1      SUBROUTINE ZHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
2     $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
3     $                   IWORK, IFAIL, INFO )
4*
5*  -- LAPACK driver routine (version 3.0) --
6*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
7*     Courant Institute, Argonne National Lab, and Rice University
8*     June 30, 1999
9*
10*     .. Scalar Arguments ..
11      CHARACTER          JOBZ, RANGE, UPLO
12      INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
13      DOUBLE PRECISION   ABSTOL, VL, VU
14*     ..
15*     .. Array Arguments ..
16      INTEGER            IFAIL( * ), IWORK( * )
17      DOUBLE PRECISION   RWORK( * ), W( * )
18      COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
19*     ..
20*
21*  Purpose
22*  =======
23*
24*  ZHPGVX computes selected eigenvalues and, optionally, eigenvectors
25*  of a complex generalized Hermitian-definite eigenproblem, of the form
26*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
27*  B are assumed to be Hermitian, stored in packed format, and B is also
28*  positive definite.  Eigenvalues and eigenvectors can be selected by
29*  specifying either a range of values or a range of indices for the
30*  desired eigenvalues.
31*
32*  Arguments
33*  =========
34*
35*  ITYPE   (input) INTEGER
36*          Specifies the problem type to be solved:
37*          = 1:  A*x = (lambda)*B*x
38*          = 2:  A*B*x = (lambda)*x
39*          = 3:  B*A*x = (lambda)*x
40*
41*  JOBZ    (input) CHARACTER*1
42*          = 'N':  Compute eigenvalues only;
43*          = 'V':  Compute eigenvalues and eigenvectors.
44*
45*  RANGE   (input) CHARACTER*1
46*          = 'A': all eigenvalues will be found;
47*          = 'V': all eigenvalues in the half-open interval (VL,VU]
48*                 will be found;
49*          = 'I': the IL-th through IU-th eigenvalues will be found.
50*
51*  UPLO    (input) CHARACTER*1
52*          = 'U':  Upper triangles of A and B are stored;
53*          = 'L':  Lower triangles of A and B are stored.
54*
55*  N       (input) INTEGER
56*          The order of the matrices A and B.  N >= 0.
57*
58*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
59*          On entry, the upper or lower triangle of the Hermitian matrix
60*          A, packed columnwise in a linear array.  The j-th column of A
61*          is stored in the array AP as follows:
62*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
63*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
64*
65*          On exit, the contents of AP are destroyed.
66*
67*  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
68*          On entry, the upper or lower triangle of the Hermitian matrix
69*          B, packed columnwise in a linear array.  The j-th column of B
70*          is stored in the array BP as follows:
71*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
72*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
73*
74*          On exit, the triangular factor U or L from the Cholesky
75*          factorization B = U**H*U or B = L*L**H, in the same storage
76*          format as B.
77*
78*  VL      (input) DOUBLE PRECISION
79*  VU      (input) DOUBLE PRECISION
80*          If RANGE='V', the lower and upper bounds of the interval to
81*          be searched for eigenvalues. VL < VU.
82*          Not referenced if RANGE = 'A' or 'I'.
83*
84*  IL      (input) INTEGER
85*  IU      (input) INTEGER
86*          If RANGE='I', the indices (in ascending order) of the
87*          smallest and largest eigenvalues to be returned.
88*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
89*          Not referenced if RANGE = 'A' or 'V'.
90*
91*  ABSTOL  (input) DOUBLE PRECISION
92*          The absolute error tolerance for the eigenvalues.
93*          An approximate eigenvalue is accepted as converged
94*          when it is determined to lie in an interval [a,b]
95*          of width less than or equal to
96*
97*                  ABSTOL + EPS *   max( |a|,|b| ) ,
98*
99*          where EPS is the machine precision.  If ABSTOL is less than
100*          or equal to zero, then  EPS*|T|  will be used in its place,
101*          where |T| is the 1-norm of the tridiagonal matrix obtained
102*          by reducing AP to tridiagonal form.
103*
104*          Eigenvalues will be computed most accurately when ABSTOL is
105*          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
106*          If this routine returns with INFO>0, indicating that some
107*          eigenvectors did not converge, try setting ABSTOL to
108*          2*DLAMCH('S').
109*
110*  M       (output) INTEGER
111*          The total number of eigenvalues found.  0 <= M <= N.
112*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
113*
114*  W       (output) DOUBLE PRECISION array, dimension (N)
115*          On normal exit, the first M elements contain the selected
116*          eigenvalues in ascending order.
117*
118*  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
119*          If JOBZ = 'N', then Z is not referenced.
120*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
121*          contain the orthonormal eigenvectors of the matrix A
122*          corresponding to the selected eigenvalues, with the i-th
123*          column of Z holding the eigenvector associated with W(i).
124*          The eigenvectors are normalized as follows:
125*          if ITYPE = 1 or 2, Z**H*B*Z = I;
126*          if ITYPE = 3, Z**H*inv(B)*Z = I.
127*
128*          If an eigenvector fails to converge, then that column of Z
129*          contains the latest approximation to the eigenvector, and the
130*          index of the eigenvector is returned in IFAIL.
131*          Note: the user must ensure that at least max(1,M) columns are
132*          supplied in the array Z; if RANGE = 'V', the exact value of M
133*          is not known in advance and an upper bound must be used.
134*
135*  LDZ     (input) INTEGER
136*          The leading dimension of the array Z.  LDZ >= 1, and if
137*          JOBZ = 'V', LDZ >= max(1,N).
138*
139*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
140*
141*  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
142*
143*  IWORK   (workspace) INTEGER array, dimension (5*N)
144*
145*  IFAIL   (output) INTEGER array, dimension (N)
146*          If JOBZ = 'V', then if INFO = 0, the first M elements of
147*          IFAIL are zero.  If INFO > 0, then IFAIL contains the
148*          indices of the eigenvectors that failed to converge.
149*          If JOBZ = 'N', then IFAIL is not referenced.
150*
151*  INFO    (output) INTEGER
152*          = 0:  successful exit
153*          < 0:  if INFO = -i, the i-th argument had an illegal value
154*          > 0:  ZPPTRF or ZHPEVX returned an error code:
155*             <= N:  if INFO = i, ZHPEVX failed to converge;
156*                    i eigenvectors failed to converge.  Their indices
157*                    are stored in array IFAIL.
158*             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
159*                    minor of order i of B is not positive definite.
160*                    The factorization of B could not be completed and
161*                    no eigenvalues or eigenvectors were computed.
162*
163*  Further Details
164*  ===============
165*
166*  Based on contributions by
167*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
168*
169*  =====================================================================
170*
171*     .. Local Scalars ..
172      LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
173      CHARACTER          TRANS
174      INTEGER            J
175*     ..
176*     .. External Functions ..
177      LOGICAL            LSAME
178      EXTERNAL           LSAME
179*     ..
180*     .. External Subroutines ..
181      EXTERNAL           XERBLA, ZHPEVX, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
182*     ..
183*     .. Intrinsic Functions ..
184      INTRINSIC          MIN
185*     ..
186*     .. Executable Statements ..
187*
188*     Test the input parameters.
189*
190      WANTZ = LSAME( JOBZ, 'V' )
191      UPPER = LSAME( UPLO, 'U' )
192      ALLEIG = LSAME( RANGE, 'A' )
193      VALEIG = LSAME( RANGE, 'V' )
194      INDEIG = LSAME( RANGE, 'I' )
195*
196      INFO = 0
197      IF( ITYPE.LT.0 .OR. ITYPE.GT.3 ) THEN
198         INFO = -1
199      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
200         INFO = -2
201      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
202         INFO = -3
203      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
204         INFO = -4
205      ELSE IF( N.LT.0 ) THEN
206         INFO = -5
207      ELSE IF( VALEIG .AND. N.GT.0 .AND. VU.LE.VL ) THEN
208         INFO = -9
209      ELSE IF( INDEIG .AND. IL.LT.1 ) THEN
210         INFO = -10
211      ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) ) THEN
212         INFO = -11
213      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
214         INFO = -16
215      END IF
216      IF( INFO.NE.0 ) THEN
217         CALL XERBLA( 'ZHPGVX', -INFO )
218         RETURN
219      END IF
220*
221*     Quick return if possible
222*
223      IF( N.EQ.0 )
224     $   RETURN
225*
226*     Form a Cholesky factorization of B.
227*
228      CALL ZPPTRF( UPLO, N, BP, INFO )
229      IF( INFO.NE.0 ) THEN
230         INFO = N + INFO
231         RETURN
232      END IF
233*
234*     Transform problem to standard eigenvalue problem and solve.
235*
236      CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
237      CALL ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
238     $             W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
239*
240      IF( WANTZ ) THEN
241*
242*        Backtransform eigenvectors to the original problem.
243*
244         IF( INFO.GT.0 )
245     $      M = INFO - 1
246         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
247*
248*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
249*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
250*
251            IF( UPPER ) THEN
252               TRANS = 'N'
253            ELSE
254               TRANS = 'C'
255            END IF
256*
257            DO 10 J = 1, M
258               CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
259     $                     1 )
260   10       CONTINUE
261*
262         ELSE IF( ITYPE.EQ.3 ) THEN
263*
264*           For B*A*x=(lambda)*x;
265*           backtransform eigenvectors: x = L*y or U'*y
266*
267            IF( UPPER ) THEN
268               TRANS = 'C'
269            ELSE
270               TRANS = 'N'
271            END IF
272*
273            DO 20 J = 1, M
274               CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
275     $                     1 )
276   20       CONTINUE
277         END IF
278      END IF
279*
280      RETURN
281*
282*     End of ZHPGVX
283*
284      END
285