1 /* ./src_f77/zggrqf.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
8 /* Table of constant values */
9 
10 static integer c__1 = 1;
11 static integer c_n1 = -1;
12 
zggrqf_(integer * m,integer * p,integer * n,doublecomplex * a,integer * lda,doublecomplex * taua,doublecomplex * b,integer * ldb,doublecomplex * taub,doublecomplex * work,integer * lwork,integer * info)13 /* Subroutine */ int zggrqf_(integer *m, integer *p, integer *n,
14 	doublecomplex *a, integer *lda, doublecomplex *taua, doublecomplex *b,
15 	 integer *ldb, doublecomplex *taub, doublecomplex *work, integer *
16 	lwork, integer *info)
17 {
18     /* System generated locals */
19     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
20 
21     /* Local variables */
22     static integer nb, nb1, nb2, nb3, lopt;
23     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
24     extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
25 	    integer *, integer *, ftnlen, ftnlen);
26     extern /* Subroutine */ int zgeqrf_(integer *, integer *, doublecomplex *,
27 	     integer *, doublecomplex *, doublecomplex *, integer *, integer *
28 	    ), zgerqf_(integer *, integer *, doublecomplex *, integer *,
29 	    doublecomplex *, doublecomplex *, integer *, integer *);
30     static integer lwkopt;
31     static logical lquery;
32     extern /* Subroutine */ int zunmrq_(char *, char *, integer *, integer *,
33 	    integer *, doublecomplex *, integer *, doublecomplex *,
34 	    doublecomplex *, integer *, doublecomplex *, integer *, integer *,
35 	     ftnlen, ftnlen);
36 
37 
38 /*  -- LAPACK routine (version 3.0) -- */
39 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
40 /*     Courant Institute, Argonne National Lab, and Rice University */
41 /*     June 30, 1999 */
42 
43 /*     .. Scalar Arguments .. */
44 /*     .. */
45 /*     .. Array Arguments .. */
46 /*     .. */
47 
48 /*  Purpose */
49 /*  ======= */
50 
51 /*  ZGGRQF computes a generalized RQ factorization of an M-by-N matrix A */
52 /*  and a P-by-N matrix B: */
53 
54 /*              A = R*Q,        B = Z*T*Q, */
55 
56 /*  where Q is an N-by-N unitary matrix, Z is a P-by-P unitary */
57 /*  matrix, and R and T assume one of the forms: */
58 
59 /*  if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N, */
60 /*                   N-M  M                           ( R21 ) N */
61 /*                                                       N */
62 
63 /*  where R12 or R21 is upper triangular, and */
64 
65 /*  if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P, */
66 /*                  (  0  ) P-N                         P   N-P */
67 /*                     N */
68 
69 /*  where T11 is upper triangular. */
70 
71 /*  In particular, if B is square and nonsingular, the GRQ factorization */
72 /*  of A and B implicitly gives the RQ factorization of A*inv(B): */
73 
74 /*               A*inv(B) = (R*inv(T))*Z' */
75 
76 /*  where inv(B) denotes the inverse of the matrix B, and Z' denotes the */
77 /*  conjugate transpose of the matrix Z. */
78 
79 /*  Arguments */
80 /*  ========= */
81 
82 /*  M       (input) INTEGER */
83 /*          The number of rows of the matrix A.  M >= 0. */
84 
85 /*  P       (input) INTEGER */
86 /*          The number of rows of the matrix B.  P >= 0. */
87 
88 /*  N       (input) INTEGER */
89 /*          The number of columns of the matrices A and B. N >= 0. */
90 
91 /*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
92 /*          On entry, the M-by-N matrix A. */
93 /*          On exit, if M <= N, the upper triangle of the subarray */
94 /*          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; */
95 /*          if M > N, the elements on and above the (M-N)-th subdiagonal */
96 /*          contain the M-by-N upper trapezoidal matrix R; the remaining */
97 /*          elements, with the array TAUA, represent the unitary */
98 /*          matrix Q as a product of elementary reflectors (see Further */
99 /*          Details). */
100 
101 /*  LDA     (input) INTEGER */
102 /*          The leading dimension of the array A. LDA >= max(1,M). */
103 
104 /*  TAUA    (output) COMPLEX*16 array, dimension (min(M,N)) */
105 /*          The scalar factors of the elementary reflectors which */
106 /*          represent the unitary matrix Q (see Further Details). */
107 
108 /*  B       (input/output) COMPLEX*16 array, dimension (LDB,N) */
109 /*          On entry, the P-by-N matrix B. */
110 /*          On exit, the elements on and above the diagonal of the array */
111 /*          contain the min(P,N)-by-N upper trapezoidal matrix T (T is */
112 /*          upper triangular if P >= N); the elements below the diagonal, */
113 /*          with the array TAUB, represent the unitary matrix Z as a */
114 /*          product of elementary reflectors (see Further Details). */
115 
116 /*  LDB     (input) INTEGER */
117 /*          The leading dimension of the array B. LDB >= max(1,P). */
118 
119 /*  TAUB    (output) COMPLEX*16 array, dimension (min(P,N)) */
120 /*          The scalar factors of the elementary reflectors which */
121 /*          represent the unitary matrix Z (see Further Details). */
122 
123 /*  WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK) */
124 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
125 
126 /*  LWORK   (input) INTEGER */
127 /*          The dimension of the array WORK. LWORK >= max(1,N,M,P). */
128 /*          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */
129 /*          where NB1 is the optimal blocksize for the RQ factorization */
130 /*          of an M-by-N matrix, NB2 is the optimal blocksize for the */
131 /*          QR factorization of a P-by-N matrix, and NB3 is the optimal */
132 /*          blocksize for a call of ZUNMRQ. */
133 
134 /*          If LWORK = -1, then a workspace query is assumed; the routine */
135 /*          only calculates the optimal size of the WORK array, returns */
136 /*          this value as the first entry of the WORK array, and no error */
137 /*          message related to LWORK is issued by XERBLA. */
138 
139 /*  INFO    (output) INTEGER */
140 /*          = 0:  successful exit */
141 /*          < 0:  if INFO=-i, the i-th argument had an illegal value. */
142 
143 /*  Further Details */
144 /*  =============== */
145 
146 /*  The matrix Q is represented as a product of elementary reflectors */
147 
148 /*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */
149 
150 /*  Each H(i) has the form */
151 
152 /*     H(i) = I - taua * v * v' */
153 
154 /*  where taua is a complex scalar, and v is a complex vector with */
155 /*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
156 /*  A(m-k+i,1:n-k+i-1), and taua in TAUA(i). */
157 /*  To form Q explicitly, use LAPACK subroutine ZUNGRQ. */
158 /*  To use Q to update another matrix, use LAPACK subroutine ZUNMRQ. */
159 
160 /*  The matrix Z is represented as a product of elementary reflectors */
161 
162 /*     Z = H(1) H(2) . . . H(k), where k = min(p,n). */
163 
164 /*  Each H(i) has the form */
165 
166 /*     H(i) = I - taub * v * v' */
167 
168 /*  where taub is a complex scalar, and v is a complex vector with */
169 /*  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), */
170 /*  and taub in TAUB(i). */
171 /*  To form Z explicitly, use LAPACK subroutine ZUNGQR. */
172 /*  To use Z to update another matrix, use LAPACK subroutine ZUNMQR. */
173 
174 /*  ===================================================================== */
175 
176 /*     .. Local Scalars .. */
177 /*     .. */
178 /*     .. External Subroutines .. */
179 /*     .. */
180 /*     .. External Functions .. */
181 /*     .. */
182 /*     .. Intrinsic Functions .. */
183 /*     .. */
184 /*     .. Executable Statements .. */
185 
186 /*     Test the input parameters */
187 
188     /* Parameter adjustments */
189     a_dim1 = *lda;
190     a_offset = 1 + a_dim1;
191     a -= a_offset;
192     --taua;
193     b_dim1 = *ldb;
194     b_offset = 1 + b_dim1;
195     b -= b_offset;
196     --taub;
197     --work;
198 
199     /* Function Body */
200     *info = 0;
201     nb1 = ilaenv_(&c__1, "ZGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
202 	    ftnlen)1);
203     nb2 = ilaenv_(&c__1, "ZGEQRF", " ", p, n, &c_n1, &c_n1, (ftnlen)6, (
204 	    ftnlen)1);
205     nb3 = ilaenv_(&c__1, "ZUNMRQ", " ", m, n, p, &c_n1, (ftnlen)6, (ftnlen)1);
206 /* Computing MAX */
207     i__1 = max(nb1,nb2);
208     nb = max(i__1,nb3);
209 /* Computing MAX */
210     i__1 = max(*n,*m);
211     lwkopt = max(i__1,*p) * nb;
212     work[1].r = (doublereal) lwkopt, work[1].i = 0.;
213     lquery = *lwork == -1;
214     if (*m < 0) {
215 	*info = -1;
216     } else if (*p < 0) {
217 	*info = -2;
218     } else if (*n < 0) {
219 	*info = -3;
220     } else if (*lda < max(1,*m)) {
221 	*info = -5;
222     } else if (*ldb < max(1,*p)) {
223 	*info = -8;
224     } else /* if(complicated condition) */ {
225 /* Computing MAX */
226 	i__1 = max(1,*m), i__1 = max(i__1,*p);
227 	if (*lwork < max(i__1,*n) && ! lquery) {
228 	    *info = -11;
229 	}
230     }
231     if (*info != 0) {
232 	i__1 = -(*info);
233 	xerbla_("ZGGRQF", &i__1, (ftnlen)6);
234 	return 0;
235     } else if (lquery) {
236 	return 0;
237     }
238 
239 /*     RQ factorization of M-by-N matrix A: A = R*Q */
240 
241     zgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info);
242     lopt = (integer) work[1].r;
243 
244 /*     Update B := B*Q' */
245 
246     i__1 = min(*m,*n);
247 /* Computing MAX */
248     i__2 = 1, i__3 = *m - *n + 1;
249     zunmrq_("Right", "Conjugate Transpose", p, n, &i__1, &a[max(i__2,i__3) +
250 	    a_dim1], lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info,
251 	    (ftnlen)5, (ftnlen)19);
252 /* Computing MAX */
253     i__1 = lopt, i__2 = (integer) work[1].r;
254     lopt = max(i__1,i__2);
255 
256 /*     QR factorization of P-by-N matrix B: B = Z*T */
257 
258     zgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);
259 /* Computing MAX */
260     i__2 = lopt, i__3 = (integer) work[1].r;
261     i__1 = max(i__2,i__3);
262     work[1].r = (doublereal) i__1, work[1].i = 0.;
263 
264     return 0;
265 
266 /*     End of ZGGRQF */
267 
268 } /* zggrqf_ */
269 
270