1 /* ./src_f77/zhbevx.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
8 /* Table of constant values */
9 
10 static doublecomplex c_b1 = {0.,0.};
11 static doublecomplex c_b2 = {1.,0.};
12 static doublereal c_b16 = 1.;
13 static integer c__1 = 1;
14 
zhbevx_(char * jobz,char * range,char * uplo,integer * n,integer * kd,doublecomplex * ab,integer * ldab,doublecomplex * q,integer * ldq,doublereal * vl,doublereal * vu,integer * il,integer * iu,doublereal * abstol,integer * m,doublereal * w,doublecomplex * z__,integer * ldz,doublecomplex * work,doublereal * rwork,integer * iwork,integer * ifail,integer * info,ftnlen jobz_len,ftnlen range_len,ftnlen uplo_len)15 /* Subroutine */ int zhbevx_(char *jobz, char *range, char *uplo, integer *n,
16 	integer *kd, doublecomplex *ab, integer *ldab, doublecomplex *q,
17 	integer *ldq, doublereal *vl, doublereal *vu, integer *il, integer *
18 	iu, doublereal *abstol, integer *m, doublereal *w, doublecomplex *z__,
19 	 integer *ldz, doublecomplex *work, doublereal *rwork, integer *iwork,
20 	 integer *ifail, integer *info, ftnlen jobz_len, ftnlen range_len,
21 	ftnlen uplo_len)
22 {
23     /* System generated locals */
24     integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1,
25 	    i__2;
26     doublereal d__1, d__2;
27 
28     /* Builtin functions */
29     double sqrt(doublereal);
30 
31     /* Local variables */
32     static integer i__, j, jj;
33     static doublereal eps, vll, vuu, tmp1;
34     static integer indd, inde;
35     static doublereal anrm;
36     static integer imax;
37     static doublereal rmin, rmax;
38     static doublecomplex ctmp1;
39     static integer itmp1, indee;
40     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
41 	    integer *);
42     static doublereal sigma;
43     extern logical lsame_(char *, char *, ftnlen, ftnlen);
44     static integer iinfo;
45     static char order[1];
46     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
47 	    doublereal *, integer *);
48     static logical lower;
49     extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
50 	    doublecomplex *, doublecomplex *, integer *, doublecomplex *,
51 	    integer *, doublecomplex *, doublecomplex *, integer *, ftnlen);
52     static logical wantz;
53     extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
54 	    doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
55 	    integer *, doublecomplex *, integer *);
56     extern doublereal dlamch_(char *, ftnlen);
57     static logical alleig, indeig;
58     static integer iscale, indibl;
59     static logical valeig;
60     static doublereal safmin;
61     extern doublereal zlanhb_(char *, char *, integer *, integer *,
62 	    doublecomplex *, integer *, doublereal *, ftnlen, ftnlen);
63     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
64     static doublereal abstll, bignum;
65     static integer indiwk, indisp;
66     extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
67 	     integer *), zlascl_(char *, integer *, integer *, doublereal *,
68 	    doublereal *, integer *, integer *, doublecomplex *, integer *,
69 	    integer *, ftnlen), dstebz_(char *, char *, integer *, doublereal
70 	    *, doublereal *, integer *, integer *, doublereal *, doublereal *,
71 	     doublereal *, integer *, integer *, doublereal *, integer *,
72 	    integer *, doublereal *, integer *, integer *, ftnlen, ftnlen),
73 	    zhbtrd_(char *, char *, integer *, integer *, doublecomplex *,
74 	    integer *, doublereal *, doublereal *, doublecomplex *, integer *,
75 	     doublecomplex *, integer *, ftnlen, ftnlen);
76     static integer indrwk, indwrk;
77     extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
78 	    doublecomplex *, integer *, doublecomplex *, integer *, ftnlen);
79     static integer nsplit;
80     static doublereal smlnum;
81     extern /* Subroutine */ int zstein_(integer *, doublereal *, doublereal *,
82 	     integer *, doublereal *, integer *, integer *, doublecomplex *,
83 	    integer *, doublereal *, integer *, integer *, integer *),
84 	    zsteqr_(char *, integer *, doublereal *, doublereal *,
85 	    doublecomplex *, integer *, doublereal *, integer *, ftnlen);
86 
87 
88 /*  -- LAPACK driver routine (version 3.0) -- */
89 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
90 /*     Courant Institute, Argonne National Lab, and Rice University */
91 /*     June 30, 1999 */
92 
93 /*     .. Scalar Arguments .. */
94 /*     .. */
95 /*     .. Array Arguments .. */
96 /*     .. */
97 
98 /*  Purpose */
99 /*  ======= */
100 
101 /*  ZHBEVX computes selected eigenvalues and, optionally, eigenvectors */
102 /*  of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors */
103 /*  can be selected by specifying either a range of values or a range of */
104 /*  indices for the desired eigenvalues. */
105 
106 /*  Arguments */
107 /*  ========= */
108 
109 /*  JOBZ    (input) CHARACTER*1 */
110 /*          = 'N':  Compute eigenvalues only; */
111 /*          = 'V':  Compute eigenvalues and eigenvectors. */
112 
113 /*  RANGE   (input) CHARACTER*1 */
114 /*          = 'A': all eigenvalues will be found; */
115 /*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
116 /*                 will be found; */
117 /*          = 'I': the IL-th through IU-th eigenvalues will be found. */
118 
119 /*  UPLO    (input) CHARACTER*1 */
120 /*          = 'U':  Upper triangle of A is stored; */
121 /*          = 'L':  Lower triangle of A is stored. */
122 
123 /*  N       (input) INTEGER */
124 /*          The order of the matrix A.  N >= 0. */
125 
126 /*  KD      (input) INTEGER */
127 /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
128 /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
129 
130 /*  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N) */
131 /*          On entry, the upper or lower triangle of the Hermitian band */
132 /*          matrix A, stored in the first KD+1 rows of the array.  The */
133 /*          j-th column of A is stored in the j-th column of the array AB */
134 /*          as follows: */
135 /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
136 /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
137 
138 /*          On exit, AB is overwritten by values generated during the */
139 /*          reduction to tridiagonal form. */
140 
141 /*  LDAB    (input) INTEGER */
142 /*          The leading dimension of the array AB.  LDAB >= KD + 1. */
143 
144 /*  Q       (output) COMPLEX*16 array, dimension (LDQ, N) */
145 /*          If JOBZ = 'V', the N-by-N unitary matrix used in the */
146 /*                          reduction to tridiagonal form. */
147 /*          If JOBZ = 'N', the array Q is not referenced. */
148 
149 /*  LDQ     (input) INTEGER */
150 /*          The leading dimension of the array Q.  If JOBZ = 'V', then */
151 /*          LDQ >= max(1,N). */
152 
153 /*  VL      (input) DOUBLE PRECISION */
154 /*  VU      (input) DOUBLE PRECISION */
155 /*          If RANGE='V', the lower and upper bounds of the interval to */
156 /*          be searched for eigenvalues. VL < VU. */
157 /*          Not referenced if RANGE = 'A' or 'I'. */
158 
159 /*  IL      (input) INTEGER */
160 /*  IU      (input) INTEGER */
161 /*          If RANGE='I', the indices (in ascending order) of the */
162 /*          smallest and largest eigenvalues to be returned. */
163 /*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
164 /*          Not referenced if RANGE = 'A' or 'V'. */
165 
166 /*  ABSTOL  (input) DOUBLE PRECISION */
167 /*          The absolute error tolerance for the eigenvalues. */
168 /*          An approximate eigenvalue is accepted as converged */
169 /*          when it is determined to lie in an interval [a,b] */
170 /*          of width less than or equal to */
171 
172 /*                  ABSTOL + EPS *   max( |a|,|b| ) , */
173 
174 /*          where EPS is the machine precision.  If ABSTOL is less than */
175 /*          or equal to zero, then  EPS*|T|  will be used in its place, */
176 /*          where |T| is the 1-norm of the tridiagonal matrix obtained */
177 /*          by reducing AB to tridiagonal form. */
178 
179 /*          Eigenvalues will be computed most accurately when ABSTOL is */
180 /*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
181 /*          If this routine returns with INFO>0, indicating that some */
182 /*          eigenvectors did not converge, try setting ABSTOL to */
183 /*          2*DLAMCH('S'). */
184 
185 /*          See "Computing Small Singular Values of Bidiagonal Matrices */
186 /*          with Guaranteed High Relative Accuracy," by Demmel and */
187 /*          Kahan, LAPACK Working Note #3. */
188 
189 /*  M       (output) INTEGER */
190 /*          The total number of eigenvalues found.  0 <= M <= N. */
191 /*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
192 
193 /*  W       (output) DOUBLE PRECISION array, dimension (N) */
194 /*          The first M elements contain the selected eigenvalues in */
195 /*          ascending order. */
196 
197 /*  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M)) */
198 /*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
199 /*          contain the orthonormal eigenvectors of the matrix A */
200 /*          corresponding to the selected eigenvalues, with the i-th */
201 /*          column of Z holding the eigenvector associated with W(i). */
202 /*          If an eigenvector fails to converge, then that column of Z */
203 /*          contains the latest approximation to the eigenvector, and the */
204 /*          index of the eigenvector is returned in IFAIL. */
205 /*          If JOBZ = 'N', then Z is not referenced. */
206 /*          Note: the user must ensure that at least max(1,M) columns are */
207 /*          supplied in the array Z; if RANGE = 'V', the exact value of M */
208 /*          is not known in advance and an upper bound must be used. */
209 
210 /*  LDZ     (input) INTEGER */
211 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
212 /*          JOBZ = 'V', LDZ >= max(1,N). */
213 
214 /*  WORK    (workspace) COMPLEX*16 array, dimension (N) */
215 
216 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N) */
217 
218 /*  IWORK   (workspace) INTEGER array, dimension (5*N) */
219 
220 /*  IFAIL   (output) INTEGER array, dimension (N) */
221 /*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
222 /*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
223 /*          indices of the eigenvectors that failed to converge. */
224 /*          If JOBZ = 'N', then IFAIL is not referenced. */
225 
226 /*  INFO    (output) INTEGER */
227 /*          = 0:  successful exit */
228 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
229 /*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
230 /*                Their indices are stored in array IFAIL. */
231 
232 /*  ===================================================================== */
233 
234 /*     .. Parameters .. */
235 /*     .. */
236 /*     .. Local Scalars .. */
237 /*     .. */
238 /*     .. External Functions .. */
239 /*     .. */
240 /*     .. External Subroutines .. */
241 /*     .. */
242 /*     .. Intrinsic Functions .. */
243 /*     .. */
244 /*     .. Executable Statements .. */
245 
246 /*     Test the input parameters. */
247 
248     /* Parameter adjustments */
249     ab_dim1 = *ldab;
250     ab_offset = 1 + ab_dim1;
251     ab -= ab_offset;
252     q_dim1 = *ldq;
253     q_offset = 1 + q_dim1;
254     q -= q_offset;
255     --w;
256     z_dim1 = *ldz;
257     z_offset = 1 + z_dim1;
258     z__ -= z_offset;
259     --work;
260     --rwork;
261     --iwork;
262     --ifail;
263 
264     /* Function Body */
265     wantz = lsame_(jobz, "V", (ftnlen)1, (ftnlen)1);
266     alleig = lsame_(range, "A", (ftnlen)1, (ftnlen)1);
267     valeig = lsame_(range, "V", (ftnlen)1, (ftnlen)1);
268     indeig = lsame_(range, "I", (ftnlen)1, (ftnlen)1);
269     lower = lsame_(uplo, "L", (ftnlen)1, (ftnlen)1);
270 
271     *info = 0;
272     if (! (wantz || lsame_(jobz, "N", (ftnlen)1, (ftnlen)1))) {
273 	*info = -1;
274     } else if (! (alleig || valeig || indeig)) {
275 	*info = -2;
276     } else if (! (lower || lsame_(uplo, "U", (ftnlen)1, (ftnlen)1))) {
277 	*info = -3;
278     } else if (*n < 0) {
279 	*info = -4;
280     } else if (*kd < 0) {
281 	*info = -5;
282     } else if (*ldab < *kd + 1) {
283 	*info = -7;
284     } else if (wantz && *ldq < max(1,*n)) {
285 	*info = -9;
286     } else {
287 	if (valeig) {
288 	    if (*n > 0 && *vu <= *vl) {
289 		*info = -11;
290 	    }
291 	} else if (indeig) {
292 	    if (*il < 1 || *il > max(1,*n)) {
293 		*info = -12;
294 	    } else if (*iu < min(*n,*il) || *iu > *n) {
295 		*info = -13;
296 	    }
297 	}
298     }
299     if (*info == 0) {
300 	if (*ldz < 1 || wantz && *ldz < *n) {
301 	    *info = -18;
302 	}
303     }
304 
305     if (*info != 0) {
306 	i__1 = -(*info);
307 	xerbla_("ZHBEVX", &i__1, (ftnlen)6);
308 	return 0;
309     }
310 
311 /*     Quick return if possible */
312 
313     *m = 0;
314     if (*n == 0) {
315 	return 0;
316     }
317 
318     if (*n == 1) {
319 	*m = 1;
320 	if (lower) {
321 	    i__1 = ab_dim1 + 1;
322 	    ctmp1.r = ab[i__1].r, ctmp1.i = ab[i__1].i;
323 	} else {
324 	    i__1 = *kd + 1 + ab_dim1;
325 	    ctmp1.r = ab[i__1].r, ctmp1.i = ab[i__1].i;
326 	}
327 	tmp1 = ctmp1.r;
328 	if (valeig) {
329 	    if (! (*vl < tmp1 && *vu >= tmp1)) {
330 		*m = 0;
331 	    }
332 	}
333 	if (*m == 1) {
334 	    w[1] = ctmp1.r;
335 	    if (wantz) {
336 		i__1 = z_dim1 + 1;
337 		z__[i__1].r = 1., z__[i__1].i = 0.;
338 	    }
339 	}
340 	return 0;
341     }
342 
343 /*     Get machine constants. */
344 
345     safmin = dlamch_("Safe minimum", (ftnlen)12);
346     eps = dlamch_("Precision", (ftnlen)9);
347     smlnum = safmin / eps;
348     bignum = 1. / smlnum;
349     rmin = sqrt(smlnum);
350 /* Computing MIN */
351     d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
352     rmax = min(d__1,d__2);
353 
354 /*     Scale matrix to allowable range, if necessary. */
355 
356     iscale = 0;
357     abstll = *abstol;
358     if (valeig) {
359 	vll = *vl;
360 	vuu = *vu;
361     } else {
362 	vll = 0.;
363 	vuu = 0.;
364     }
365     anrm = zlanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1], (ftnlen)
366 	    1, (ftnlen)1);
367     if (anrm > 0. && anrm < rmin) {
368 	iscale = 1;
369 	sigma = rmin / anrm;
370     } else if (anrm > rmax) {
371 	iscale = 1;
372 	sigma = rmax / anrm;
373     }
374     if (iscale == 1) {
375 	if (lower) {
376 	    zlascl_("B", kd, kd, &c_b16, &sigma, n, n, &ab[ab_offset], ldab,
377 		    info, (ftnlen)1);
378 	} else {
379 	    zlascl_("Q", kd, kd, &c_b16, &sigma, n, n, &ab[ab_offset], ldab,
380 		    info, (ftnlen)1);
381 	}
382 	if (*abstol > 0.) {
383 	    abstll = *abstol * sigma;
384 	}
385 	if (valeig) {
386 	    vll = *vl * sigma;
387 	    vuu = *vu * sigma;
388 	}
389     }
390 
391 /*     Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form. */
392 
393     indd = 1;
394     inde = indd + *n;
395     indrwk = inde + *n;
396     indwrk = 1;
397     zhbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &rwork[indd], &rwork[
398 	    inde], &q[q_offset], ldq, &work[indwrk], &iinfo, (ftnlen)1, (
399 	    ftnlen)1);
400 
401 /*     If all eigenvalues are desired and ABSTOL is less than or equal */
402 /*     to zero, then call DSTERF or ZSTEQR.  If this fails for some */
403 /*     eigenvalue, then try DSTEBZ. */
404 
405     if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.) {
406 	dcopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
407 	indee = indrwk + (*n << 1);
408 	if (! wantz) {
409 	    i__1 = *n - 1;
410 	    dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
411 	    dsterf_(n, &w[1], &rwork[indee], info);
412 	} else {
413 	    zlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz, (
414 		    ftnlen)1);
415 	    i__1 = *n - 1;
416 	    dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
417 	    zsteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
418 		    rwork[indrwk], info, (ftnlen)1);
419 	    if (*info == 0) {
420 		i__1 = *n;
421 		for (i__ = 1; i__ <= i__1; ++i__) {
422 		    ifail[i__] = 0;
423 /* L10: */
424 		}
425 	    }
426 	}
427 	if (*info == 0) {
428 	    *m = *n;
429 	    goto L30;
430 	}
431 	*info = 0;
432     }
433 
434 /*     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */
435 
436     if (wantz) {
437 	*(unsigned char *)order = 'B';
438     } else {
439 	*(unsigned char *)order = 'E';
440     }
441     indibl = 1;
442     indisp = indibl + *n;
443     indiwk = indisp + *n;
444     dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
445 	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
446 	    rwork[indrwk], &iwork[indiwk], info, (ftnlen)1, (ftnlen)1);
447 
448     if (wantz) {
449 	zstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
450 		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
451 		indiwk], &ifail[1], info);
452 
453 /*        Apply unitary matrix used in reduction to tridiagonal */
454 /*        form to eigenvectors returned by ZSTEIN. */
455 
456 	i__1 = *m;
457 	for (j = 1; j <= i__1; ++j) {
458 	    zcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
459 	    zgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, &
460 		    c_b1, &z__[j * z_dim1 + 1], &c__1, (ftnlen)1);
461 /* L20: */
462 	}
463     }
464 
465 /*     If matrix was scaled, then rescale eigenvalues appropriately. */
466 
467 L30:
468     if (iscale == 1) {
469 	if (*info == 0) {
470 	    imax = *m;
471 	} else {
472 	    imax = *info - 1;
473 	}
474 	d__1 = 1. / sigma;
475 	dscal_(&imax, &d__1, &w[1], &c__1);
476     }
477 
478 /*     If eigenvalues are not in order, then sort them, along with */
479 /*     eigenvectors. */
480 
481     if (wantz) {
482 	i__1 = *m - 1;
483 	for (j = 1; j <= i__1; ++j) {
484 	    i__ = 0;
485 	    tmp1 = w[j];
486 	    i__2 = *m;
487 	    for (jj = j + 1; jj <= i__2; ++jj) {
488 		if (w[jj] < tmp1) {
489 		    i__ = jj;
490 		    tmp1 = w[jj];
491 		}
492 /* L40: */
493 	    }
494 
495 	    if (i__ != 0) {
496 		itmp1 = iwork[indibl + i__ - 1];
497 		w[i__] = w[j];
498 		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
499 		w[j] = tmp1;
500 		iwork[indibl + j - 1] = itmp1;
501 		zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
502 			 &c__1);
503 		if (*info != 0) {
504 		    itmp1 = ifail[i__];
505 		    ifail[i__] = ifail[j];
506 		    ifail[j] = itmp1;
507 		}
508 	    }
509 /* L50: */
510 	}
511     }
512 
513     return 0;
514 
515 /*     End of ZHBEVX */
516 
517 } /* zhbevx_ */
518 
519