
198 /*     .. */
199 /*     .. External Subroutines .. */
200 /*     .. */
201 /*     .. External Functions .. */
202 /*     .. */
203 /*     .. Intrinsic Functions .. */
204 /*     .. */
205 /*     .. Executable Statements .. */
206 
207 /*     Test the input parameters. */
208 
209     /* Parameter adjustments */
210     --d__;
211     --z__;
212     --zw;
213     --vf;
214     --vfw;
215     --vl;
216     --vlw;
217     --dsigma;
218     --idx;
219     --idxp;
220     --idxq;
221     --perm;
222     givcol_dim1 = *ldgcol;
223     givcol_offset = 1 + givcol_dim1;
224     givcol -= givcol_offset;
225     givnum_dim1 = *ldgnum;
226     givnum_offset = 1 + givnum_dim1;
227     givnum -= givnum_offset;
228 
229     /* Function Body */
230     *info = 0;
231     n = *nl + *nr + 1;
232     m = n + *sqre;
233 
234     if (*icompq < 0 || *icompq > 1) {
235 	*info = -1;
236     } else if (*nl < 1) {
237 	*info = -2;
238     } else if (*nr < 1) {
239 	*info = -3;
240     } else if (*sqre < 0 || *sqre > 1) {
241 	*info = -4;
242     } else if (*ldgcol < n) {
243 	*info = -22;
244     } else if (*ldgnum < n) {
245 	*info = -24;
246     }
247     if (*info != 0) {
248 	i__1 = -(*info);
249 	xerbla_("SLASD7", &i__1, (ftnlen)6);
250 	return 0;
251     }
252 
253     nlp1 = *nl + 1;
254     nlp2 = *nl + 2;
255     if (*icompq == 1) {
256 	*givptr = 0;
257     }
258 
259 /*     Generate the first part of the vector Z and move the singular */
260 /*     values in the first part of D one position backward. */
261 
262     z1 = *alpha * vl[nlp1];
263     vl[nlp1] = 0.f;
264     tau = vf[nlp1];
265     for (i__ = *nl; i__ >= 1; --i__) {
266 	z__[i__ + 1] = *alpha * vl[i__];
267 	vl[i__] = 0.f;
268 	vf[i__ + 1] = vf[i__];
269 	d__[i__ + 1] = d__[i__];
270 	idxq[i__ + 1] = idxq[i__] + 1;
271 /* L10: */
272     }
273     vf[1] = tau;
274 
275 /*     Generate the second part of the vector Z. */
276 
277     i__1 = m;
278     for (i__ = nlp2; i__ <= i__1; ++i__) {
279 	z__[i__] = *beta * vf[i__];
280 	vf[i__] = 0.f;
281 /* L20: */
282     }
283 
284 /*     Sort the singular values into increasing order */
285 
286     i__1 = n;
287     for (i__ = nlp2; i__ <= i__1; ++i__) {
288 	idxq[i__] += nlp1;
289 /* L30: */
290     }
291 
292 /*     DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
293 
294     i__1 = n;
295     for (i__ = 2; i__ <= i__1; ++i__) {
296 	dsigma[i__] = d__[idxq[i__]];
297 	zw[i__] = z__[idxq[i__]];
298 	vfw[i__] = vf[idxq[i__]];
299 	vlw[i__] = vl[idxq[i__]];
300 /* L40: */
301     }
302 
303     slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
304 
305     i__1 = n;
306     for (i__ = 2; i__ <= i__1; ++i__) {
307 	idxi = idx[i__] + 1;
308 	d__[i__] = dsigma[idxi];
309 	z__[i__] = zw[idxi];
310 	vf[i__] = vfw[idxi];
311 	vl[i__] = vlw[idxi];
312 /* L50: */
313     }
314 
315 /*     Calculate the allowable deflation tolerence */
316 
317     eps = slamch_("Epsilon", (ftnlen)7);
318 /* Computing MAX */
319     r__1 = dabs(*alpha), r__2 = dabs(*beta);
320     tol = dmax(r__1,r__2);
321 /* Computing MAX */
322     r__2 = (r__1 = d__[n], dabs(r__1));
323     tol = eps * 64.f * dmax(r__2,tol);
324 
325 /*     There are 2 kinds of deflation -- first a value in the z-vector */
326 /*     is small, second two (or more) singular values are very close */
327 /*     together (their difference is small). */
328 
329 /*     If the value in the z-vector is small, we simply permute the */
330 /*     array so that the corresponding singular value is moved to the */
331 /*     end. */
332 
333 /*     If two values in the D-vector are close, we perform a two-sided */
334 /*     rotation designed to make one of the corresponding z-vector */
335 /*     entries zero, and then permute the array so that the deflated */
336 /*     singular value is moved to the end. */
337 
338 /*     If there are multiple singular values then the problem deflates. */
339 /*     Here the number of equal singular values are found.  As each equal */
340 /*     singular value is found, an elementary reflector is computed to */
341 /*     rotate the corresponding singular subspace so that the */
342 /*     corresponding components of Z are zero in this new basis. */
343 
344     *k = 1;
345     k2 = n + 1;
346     i__1 = n;
347     for (j = 2; j <= i__1; ++j) {
348 	if ((r__1 = z__[j], dabs(r__1)) <= tol) {
349 
350 /*           Deflate due to small z component. */
351 
352 	    --k2;
353 	    idxp[k2] = j;
354 	    if (j == n) {
355 		goto L100;
356 	    }
357 	} else {
358 	    jprev = j;
359 	    goto L70;
360 	}
361 /* L60: */
362     }
363 L70:
364     j = jprev;
365 L80:
366     ++j;
367     if (j > n) {
368 	goto L90;
369     }
370     if ((r__1 = z__[j], dabs(r__1)) <= tol) {
371 
372 /*        Deflate due to small z component. */
373 
374 	--k2;
375 	idxp[k2] = j;
376     } else {
377 
378 /*        Check if singular values are close enough to allow deflation. */
379 
380 	if ((r__1 = d__[j] - d__[jprev], dabs(r__1)) <= tol) {
381 
382 /*           Deflation is possible. */
383 
384 	    *s = z__[jprev];
385 	    *c__ = z__[j];
386 
387 /*           Find sqrt(a**2+b**2) without overflow or */
388 /*           destructive underflow. */
389 
390 	    tau = slapy2_(c__, s);
391 	    z__[j] = tau;
392 	    z__[jprev] = 0.f;
393 	    *c__ /= tau;
394 	    *s = -(*s) / tau;
395 
396 /*           Record the appropriate Givens rotation */
397 
398 	    if (*icompq == 1) {
399 		++(*givptr);
400 		idxjp = idxq[idx[jprev] + 1];
401 		idxj = idxq[idx[j] + 1];
402 		if (idxjp <= nlp1) {
403 		    --idxjp;
404 		}
405 		if (idxj <= nlp1) {
406 		    --idxj;
407 		}
408 		givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
409 		givcol[*givptr + givcol_dim1] = idxj;
410 		givnum[*givptr + (givnum_dim1 << 1)] = *c__;
411 		givnum[*givptr + givnum_dim1] = *s;
412 	    }
413 	    srot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
414 	    srot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
415 	    --k2;
416 	    idxp[k2] = jprev;
417 	    jprev = j;
418 	} else {
419 	    ++(*k);
420 	    zw[*k] = z__[jprev];
421 	    dsigma[*k] = d__[jprev];
422 	    idxp[*k] = jprev;
423 	    jprev = j;
424 	}
425     }
426     goto L80;
427 L90:
428 
429 /*     Record the last singular value. */
430 
431     ++(*k);
432     zw[*k] = z__[jprev];
433     dsigma[*k] = d__[jprev];
434     idxp[*k] = jprev;
435 
436 L100:
437 
438 /*     Sort the singular values into DSIGMA. The singular values which */
439 /*     were not deflated go into the first K slots of DSIGMA, except */
440 /*     that DSIGMA(1) is treated separately. */
441 
442     i__1 = n;
443     for (j = 2; j <= i__1; ++j) {
444 	jp = idxp[j];
445 	dsigma[j] = d__[jp];
446 	vfw[j] = vf[jp];
447 	vlw[j] = vl[jp];
448 /* L110: */
449     }
450     if (*icompq == 1) {
451 	i__1 = n;
452 	for (j = 2; j <= i__1; ++j) {
453 	    jp = idxp[j];
454 	    perm[j] = idxq[idx[jp] + 1];
455 	    if (perm[j] <= nlp1) {
456 		--perm[j];
457 	    }
458 /* L120: */
459 	}
460     }
461 
462 /*     The deflated singular values go back into the last N - K slots of */
463 /*     D. */
464 
465     i__1 = n - *k;
466     scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
467 
468 /*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
469 /*     VL(M). */
470 
471     dsigma[1] = 0.f;
472     hlftol = tol / 2.f;
473     if (dabs(dsigma[2]) <= hlftol) {
474 	dsigma[2] = hlftol;
475     }
476     if (m > n) {
477 	z__[1] = slapy2_(&z1, &z__[m]);
478 	if (z__[1] <= tol) {
479 	    *c__ = 1.f;
480 	    *s = 0.f;
481 	    z__[1] = tol;
482 	} else {
483 	    *c__ = z1 / z__[1];
484 	    *s = -z__[m] / z__[1];
485 	}
486 	srot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
487 	srot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
488     } else {
489 	if (dabs(z1) <= tol) {
490 	    z__[1] = tol;
491 	} else {
492 	    z__[1] = z1;
493 	}
494     }
495 
496 /*     Restore Z, VF, and VL. */
497 
498     i__1 = *k - 1;
499     scopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
500     i__1 = n - 1;
501     scopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
502     i__1 = n - 1;
503     scopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
504 
505     return 0;
506 
507 /*     End of SLASD7 */
508 
509 } /* slasd7_ */
510 
511