1      SUBROUTINE SLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
2     $                   LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
3     $                   PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
4     $                   INFO )
5*
6*  -- LAPACK routine (version 3.0) --
7*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
8*     Courant Institute, Argonne National Lab, and Rice University
9*     September 30, 1994
10*
11*     .. Scalar Arguments ..
12      INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
13     $                   QSIZ, TLVLS
14      REAL               RHO
15*     ..
16*     .. Array Arguments ..
17      INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
18     $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
19      REAL               D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
20     $                   QSTORE( * ), WORK( * )
21*     ..
22*
23*  Purpose
24*  =======
25*
26*  SLAED7 computes the updated eigensystem of a diagonal
27*  matrix after modification by a rank-one symmetric matrix. This
28*  routine is used only for the eigenproblem which requires all
29*  eigenvalues and optionally eigenvectors of a dense symmetric matrix
30*  that has been reduced to tridiagonal form.  SLAED1 handles
31*  the case in which all eigenvalues and eigenvectors of a symmetric
32*  tridiagonal matrix are desired.
33*
34*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
35*
36*     where Z = Q'u, u is a vector of length N with ones in the
37*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
38*
39*     The eigenvectors of the original matrix are stored in Q, and the
40*     eigenvalues are in D.  The algorithm consists of three stages:
41*
42*        The first stage consists of deflating the size of the problem
43*        when there are multiple eigenvalues or if there is a zero in
44*        the Z vector.  For each such occurence the dimension of the
45*        secular equation problem is reduced by one.  This stage is
46*        performed by the routine SLAED8.
47*
48*        The second stage consists of calculating the updated
49*        eigenvalues. This is done by finding the roots of the secular
50*        equation via the routine SLAED4 (as called by SLAED9).
51*        This routine also calculates the eigenvectors of the current
52*        problem.
53*
54*        The final stage consists of computing the updated eigenvectors
55*        directly using the updated eigenvalues.  The eigenvectors for
56*        the current problem are multiplied with the eigenvectors from
57*        the overall problem.
58*
59*  Arguments
60*  =========
61*
62*  ICOMPQ  (input) INTEGER
63*          = 0:  Compute eigenvalues only.
64*          = 1:  Compute eigenvectors of original dense symmetric matrix
65*                also.  On entry, Q contains the orthogonal matrix used
66*                to reduce the original matrix to tridiagonal form.
67*
68*  N      (input) INTEGER
69*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
70*
71*  QSIZ   (input) INTEGER
72*         The dimension of the orthogonal matrix used to reduce
73*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
74*
75*  TLVLS  (input) INTEGER
76*         The total number of merging levels in the overall divide and
77*         conquer tree.
78*
79*  CURLVL (input) INTEGER
80*         The current level in the overall merge routine,
81*         0 <= CURLVL <= TLVLS.
82*
83*  CURPBM (input) INTEGER
84*         The current problem in the current level in the overall
85*         merge routine (counting from upper left to lower right).
86*
87*  D      (input/output) REAL array, dimension (N)
88*         On entry, the eigenvalues of the rank-1-perturbed matrix.
89*         On exit, the eigenvalues of the repaired matrix.
90*
91*  Q      (input/output) REAL array, dimension (LDQ, N)
92*         On entry, the eigenvectors of the rank-1-perturbed matrix.
93*         On exit, the eigenvectors of the repaired tridiagonal matrix.
94*
95*  LDQ    (input) INTEGER
96*         The leading dimension of the array Q.  LDQ >= max(1,N).
97*
98*  INDXQ  (output) INTEGER array, dimension (N)
99*         The permutation which will reintegrate the subproblem just
100*         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
101*         will be in ascending order.
102*
103*  RHO    (input) REAL
104*         The subdiagonal element used to create the rank-1
105*         modification.
106*
107*  CUTPNT (input) INTEGER
108*         Contains the location of the last eigenvalue in the leading
109*         sub-matrix.  min(1,N) <= CUTPNT <= N.
110*
111*  QSTORE (input/output) REAL array, dimension (N**2+1)
112*         Stores eigenvectors of submatrices encountered during
113*         divide and conquer, packed together. QPTR points to
114*         beginning of the submatrices.
115*
116*  QPTR   (input/output) INTEGER array, dimension (N+2)
117*         List of indices pointing to beginning of submatrices stored
118*         in QSTORE. The submatrices are numbered starting at the
119*         bottom left of the divide and conquer tree, from left to
120*         right and bottom to top.
121*
122*  PRMPTR (input) INTEGER array, dimension (N lg N)
123*         Contains a list of pointers which indicate where in PERM a
124*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
125*         indicates the size of the permutation and also the size of
126*         the full, non-deflated problem.
127*
128*  PERM   (input) INTEGER array, dimension (N lg N)
129*         Contains the permutations (from deflation and sorting) to be
130*         applied to each eigenblock.
131*
132*  GIVPTR (input) INTEGER array, dimension (N lg N)
133*         Contains a list of pointers which indicate where in GIVCOL a
134*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
135*         indicates the number of Givens rotations.
136*
137*  GIVCOL (input) INTEGER array, dimension (2, N lg N)
138*         Each pair of numbers indicates a pair of columns to take place
139*         in a Givens rotation.
140*
141*  GIVNUM (input) REAL array, dimension (2, N lg N)
142*         Each number indicates the S value to be used in the
143*         corresponding Givens rotation.
144*
145*  WORK   (workspace) REAL array, dimension (3*N+QSIZ*N)
146*
147*  IWORK  (workspace) INTEGER array, dimension (4*N)
148*
149*  INFO   (output) INTEGER
150*          = 0:  successful exit.
151*          < 0:  if INFO = -i, the i-th argument had an illegal value.
152*          > 0:  if INFO = 1, an eigenvalue did not converge
153*
154*  Further Details
155*  ===============
156*
157*  Based on contributions by
158*     Jeff Rutter, Computer Science Division, University of California
159*     at Berkeley, USA
160*
161*  =====================================================================
162*
163*     .. Parameters ..
164      REAL               ONE, ZERO
165      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0 )
166*     ..
167*     .. Local Scalars ..
168      INTEGER            COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
169     $                   IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
170*     ..
171*     .. External Subroutines ..
172      EXTERNAL           SGEMM, SLAED8, SLAED9, SLAEDA, SLAMRG, XERBLA
173*     ..
174*     .. Intrinsic Functions ..
175      INTRINSIC          MAX, MIN
176*     ..
177*     .. Executable Statements ..
178*
179*     Test the input parameters.
180*
181      INFO = 0
182*
183      IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
184         INFO = -1
185      ELSE IF( N.LT.0 ) THEN
186         INFO = -2
187      ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
188         INFO = -4
189      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
190         INFO = -9
191      ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
192         INFO = -12
193      END IF
194      IF( INFO.NE.0 ) THEN
195         CALL XERBLA( 'SLAED7', -INFO )
196         RETURN
197      END IF
198*
199*     Quick return if possible
200*
201      IF( N.EQ.0 )
202     $   RETURN
203*
204*     The following values are for bookkeeping purposes only.  They are
205*     integer pointers which indicate the portion of the workspace
206*     used by a particular array in SLAED8 and SLAED9.
207*
208      IF( ICOMPQ.EQ.1 ) THEN
209         LDQ2 = QSIZ
210      ELSE
211         LDQ2 = N
212      END IF
213*
214      IZ = 1
215      IDLMDA = IZ + N
216      IW = IDLMDA + N
217      IQ2 = IW + N
218      IS = IQ2 + N*LDQ2
219*
220      INDX = 1
221      INDXC = INDX + N
222      COLTYP = INDXC + N
223      INDXP = COLTYP + N
224*
225*     Form the z-vector which consists of the last row of Q_1 and the
226*     first row of Q_2.
227*
228      PTR = 1 + 2**TLVLS
229      DO 10 I = 1, CURLVL - 1
230         PTR = PTR + 2**( TLVLS-I )
231   10 CONTINUE
232      CURR = PTR + CURPBM
233      CALL SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
234     $             GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
235     $             WORK( IZ+N ), INFO )
236*
237*     When solving the final problem, we no longer need the stored data,
238*     so we will overwrite the data from this level onto the previously
239*     used storage space.
240*
241      IF( CURLVL.EQ.TLVLS ) THEN
242         QPTR( CURR ) = 1
243         PRMPTR( CURR ) = 1
244         GIVPTR( CURR ) = 1
245      END IF
246*
247*     Sort and Deflate eigenvalues.
248*
249      CALL SLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
250     $             WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
251     $             WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
252     $             GIVCOL( 1, GIVPTR( CURR ) ),
253     $             GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
254     $             IWORK( INDX ), INFO )
255      PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
256      GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
257*
258*     Solve Secular Equation.
259*
260      IF( K.NE.0 ) THEN
261         CALL SLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
262     $                WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
263         IF( INFO.NE.0 )
264     $      GO TO 30
265         IF( ICOMPQ.EQ.1 ) THEN
266            CALL SGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
267     $                  QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
268         END IF
269         QPTR( CURR+1 ) = QPTR( CURR ) + K**2
270*
271*     Prepare the INDXQ sorting permutation.
272*
273         N1 = K
274         N2 = N - K
275         CALL SLAMRG( N1, N2, D, 1, -1, INDXQ )
276      ELSE
277         QPTR( CURR+1 ) = QPTR( CURR )
278         DO 20 I = 1, N
279            INDXQ( I ) = I
280   20    CONTINUE
281      END IF
282*
283   30 CONTINUE
284      RETURN
285*
286*     End of SLAED7
287*
288      END
289