1      SUBROUTINE ZLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
2     $                   CNORM, INFO )
3*
4*  -- LAPACK auxiliary routine (version 3.0) --
5*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6*     Courant Institute, Argonne National Lab, and Rice University
7*     June 30, 1992
8*
9*     .. Scalar Arguments ..
10      CHARACTER          DIAG, NORMIN, TRANS, UPLO
11      INTEGER            INFO, LDA, N
12      DOUBLE PRECISION   SCALE
13*     ..
14*     .. Array Arguments ..
15      DOUBLE PRECISION   CNORM( * )
16      COMPLEX*16         A( LDA, * ), X( * )
17*     ..
18*
19*  Purpose
20*  =======
21*
22*  ZLATRS solves one of the triangular systems
23*
24*     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
25*
26*  with scaling to prevent overflow.  Here A is an upper or lower
27*  triangular matrix, A**T denotes the transpose of A, A**H denotes the
28*  conjugate transpose of A, x and b are n-element vectors, and s is a
29*  scaling factor, usually less than or equal to 1, chosen so that the
30*  components of x will be less than the overflow threshold.  If the
31*  unscaled problem will not cause overflow, the Level 2 BLAS routine
32*  ZTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
33*  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
34*
35*  Arguments
36*  =========
37*
38*  UPLO    (input) CHARACTER*1
39*          Specifies whether the matrix A is upper or lower triangular.
40*          = 'U':  Upper triangular
41*          = 'L':  Lower triangular
42*
43*  TRANS   (input) CHARACTER*1
44*          Specifies the operation applied to A.
45*          = 'N':  Solve A * x = s*b     (No transpose)
46*          = 'T':  Solve A**T * x = s*b  (Transpose)
47*          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
48*
49*  DIAG    (input) CHARACTER*1
50*          Specifies whether or not the matrix A is unit triangular.
51*          = 'N':  Non-unit triangular
52*          = 'U':  Unit triangular
53*
54*  NORMIN  (input) CHARACTER*1
55*          Specifies whether CNORM has been set or not.
56*          = 'Y':  CNORM contains the column norms on entry
57*          = 'N':  CNORM is not set on entry.  On exit, the norms will
58*                  be computed and stored in CNORM.
59*
60*  N       (input) INTEGER
61*          The order of the matrix A.  N >= 0.
62*
63*  A       (input) COMPLEX*16 array, dimension (LDA,N)
64*          The triangular matrix A.  If UPLO = 'U', the leading n by n
65*          upper triangular part of the array A contains the upper
66*          triangular matrix, and the strictly lower triangular part of
67*          A is not referenced.  If UPLO = 'L', the leading n by n lower
68*          triangular part of the array A contains the lower triangular
69*          matrix, and the strictly upper triangular part of A is not
70*          referenced.  If DIAG = 'U', the diagonal elements of A are
71*          also not referenced and are assumed to be 1.
72*
73*  LDA     (input) INTEGER
74*          The leading dimension of the array A.  LDA >= max (1,N).
75*
76*  X       (input/output) COMPLEX*16 array, dimension (N)
77*          On entry, the right hand side b of the triangular system.
78*          On exit, X is overwritten by the solution vector x.
79*
80*  SCALE   (output) DOUBLE PRECISION
81*          The scaling factor s for the triangular system
82*             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
83*          If SCALE = 0, the matrix A is singular or badly scaled, and
84*          the vector x is an exact or approximate solution to A*x = 0.
85*
86*  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
87*
88*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
89*          contains the norm of the off-diagonal part of the j-th column
90*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
91*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
92*          must be greater than or equal to the 1-norm.
93*
94*          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
95*          returns the 1-norm of the offdiagonal part of the j-th column
96*          of A.
97*
98*  INFO    (output) INTEGER
99*          = 0:  successful exit
100*          < 0:  if INFO = -k, the k-th argument had an illegal value
101*
102*  Further Details
103*  ======= =======
104*
105*  A rough bound on x is computed; if that is less than overflow, ZTRSV
106*  is called, otherwise, specific code is used which checks for possible
107*  overflow or divide-by-zero at every operation.
108*
109*  A columnwise scheme is used for solving A*x = b.  The basic algorithm
110*  if A is lower triangular is
111*
112*       x[1:n] := b[1:n]
113*       for j = 1, ..., n
114*            x(j) := x(j) / A(j,j)
115*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
116*       end
117*
118*  Define bounds on the components of x after j iterations of the loop:
119*     M(j) = bound on x[1:j]
120*     G(j) = bound on x[j+1:n]
121*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
122*
123*  Then for iteration j+1 we have
124*     M(j+1) <= G(j) / | A(j+1,j+1) |
125*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
126*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
127*
128*  where CNORM(j+1) is greater than or equal to the infinity-norm of
129*  column j+1 of A, not counting the diagonal.  Hence
130*
131*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
132*                  1<=i<=j
133*  and
134*
135*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
136*                                   1<=i< j
137*
138*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTRSV if the
139*  reciprocal of the largest M(j), j=1,..,n, is larger than
140*  max(underflow, 1/overflow).
141*
142*  The bound on x(j) is also used to determine when a step in the
143*  columnwise method can be performed without fear of overflow.  If
144*  the computed bound is greater than a large constant, x is scaled to
145*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
146*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
147*
148*  Similarly, a row-wise scheme is used to solve A**T *x = b  or
149*  A**H *x = b.  The basic algorithm for A upper triangular is
150*
151*       for j = 1, ..., n
152*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
153*       end
154*
155*  We simultaneously compute two bounds
156*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
157*       M(j) = bound on x(i), 1<=i<=j
158*
159*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
160*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
161*  Then the bound on x(j) is
162*
163*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
164*
165*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
166*                      1<=i<=j
167*
168*  and we can safely call ZTRSV if 1/M(n) and 1/G(n) are both greater
169*  than max(underflow, 1/overflow).
170*
171*  =====================================================================
172*
173*     .. Parameters ..
174      DOUBLE PRECISION   ZERO, HALF, ONE, TWO
175      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
176     $                   TWO = 2.0D+0 )
177*     ..
178*     .. Local Scalars ..
179      LOGICAL            NOTRAN, NOUNIT, UPPER
180      INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
181      DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
182     $                   XBND, XJ, XMAX
183      COMPLEX*16         CSUMJ, TJJS, USCAL, ZDUM
184*     ..
185*     .. External Functions ..
186      LOGICAL            LSAME
187      INTEGER            IDAMAX, IZAMAX
188      DOUBLE PRECISION   DLAMCH, DZASUM
189      COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
190      EXTERNAL           LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
191     $                   ZDOTU, ZLADIV
192*     ..
193*     .. External Subroutines ..
194      EXTERNAL           DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTRSV
195*     ..
196*     .. Intrinsic Functions ..
197      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
198*     ..
199*     .. Statement Functions ..
200      DOUBLE PRECISION   CABS1, CABS2
201*     ..
202*     .. Statement Function definitions ..
203      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
204      CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
205     $                ABS( DIMAG( ZDUM ) / 2.D0 )
206*     ..
207*     .. Executable Statements ..
208*
209      INFO = 0
210      UPPER = LSAME( UPLO, 'U' )
211      NOTRAN = LSAME( TRANS, 'N' )
212      NOUNIT = LSAME( DIAG, 'N' )
213*
214*     Test the input parameters.
215*
216      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
217         INFO = -1
218      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
219     $         LSAME( TRANS, 'C' ) ) THEN
220         INFO = -2
221      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
222         INFO = -3
223      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
224     $         LSAME( NORMIN, 'N' ) ) THEN
225         INFO = -4
226      ELSE IF( N.LT.0 ) THEN
227         INFO = -5
228      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
229         INFO = -7
230      END IF
231      IF( INFO.NE.0 ) THEN
232         CALL XERBLA( 'ZLATRS', -INFO )
233         RETURN
234      END IF
235*
236*     Quick return if possible
237*
238      IF( N.EQ.0 )
239     $   RETURN
240*
241*     Determine machine dependent parameters to control overflow.
242*
243      SMLNUM = DLAMCH( 'Safe minimum' )
244      BIGNUM = ONE / SMLNUM
245      CALL DLABAD( SMLNUM, BIGNUM )
246      SMLNUM = SMLNUM / DLAMCH( 'Precision' )
247      BIGNUM = ONE / SMLNUM
248      SCALE = ONE
249*
250      IF( LSAME( NORMIN, 'N' ) ) THEN
251*
252*        Compute the 1-norm of each column, not including the diagonal.
253*
254         IF( UPPER ) THEN
255*
256*           A is upper triangular.
257*
258            DO 10 J = 1, N
259               CNORM( J ) = DZASUM( J-1, A( 1, J ), 1 )
260   10       CONTINUE
261         ELSE
262*
263*           A is lower triangular.
264*
265            DO 20 J = 1, N - 1
266               CNORM( J ) = DZASUM( N-J, A( J+1, J ), 1 )
267   20       CONTINUE
268            CNORM( N ) = ZERO
269         END IF
270      END IF
271*
272*     Scale the column norms by TSCAL if the maximum element in CNORM is
273*     greater than BIGNUM/2.
274*
275      IMAX = IDAMAX( N, CNORM, 1 )
276      TMAX = CNORM( IMAX )
277      IF( TMAX.LE.BIGNUM*HALF ) THEN
278         TSCAL = ONE
279      ELSE
280         TSCAL = HALF / ( SMLNUM*TMAX )
281         CALL DSCAL( N, TSCAL, CNORM, 1 )
282      END IF
283*
284*     Compute a bound on the computed solution vector to see if the
285*     Level 2 BLAS routine ZTRSV can be used.
286*
287      XMAX = ZERO
288      DO 30 J = 1, N
289         XMAX = MAX( XMAX, CABS2( X( J ) ) )
290   30 CONTINUE
291      XBND = XMAX
292*
293      IF( NOTRAN ) THEN
294*
295*        Compute the growth in A * x = b.
296*
297         IF( UPPER ) THEN
298            JFIRST = N
299            JLAST = 1
300            JINC = -1
301         ELSE
302            JFIRST = 1
303            JLAST = N
304            JINC = 1
305         END IF
306*
307         IF( TSCAL.NE.ONE ) THEN
308            GROW = ZERO
309            GO TO 60
310         END IF
311*
312         IF( NOUNIT ) THEN
313*
314*           A is non-unit triangular.
315*
316*           Compute GROW = 1/G(j) and XBND = 1/M(j).
317*           Initially, G(0) = max{x(i), i=1,...,n}.
318*
319            GROW = HALF / MAX( XBND, SMLNUM )
320            XBND = GROW
321            DO 40 J = JFIRST, JLAST, JINC
322*
323*              Exit the loop if the growth factor is too small.
324*
325               IF( GROW.LE.SMLNUM )
326     $            GO TO 60
327*
328               TJJS = A( J, J )
329               TJJ = CABS1( TJJS )
330*
331               IF( TJJ.GE.SMLNUM ) THEN
332*
333*                 M(j) = G(j-1) / abs(A(j,j))
334*
335                  XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
336               ELSE
337*
338*                 M(j) could overflow, set XBND to 0.
339*
340                  XBND = ZERO
341               END IF
342*
343               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
344*
345*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
346*
347                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
348               ELSE
349*
350*                 G(j) could overflow, set GROW to 0.
351*
352                  GROW = ZERO
353               END IF
354   40       CONTINUE
355            GROW = XBND
356         ELSE
357*
358*           A is unit triangular.
359*
360*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
361*
362            GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
363            DO 50 J = JFIRST, JLAST, JINC
364*
365*              Exit the loop if the growth factor is too small.
366*
367               IF( GROW.LE.SMLNUM )
368     $            GO TO 60
369*
370*              G(j) = G(j-1)*( 1 + CNORM(j) )
371*
372               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
373   50       CONTINUE
374         END IF
375   60    CONTINUE
376*
377      ELSE
378*
379*        Compute the growth in A**T * x = b  or  A**H * x = b.
380*
381         IF( UPPER ) THEN
382            JFIRST = 1
383            JLAST = N
384            JINC = 1
385         ELSE
386            JFIRST = N
387            JLAST = 1
388            JINC = -1
389         END IF
390*
391         IF( TSCAL.NE.ONE ) THEN
392            GROW = ZERO
393            GO TO 90
394         END IF
395*
396         IF( NOUNIT ) THEN
397*
398*           A is non-unit triangular.
399*
400*           Compute GROW = 1/G(j) and XBND = 1/M(j).
401*           Initially, M(0) = max{x(i), i=1,...,n}.
402*
403            GROW = HALF / MAX( XBND, SMLNUM )
404            XBND = GROW
405            DO 70 J = JFIRST, JLAST, JINC
406*
407*              Exit the loop if the growth factor is too small.
408*
409               IF( GROW.LE.SMLNUM )
410     $            GO TO 90
411*
412*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
413*
414               XJ = ONE + CNORM( J )
415               GROW = MIN( GROW, XBND / XJ )
416*
417               TJJS = A( J, J )
418               TJJ = CABS1( TJJS )
419*
420               IF( TJJ.GE.SMLNUM ) THEN
421*
422*                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
423*
424                  IF( XJ.GT.TJJ )
425     $               XBND = XBND*( TJJ / XJ )
426               ELSE
427*
428*                 M(j) could overflow, set XBND to 0.
429*
430                  XBND = ZERO
431               END IF
432   70       CONTINUE
433            GROW = MIN( GROW, XBND )
434         ELSE
435*
436*           A is unit triangular.
437*
438*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
439*
440            GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
441            DO 80 J = JFIRST, JLAST, JINC
442*
443*              Exit the loop if the growth factor is too small.
444*
445               IF( GROW.LE.SMLNUM )
446     $            GO TO 90
447*
448*              G(j) = ( 1 + CNORM(j) )*G(j-1)
449*
450               XJ = ONE + CNORM( J )
451               GROW = GROW / XJ
452   80       CONTINUE
453         END IF
454   90    CONTINUE
455      END IF
456*
457      IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
458*
459*        Use the Level 2 BLAS solve if the reciprocal of the bound on
460*        elements of X is not too small.
461*
462         CALL ZTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
463      ELSE
464*
465*        Use a Level 1 BLAS solve, scaling intermediate results.
466*
467         IF( XMAX.GT.BIGNUM*HALF ) THEN
468*
469*           Scale X so that its components are less than or equal to
470*           BIGNUM in absolute value.
471*
472            SCALE = ( BIGNUM*HALF ) / XMAX
473            CALL ZDSCAL( N, SCALE, X, 1 )
474            XMAX = BIGNUM
475         ELSE
476            XMAX = XMAX*TWO
477         END IF
478*
479         IF( NOTRAN ) THEN
480*
481*           Solve A * x = b
482*
483            DO 120 J = JFIRST, JLAST, JINC
484*
485*              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
486*
487               XJ = CABS1( X( J ) )
488               IF( NOUNIT ) THEN
489                  TJJS = A( J, J )*TSCAL
490               ELSE
491                  TJJS = TSCAL
492                  IF( TSCAL.EQ.ONE )
493     $               GO TO 110
494               END IF
495               TJJ = CABS1( TJJS )
496               IF( TJJ.GT.SMLNUM ) THEN
497*
498*                    abs(A(j,j)) > SMLNUM:
499*
500                  IF( TJJ.LT.ONE ) THEN
501                     IF( XJ.GT.TJJ*BIGNUM ) THEN
502*
503*                          Scale x by 1/b(j).
504*
505                        REC = ONE / XJ
506                        CALL ZDSCAL( N, REC, X, 1 )
507                        SCALE = SCALE*REC
508                        XMAX = XMAX*REC
509                     END IF
510                  END IF
511                  X( J ) = ZLADIV( X( J ), TJJS )
512                  XJ = CABS1( X( J ) )
513               ELSE IF( TJJ.GT.ZERO ) THEN
514*
515*                    0 < abs(A(j,j)) <= SMLNUM:
516*
517                  IF( XJ.GT.TJJ*BIGNUM ) THEN
518*
519*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
520*                       to avoid overflow when dividing by A(j,j).
521*
522                     REC = ( TJJ*BIGNUM ) / XJ
523                     IF( CNORM( J ).GT.ONE ) THEN
524*
525*                          Scale by 1/CNORM(j) to avoid overflow when
526*                          multiplying x(j) times column j.
527*
528                        REC = REC / CNORM( J )
529                     END IF
530                     CALL ZDSCAL( N, REC, X, 1 )
531                     SCALE = SCALE*REC
532                     XMAX = XMAX*REC
533                  END IF
534                  X( J ) = ZLADIV( X( J ), TJJS )
535                  XJ = CABS1( X( J ) )
536               ELSE
537*
538*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
539*                    scale = 0, and compute a solution to A*x = 0.
540*
541                  DO 100 I = 1, N
542                     X( I ) = ZERO
543  100             CONTINUE
544                  X( J ) = ONE
545                  XJ = ONE
546                  SCALE = ZERO
547                  XMAX = ZERO
548               END IF
549  110          CONTINUE
550*
551*              Scale x if necessary to avoid overflow when adding a
552*              multiple of column j of A.
553*
554               IF( XJ.GT.ONE ) THEN
555                  REC = ONE / XJ
556                  IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
557*
558*                    Scale x by 1/(2*abs(x(j))).
559*
560                     REC = REC*HALF
561                     CALL ZDSCAL( N, REC, X, 1 )
562                     SCALE = SCALE*REC
563                  END IF
564               ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
565*
566*                 Scale x by 1/2.
567*
568                  CALL ZDSCAL( N, HALF, X, 1 )
569                  SCALE = SCALE*HALF
570               END IF
571*
572               IF( UPPER ) THEN
573                  IF( J.GT.1 ) THEN
574*
575*                    Compute the update
576*                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
577*
578                     CALL ZAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
579     $                           1 )
580                     I = IZAMAX( J-1, X, 1 )
581                     XMAX = CABS1( X( I ) )
582                  END IF
583               ELSE
584                  IF( J.LT.N ) THEN
585*
586*                    Compute the update
587*                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
588*
589                     CALL ZAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
590     $                           X( J+1 ), 1 )
591                     I = J + IZAMAX( N-J, X( J+1 ), 1 )
592                     XMAX = CABS1( X( I ) )
593                  END IF
594               END IF
595  120       CONTINUE
596*
597         ELSE IF( LSAME( TRANS, 'T' ) ) THEN
598*
599*           Solve A**T * x = b
600*
601            DO 170 J = JFIRST, JLAST, JINC
602*
603*              Compute x(j) = b(j) - sum A(k,j)*x(k).
604*                                    k<>j
605*
606               XJ = CABS1( X( J ) )
607               USCAL = TSCAL
608               REC = ONE / MAX( XMAX, ONE )
609               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
610*
611*                 If x(j) could overflow, scale x by 1/(2*XMAX).
612*
613                  REC = REC*HALF
614                  IF( NOUNIT ) THEN
615                     TJJS = A( J, J )*TSCAL
616                  ELSE
617                     TJJS = TSCAL
618                  END IF
619                  TJJ = CABS1( TJJS )
620                  IF( TJJ.GT.ONE ) THEN
621*
622*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
623*
624                     REC = MIN( ONE, REC*TJJ )
625                     USCAL = ZLADIV( USCAL, TJJS )
626                  END IF
627                  IF( REC.LT.ONE ) THEN
628                     CALL ZDSCAL( N, REC, X, 1 )
629                     SCALE = SCALE*REC
630                     XMAX = XMAX*REC
631                  END IF
632               END IF
633*
634               CSUMJ = ZERO
635               IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
636*
637*                 If the scaling needed for A in the dot product is 1,
638*                 call ZDOTU to perform the dot product.
639*
640                  IF( UPPER ) THEN
641                     CSUMJ = ZDOTU( J-1, A( 1, J ), 1, X, 1 )
642                  ELSE IF( J.LT.N ) THEN
643                     CSUMJ = ZDOTU( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
644                  END IF
645               ELSE
646*
647*                 Otherwise, use in-line code for the dot product.
648*
649                  IF( UPPER ) THEN
650                     DO 130 I = 1, J - 1
651                        CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
652  130                CONTINUE
653                  ELSE IF( J.LT.N ) THEN
654                     DO 140 I = J + 1, N
655                        CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
656  140                CONTINUE
657                  END IF
658               END IF
659*
660               IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
661*
662*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
663*                 was not used to scale the dotproduct.
664*
665                  X( J ) = X( J ) - CSUMJ
666                  XJ = CABS1( X( J ) )
667                  IF( NOUNIT ) THEN
668                     TJJS = A( J, J )*TSCAL
669                  ELSE
670                     TJJS = TSCAL
671                     IF( TSCAL.EQ.ONE )
672     $                  GO TO 160
673                  END IF
674*
675*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
676*
677                  TJJ = CABS1( TJJS )
678                  IF( TJJ.GT.SMLNUM ) THEN
679*
680*                       abs(A(j,j)) > SMLNUM:
681*
682                     IF( TJJ.LT.ONE ) THEN
683                        IF( XJ.GT.TJJ*BIGNUM ) THEN
684*
685*                             Scale X by 1/abs(x(j)).
686*
687                           REC = ONE / XJ
688                           CALL ZDSCAL( N, REC, X, 1 )
689                           SCALE = SCALE*REC
690                           XMAX = XMAX*REC
691                        END IF
692                     END IF
693                     X( J ) = ZLADIV( X( J ), TJJS )
694                  ELSE IF( TJJ.GT.ZERO ) THEN
695*
696*                       0 < abs(A(j,j)) <= SMLNUM:
697*
698                     IF( XJ.GT.TJJ*BIGNUM ) THEN
699*
700*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
701*
702                        REC = ( TJJ*BIGNUM ) / XJ
703                        CALL ZDSCAL( N, REC, X, 1 )
704                        SCALE = SCALE*REC
705                        XMAX = XMAX*REC
706                     END IF
707                     X( J ) = ZLADIV( X( J ), TJJS )
708                  ELSE
709*
710*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
711*                       scale = 0 and compute a solution to A**T *x = 0.
712*
713                     DO 150 I = 1, N
714                        X( I ) = ZERO
715  150                CONTINUE
716                     X( J ) = ONE
717                     SCALE = ZERO
718                     XMAX = ZERO
719                  END IF
720  160             CONTINUE
721               ELSE
722*
723*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
724*                 product has already been divided by 1/A(j,j).
725*
726                  X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
727               END IF
728               XMAX = MAX( XMAX, CABS1( X( J ) ) )
729  170       CONTINUE
730*
731         ELSE
732*
733*           Solve A**H * x = b
734*
735            DO 220 J = JFIRST, JLAST, JINC
736*
737*              Compute x(j) = b(j) - sum A(k,j)*x(k).
738*                                    k<>j
739*
740               XJ = CABS1( X( J ) )
741               USCAL = TSCAL
742               REC = ONE / MAX( XMAX, ONE )
743               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
744*
745*                 If x(j) could overflow, scale x by 1/(2*XMAX).
746*
747                  REC = REC*HALF
748                  IF( NOUNIT ) THEN
749                     TJJS = DCONJG( A( J, J ) )*TSCAL
750                  ELSE
751                     TJJS = TSCAL
752                  END IF
753                  TJJ = CABS1( TJJS )
754                  IF( TJJ.GT.ONE ) THEN
755*
756*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
757*
758                     REC = MIN( ONE, REC*TJJ )
759                     USCAL = ZLADIV( USCAL, TJJS )
760                  END IF
761                  IF( REC.LT.ONE ) THEN
762                     CALL ZDSCAL( N, REC, X, 1 )
763                     SCALE = SCALE*REC
764                     XMAX = XMAX*REC
765                  END IF
766               END IF
767*
768               CSUMJ = ZERO
769               IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
770*
771*                 If the scaling needed for A in the dot product is 1,
772*                 call ZDOTC to perform the dot product.
773*
774                  IF( UPPER ) THEN
775                     CSUMJ = ZDOTC( J-1, A( 1, J ), 1, X, 1 )
776                  ELSE IF( J.LT.N ) THEN
777                     CSUMJ = ZDOTC( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
778                  END IF
779               ELSE
780*
781*                 Otherwise, use in-line code for the dot product.
782*
783                  IF( UPPER ) THEN
784                     DO 180 I = 1, J - 1
785                        CSUMJ = CSUMJ + ( DCONJG( A( I, J ) )*USCAL )*
786     $                          X( I )
787  180                CONTINUE
788                  ELSE IF( J.LT.N ) THEN
789                     DO 190 I = J + 1, N
790                        CSUMJ = CSUMJ + ( DCONJG( A( I, J ) )*USCAL )*
791     $                          X( I )
792  190                CONTINUE
793                  END IF
794               END IF
795*
796               IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
797*
798*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
799*                 was not used to scale the dotproduct.
800*
801                  X( J ) = X( J ) - CSUMJ
802                  XJ = CABS1( X( J ) )
803                  IF( NOUNIT ) THEN
804                     TJJS = DCONJG( A( J, J ) )*TSCAL
805                  ELSE
806                     TJJS = TSCAL
807                     IF( TSCAL.EQ.ONE )
808     $                  GO TO 210
809                  END IF
810*
811*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
812*
813                  TJJ = CABS1( TJJS )
814                  IF( TJJ.GT.SMLNUM ) THEN
815*
816*                       abs(A(j,j)) > SMLNUM:
817*
818                     IF( TJJ.LT.ONE ) THEN
819                        IF( XJ.GT.TJJ*BIGNUM ) THEN
820*
821*                             Scale X by 1/abs(x(j)).
822*
823                           REC = ONE / XJ
824                           CALL ZDSCAL( N, REC, X, 1 )
825                           SCALE = SCALE*REC
826                           XMAX = XMAX*REC
827                        END IF
828                     END IF
829                     X( J ) = ZLADIV( X( J ), TJJS )
830                  ELSE IF( TJJ.GT.ZERO ) THEN
831*
832*                       0 < abs(A(j,j)) <= SMLNUM:
833*
834                     IF( XJ.GT.TJJ*BIGNUM ) THEN
835*
836*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
837*
838                        REC = ( TJJ*BIGNUM ) / XJ
839                        CALL ZDSCAL( N, REC, X, 1 )
840                        SCALE = SCALE*REC
841                        XMAX = XMAX*REC
842                     END IF
843                     X( J ) = ZLADIV( X( J ), TJJS )
844                  ELSE
845*
846*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
847*                       scale = 0 and compute a solution to A**H *x = 0.
848*
849                     DO 200 I = 1, N
850                        X( I ) = ZERO
851  200                CONTINUE
852                     X( J ) = ONE
853                     SCALE = ZERO
854                     XMAX = ZERO
855                  END IF
856  210             CONTINUE
857               ELSE
858*
859*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
860*                 product has already been divided by 1/A(j,j).
861*
862                  X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
863               END IF
864               XMAX = MAX( XMAX, CABS1( X( J ) ) )
865  220       CONTINUE
866         END IF
867         SCALE = SCALE / TSCAL
868      END IF
869*
870*     Scale the column norms by 1/TSCAL for return.
871*
872      IF( TSCAL.NE.ONE ) THEN
873         CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
874      END IF
875*
876      RETURN
877*
878*     End of ZLATRS
879*
880      END
881