1      SUBROUTINE CSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
2     $                   IWORK, IFAIL, INFO )
3*
4*  -- LAPACK routine (version 3.0) --
5*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6*     Courant Institute, Argonne National Lab, and Rice University
7*     September 30, 1994
8*
9*     .. Scalar Arguments ..
10      INTEGER            INFO, LDZ, M, N
11*     ..
12*     .. Array Arguments ..
13      INTEGER            IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
14     $                   IWORK( * )
15      REAL               D( * ), E( * ), W( * ), WORK( * )
16      COMPLEX            Z( LDZ, * )
17*     ..
18*
19*  Purpose
20*  =======
21*
22*  CSTEIN computes the eigenvectors of a real symmetric tridiagonal
23*  matrix T corresponding to specified eigenvalues, using inverse
24*  iteration.
25*
26*  The maximum number of iterations allowed for each eigenvector is
27*  specified by an internal parameter MAXITS (currently set to 5).
28*
29*  Although the eigenvectors are real, they are stored in a complex
30*  array, which may be passed to CUNMTR or CUPMTR for back
31*  transformation to the eigenvectors of a complex Hermitian matrix
32*  which was reduced to tridiagonal form.
33*
34*
35*  Arguments
36*  =========
37*
38*  N       (input) INTEGER
39*          The order of the matrix.  N >= 0.
40*
41*  D       (input) REAL array, dimension (N)
42*          The n diagonal elements of the tridiagonal matrix T.
43*
44*  E       (input) REAL array, dimension (N)
45*          The (n-1) subdiagonal elements of the tridiagonal matrix
46*          T, stored in elements 1 to N-1; E(N) need not be set.
47*
48*  M       (input) INTEGER
49*          The number of eigenvectors to be found.  0 <= M <= N.
50*
51*  W       (input) REAL array, dimension (N)
52*          The first M elements of W contain the eigenvalues for
53*          which eigenvectors are to be computed.  The eigenvalues
54*          should be grouped by split-off block and ordered from
55*          smallest to largest within the block.  ( The output array
56*          W from SSTEBZ with ORDER = 'B' is expected here. )
57*
58*  IBLOCK  (input) INTEGER array, dimension (N)
59*          The submatrix indices associated with the corresponding
60*          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
61*          the first submatrix from the top, =2 if W(i) belongs to
62*          the second submatrix, etc.  ( The output array IBLOCK
63*          from SSTEBZ is expected here. )
64*
65*  ISPLIT  (input) INTEGER array, dimension (N)
66*          The splitting points, at which T breaks up into submatrices.
67*          The first submatrix consists of rows/columns 1 to
68*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
69*          through ISPLIT( 2 ), etc.
70*          ( The output array ISPLIT from SSTEBZ is expected here. )
71*
72*  Z       (output) COMPLEX array, dimension (LDZ, M)
73*          The computed eigenvectors.  The eigenvector associated
74*          with the eigenvalue W(i) is stored in the i-th column of
75*          Z.  Any vector which fails to converge is set to its current
76*          iterate after MAXITS iterations.
77*          The imaginary parts of the eigenvectors are set to zero.
78*
79*  LDZ     (input) INTEGER
80*          The leading dimension of the array Z.  LDZ >= max(1,N).
81*
82*  WORK    (workspace) REAL array, dimension (5*N)
83*
84*  IWORK   (workspace) INTEGER array, dimension (N)
85*
86*  IFAIL   (output) INTEGER array, dimension (M)
87*          On normal exit, all elements of IFAIL are zero.
88*          If one or more eigenvectors fail to converge after
89*          MAXITS iterations, then their indices are stored in
90*          array IFAIL.
91*
92*  INFO    (output) INTEGER
93*          = 0: successful exit
94*          < 0: if INFO = -i, the i-th argument had an illegal value
95*          > 0: if INFO = i, then i eigenvectors failed to converge
96*               in MAXITS iterations.  Their indices are stored in
97*               array IFAIL.
98*
99*  Internal Parameters
100*  ===================
101*
102*  MAXITS  INTEGER, default = 5
103*          The maximum number of iterations performed.
104*
105*  EXTRA   INTEGER, default = 2
106*          The number of iterations performed after norm growth
107*          criterion is satisfied, should be at least 1.
108*
109* =====================================================================
110*
111*     .. Parameters ..
112      COMPLEX            CZERO, CONE
113      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
114     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
115      REAL               ZERO, ONE, TEN, ODM3, ODM1
116      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 1.0E+1,
117     $                   ODM3 = 1.0E-3, ODM1 = 1.0E-1 )
118      INTEGER            MAXITS, EXTRA
119      PARAMETER          ( MAXITS = 5, EXTRA = 2 )
120*     ..
121*     .. Local Scalars ..
122      INTEGER            B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
123     $                   INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
124     $                   JBLK, JMAX, JR, NBLK, NRMCHK
125      REAL               CTR, EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL,
126     $                   SCL, SEP, STPCRT, TOL, XJ, XJM
127*     ..
128*     .. Local Arrays ..
129      INTEGER            ISEED( 4 )
130*     ..
131*     .. External Functions ..
132      INTEGER            ISAMAX
133      REAL               SASUM, SLAMCH, SNRM2
134      EXTERNAL           ISAMAX, SASUM, SLAMCH, SNRM2
135*     ..
136*     .. External Subroutines ..
137      EXTERNAL           SCOPY, SLAGTF, SLAGTS, SLARNV, SSCAL, XERBLA
138*     ..
139*     .. Intrinsic Functions ..
140      INTRINSIC          ABS, CMPLX, MAX, REAL, SQRT
141*     ..
142*     .. Executable Statements ..
143*
144*     Test the input parameters.
145*
146      INFO = 0
147      DO 10 I = 1, M
148         IFAIL( I ) = 0
149   10 CONTINUE
150*
151      IF( N.LT.0 ) THEN
152         INFO = -1
153      ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
154         INFO = -4
155      ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
156         INFO = -9
157      ELSE
158         DO 20 J = 2, M
159            IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
160               INFO = -6
161               GO TO 30
162            END IF
163            IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
164     $           THEN
165               INFO = -5
166               GO TO 30
167            END IF
168   20    CONTINUE
169   30    CONTINUE
170      END IF
171*
172      IF( INFO.NE.0 ) THEN
173         CALL XERBLA( 'CSTEIN', -INFO )
174         RETURN
175      END IF
176*
177*     Quick return if possible
178*
179      IF( N.EQ.0 .OR. M.EQ.0 ) THEN
180         RETURN
181      ELSE IF( N.EQ.1 ) THEN
182         Z( 1, 1 ) = CONE
183         RETURN
184      END IF
185*
186*     Get machine constants.
187*
188      EPS = SLAMCH( 'Precision' )
189*
190*     Initialize seed for random number generator SLARNV.
191*
192      DO 40 I = 1, 4
193         ISEED( I ) = 1
194   40 CONTINUE
195*
196*     Initialize pointers.
197*
198      INDRV1 = 0
199      INDRV2 = INDRV1 + N
200      INDRV3 = INDRV2 + N
201      INDRV4 = INDRV3 + N
202      INDRV5 = INDRV4 + N
203*
204*     Compute eigenvectors of matrix blocks.
205*
206      J1 = 1
207      DO 180 NBLK = 1, IBLOCK( M )
208*
209*        Find starting and ending indices of block nblk.
210*
211         IF( NBLK.EQ.1 ) THEN
212            B1 = 1
213         ELSE
214            B1 = ISPLIT( NBLK-1 ) + 1
215         END IF
216         BN = ISPLIT( NBLK )
217         BLKSIZ = BN - B1 + 1
218         IF( BLKSIZ.EQ.1 )
219     $      GO TO 60
220         GPIND = B1
221*
222*        Compute reorthogonalization criterion and stopping criterion.
223*
224         ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
225         ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
226         DO 50 I = B1 + 1, BN - 1
227            ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
228     $               ABS( E( I ) ) )
229   50    CONTINUE
230         ORTOL = ODM3*ONENRM
231*
232         STPCRT = SQRT( ODM1 / BLKSIZ )
233*
234*        Loop through eigenvalues of block nblk.
235*
236   60    CONTINUE
237         JBLK = 0
238         DO 170 J = J1, M
239            IF( IBLOCK( J ).NE.NBLK ) THEN
240               J1 = J
241               GO TO 180
242            END IF
243            JBLK = JBLK + 1
244            XJ = W( J )
245*
246*           Skip all the work if the block size is one.
247*
248            IF( BLKSIZ.EQ.1 ) THEN
249               WORK( INDRV1+1 ) = ONE
250               GO TO 140
251            END IF
252*
253*           If eigenvalues j and j-1 are too close, add a relatively
254*           small perturbation.
255*
256            IF( JBLK.GT.1 ) THEN
257               EPS1 = ABS( EPS*XJ )
258               PERTOL = TEN*EPS1
259               SEP = XJ - XJM
260               IF( SEP.LT.PERTOL )
261     $            XJ = XJM + PERTOL
262            END IF
263*
264            ITS = 0
265            NRMCHK = 0
266*
267*           Get random starting vector.
268*
269            CALL SLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
270*
271*           Copy the matrix T so it won't be destroyed in factorization.
272*
273            CALL SCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
274            CALL SCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
275            CALL SCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
276*
277*           Compute LU factors with partial pivoting  ( PT = LU )
278*
279            TOL = ZERO
280            CALL SLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
281     $                   WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
282     $                   IINFO )
283*
284*           Update iteration count.
285*
286   70       CONTINUE
287            ITS = ITS + 1
288            IF( ITS.GT.MAXITS )
289     $         GO TO 120
290*
291*           Normalize and scale the righthand side vector Pb.
292*
293            SCL = BLKSIZ*ONENRM*MAX( EPS,
294     $            ABS( WORK( INDRV4+BLKSIZ ) ) ) /
295     $            SASUM( BLKSIZ, WORK( INDRV1+1 ), 1 )
296            CALL SSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
297*
298*           Solve the system LU = Pb.
299*
300            CALL SLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
301     $                   WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
302     $                   WORK( INDRV1+1 ), TOL, IINFO )
303*
304*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are
305*           close enough.
306*
307            IF( JBLK.EQ.1 )
308     $         GO TO 110
309            IF( ABS( XJ-XJM ).GT.ORTOL )
310     $         GPIND = J
311            IF( GPIND.NE.J ) THEN
312               DO 100 I = GPIND, J - 1
313                  CTR = ZERO
314                  DO 80 JR = 1, BLKSIZ
315                     CTR = CTR + WORK( INDRV1+JR )*
316     $                     REAL( Z( B1-1+JR, I ) )
317   80             CONTINUE
318                  DO 90 JR = 1, BLKSIZ
319                     WORK( INDRV1+JR ) = WORK( INDRV1+JR ) -
320     $                                   CTR*REAL( Z( B1-1+JR, I ) )
321   90             CONTINUE
322  100          CONTINUE
323            END IF
324*
325*           Check the infinity norm of the iterate.
326*
327  110       CONTINUE
328            JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
329            NRM = ABS( WORK( INDRV1+JMAX ) )
330*
331*           Continue for additional iterations after norm reaches
332*           stopping criterion.
333*
334            IF( NRM.LT.STPCRT )
335     $         GO TO 70
336            NRMCHK = NRMCHK + 1
337            IF( NRMCHK.LT.EXTRA+1 )
338     $         GO TO 70
339*
340            GO TO 130
341*
342*           If stopping criterion was not satisfied, update info and
343*           store eigenvector number in array ifail.
344*
345  120       CONTINUE
346            INFO = INFO + 1
347            IFAIL( INFO ) = J
348*
349*           Accept iterate as jth eigenvector.
350*
351  130       CONTINUE
352            SCL = ONE / SNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
353            JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
354            IF( WORK( INDRV1+JMAX ).LT.ZERO )
355     $         SCL = -SCL
356            CALL SSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
357  140       CONTINUE
358            DO 150 I = 1, N
359               Z( I, J ) = CZERO
360  150       CONTINUE
361            DO 160 I = 1, BLKSIZ
362               Z( B1+I-1, J ) = CMPLX( WORK( INDRV1+I ), ZERO )
363  160       CONTINUE
364*
365*           Save the shift to check eigenvalue spacing at next
366*           iteration.
367*
368            XJM = XJ
369*
370  170    CONTINUE
371  180 CONTINUE
372*
373      RETURN
374*
375*     End of CSTEIN
376*
377      END
378