1      SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
2     $                   EPS3, SMLNUM, INFO )
3*
4*  -- LAPACK auxiliary routine (version 3.0) --
5*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6*     Courant Institute, Argonne National Lab, and Rice University
7*     September 30, 1994
8*
9*     .. Scalar Arguments ..
10      LOGICAL            NOINIT, RIGHTV
11      INTEGER            INFO, LDB, LDH, N
12      DOUBLE PRECISION   EPS3, SMLNUM
13      COMPLEX*16         W
14*     ..
15*     .. Array Arguments ..
16      DOUBLE PRECISION   RWORK( * )
17      COMPLEX*16         B( LDB, * ), H( LDH, * ), V( * )
18*     ..
19*
20*  Purpose
21*  =======
22*
23*  ZLAEIN uses inverse iteration to find a right or left eigenvector
24*  corresponding to the eigenvalue W of a complex upper Hessenberg
25*  matrix H.
26*
27*  Arguments
28*  =========
29*
30*  RIGHTV   (input) LOGICAL
31*          = .TRUE. : compute right eigenvector;
32*          = .FALSE.: compute left eigenvector.
33*
34*  NOINIT   (input) LOGICAL
35*          = .TRUE. : no initial vector supplied in V
36*          = .FALSE.: initial vector supplied in V.
37*
38*  N       (input) INTEGER
39*          The order of the matrix H.  N >= 0.
40*
41*  H       (input) COMPLEX*16 array, dimension (LDH,N)
42*          The upper Hessenberg matrix H.
43*
44*  LDH     (input) INTEGER
45*          The leading dimension of the array H.  LDH >= max(1,N).
46*
47*  W       (input) COMPLEX*16
48*          The eigenvalue of H whose corresponding right or left
49*          eigenvector is to be computed.
50*
51*  V       (input/output) COMPLEX*16 array, dimension (N)
52*          On entry, if NOINIT = .FALSE., V must contain a starting
53*          vector for inverse iteration; otherwise V need not be set.
54*          On exit, V contains the computed eigenvector, normalized so
55*          that the component of largest magnitude has magnitude 1; here
56*          the magnitude of a complex number (x,y) is taken to be
57*          |x| + |y|.
58*
59*  B       (workspace) COMPLEX*16 array, dimension (LDB,N)
60*
61*  LDB     (input) INTEGER
62*          The leading dimension of the array B.  LDB >= max(1,N).
63*
64*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
65*
66*  EPS3    (input) DOUBLE PRECISION
67*          A small machine-dependent value which is used to perturb
68*          close eigenvalues, and to replace zero pivots.
69*
70*  SMLNUM  (input) DOUBLE PRECISION
71*          A machine-dependent value close to the underflow threshold.
72*
73*  INFO    (output) INTEGER
74*          = 0:  successful exit
75*          = 1:  inverse iteration did not converge; V is set to the
76*                last iterate.
77*
78*  =====================================================================
79*
80*     .. Parameters ..
81      DOUBLE PRECISION   ONE, TENTH
82      PARAMETER          ( ONE = 1.0D+0, TENTH = 1.0D-1 )
83      COMPLEX*16         ZERO
84      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
85*     ..
86*     .. Local Scalars ..
87      CHARACTER          NORMIN, TRANS
88      INTEGER            I, IERR, ITS, J
89      DOUBLE PRECISION   GROWTO, NRMSML, ROOTN, RTEMP, SCALE, VNORM
90      COMPLEX*16         CDUM, EI, EJ, TEMP, X
91*     ..
92*     .. External Functions ..
93      INTEGER            IZAMAX
94      DOUBLE PRECISION   DZASUM, DZNRM2
95      COMPLEX*16         ZLADIV
96      EXTERNAL           IZAMAX, DZASUM, DZNRM2, ZLADIV
97*     ..
98*     .. External Subroutines ..
99      EXTERNAL           ZDSCAL, ZLATRS
100*     ..
101*     .. Intrinsic Functions ..
102      INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
103*     ..
104*     .. Statement Functions ..
105      DOUBLE PRECISION   CABS1
106*     ..
107*     .. Statement Function definitions ..
108      CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
109*     ..
110*     .. Executable Statements ..
111*
112      INFO = 0
113*
114*     GROWTO is the threshold used in the acceptance test for an
115*     eigenvector.
116*
117      ROOTN = SQRT( DBLE( N ) )
118      GROWTO = TENTH / ROOTN
119      NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
120*
121*     Form B = H - W*I (except that the subdiagonal elements are not
122*     stored).
123*
124      DO 20 J = 1, N
125         DO 10 I = 1, J - 1
126            B( I, J ) = H( I, J )
127   10    CONTINUE
128         B( J, J ) = H( J, J ) - W
129   20 CONTINUE
130*
131      IF( NOINIT ) THEN
132*
133*        Initialize V.
134*
135         DO 30 I = 1, N
136            V( I ) = EPS3
137   30    CONTINUE
138      ELSE
139*
140*        Scale supplied initial vector.
141*
142         VNORM = DZNRM2( N, V, 1 )
143         CALL ZDSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), V, 1 )
144      END IF
145*
146      IF( RIGHTV ) THEN
147*
148*        LU decomposition with partial pivoting of B, replacing zero
149*        pivots by EPS3.
150*
151         DO 60 I = 1, N - 1
152            EI = H( I+1, I )
153            IF( CABS1( B( I, I ) ).LT.CABS1( EI ) ) THEN
154*
155*              Interchange rows and eliminate.
156*
157               X = ZLADIV( B( I, I ), EI )
158               B( I, I ) = EI
159               DO 40 J = I + 1, N
160                  TEMP = B( I+1, J )
161                  B( I+1, J ) = B( I, J ) - X*TEMP
162                  B( I, J ) = TEMP
163   40          CONTINUE
164            ELSE
165*
166*              Eliminate without interchange.
167*
168               IF( B( I, I ).EQ.ZERO )
169     $            B( I, I ) = EPS3
170               X = ZLADIV( EI, B( I, I ) )
171               IF( X.NE.ZERO ) THEN
172                  DO 50 J = I + 1, N
173                     B( I+1, J ) = B( I+1, J ) - X*B( I, J )
174   50             CONTINUE
175               END IF
176            END IF
177   60    CONTINUE
178         IF( B( N, N ).EQ.ZERO )
179     $      B( N, N ) = EPS3
180*
181         TRANS = 'N'
182*
183      ELSE
184*
185*        UL decomposition with partial pivoting of B, replacing zero
186*        pivots by EPS3.
187*
188         DO 90 J = N, 2, -1
189            EJ = H( J, J-1 )
190            IF( CABS1( B( J, J ) ).LT.CABS1( EJ ) ) THEN
191*
192*              Interchange columns and eliminate.
193*
194               X = ZLADIV( B( J, J ), EJ )
195               B( J, J ) = EJ
196               DO 70 I = 1, J - 1
197                  TEMP = B( I, J-1 )
198                  B( I, J-1 ) = B( I, J ) - X*TEMP
199                  B( I, J ) = TEMP
200   70          CONTINUE
201            ELSE
202*
203*              Eliminate without interchange.
204*
205               IF( B( J, J ).EQ.ZERO )
206     $            B( J, J ) = EPS3
207               X = ZLADIV( EJ, B( J, J ) )
208               IF( X.NE.ZERO ) THEN
209                  DO 80 I = 1, J - 1
210                     B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
211   80             CONTINUE
212               END IF
213            END IF
214   90    CONTINUE
215         IF( B( 1, 1 ).EQ.ZERO )
216     $      B( 1, 1 ) = EPS3
217*
218         TRANS = 'C'
219*
220      END IF
221*
222      NORMIN = 'N'
223      DO 110 ITS = 1, N
224*
225*        Solve U*x = scale*v for a right eigenvector
226*          or U'*x = scale*v for a left eigenvector,
227*        overwriting x on v.
228*
229         CALL ZLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB, V,
230     $                SCALE, RWORK, IERR )
231         NORMIN = 'Y'
232*
233*        Test for sufficient growth in the norm of v.
234*
235         VNORM = DZASUM( N, V, 1 )
236         IF( VNORM.GE.GROWTO*SCALE )
237     $      GO TO 120
238*
239*        Choose new orthogonal starting vector and try again.
240*
241         RTEMP = EPS3 / ( ROOTN+ONE )
242         V( 1 ) = EPS3
243         DO 100 I = 2, N
244            V( I ) = RTEMP
245  100    CONTINUE
246         V( N-ITS+1 ) = V( N-ITS+1 ) - EPS3*ROOTN
247  110 CONTINUE
248*
249*     Failure to find eigenvector in N iterations.
250*
251      INFO = 1
252*
253  120 CONTINUE
254*
255*     Normalize eigenvector.
256*
257      I = IZAMAX( N, V, 1 )
258      CALL ZDSCAL( N, ONE / CABS1( V( I ) ), V, 1 )
259*
260      RETURN
261*
262*     End of ZLAEIN
263*
264      END
265