1 // -*- C++ -*-
2 // ---------------------------------------------------------------------------
3 //
4 // This file is a part of the CLHEP - a Class Library for High Energy Physics.
5 //
6 // This is the implementation of methods of the HepRotationX class which
7 // were introduced when ZOOM PhysicsVectors was merged in.
8 //
9 
10 #ifdef GNUPRAGMA
11 #pragma implementation
12 #endif
13 
14 #include "CLHEP/Vector/defs.h"
15 #include "CLHEP/Vector/RotationX.h"
16 #include "CLHEP/Vector/AxisAngle.h"
17 #include "CLHEP/Vector/EulerAngles.h"
18 #include "CLHEP/Vector/LorentzRotation.h"
19 #include "CLHEP/Units/PhysicalConstants.h"
20 
21 #include <cmath>
22 #include <stdlib.h>
23 #include <iostream>
24 
25 namespace CLHEP  {
26 
safe_acos(double x)27 static inline double safe_acos (double x) {
28   if (std::abs(x) <= 1.0) return std::acos(x);
29   return ( (x>0) ? 0 : CLHEP::pi );
30 }
31 
HepRotationX(double ddelta)32 HepRotationX::HepRotationX(double ddelta) :
33 		its_d(proper(ddelta)), its_s(std::sin(ddelta)), its_c(std::cos(ddelta))
34 {}
35 
set(double ddelta)36 HepRotationX & HepRotationX::set ( double ddelta ) {
37   its_d = proper(ddelta);
38   its_s = std::sin(its_d);
39   its_c = std::cos(its_d);
40   return *this;
41 }
42 
phi() const43 double  HepRotationX::phi() const {
44   if ( (its_d > 0) && (its_d < CLHEP::pi) ) {
45     return CLHEP::pi;
46   } else {
47     return 0.0;
48   }
49 }  // HepRotationX::phi()
50 
theta() const51 double  HepRotationX::theta() const {
52   return  std::fabs( its_d );
53 }  // HepRotationX::theta()
54 
psi() const55 double  HepRotationX::psi() const {
56   if ( (its_d > 0) && (its_d < CLHEP::pi) ) {
57     return CLHEP::pi;
58   } else {
59     return 0.0;
60   }
61 }  // HepRotationX::psi()
62 
eulerAngles() const63 HepEulerAngles HepRotationX::eulerAngles() const {
64   return HepEulerAngles(  phi(), theta(),  psi() );
65 }  // HepRotationX::eulerAngles()
66 
67 
68 // From the defining code in the implementation of CLHEP (in Rotation.cc)
69 // it is clear that thetaX, phiX form the polar angles in the original
70 // coordinate system of the new X axis (and similarly for phiY and phiZ).
71 //
72 // This code is taken directly from the original CLHEP. However, there are as
73 // shown opportunities for significant speed improvement.
74 
phiX() const75 double HepRotationX::phiX() const {
76   return (yx() == 0.0 && xx() == 0.0) ? 0.0 : std::atan2(yx(),xx());
77   		// or ---- return 0;
78 }
79 
phiY() const80 double HepRotationX::phiY() const {
81   return (yy() == 0.0 && xy() == 0.0) ? 0.0 : std::atan2(yy(),xy());
82 		// or ----  return (yy() == 0.0) ? 0.0 : std::atan2(yy(),xy());
83 }
84 
phiZ() const85 double HepRotationX::phiZ() const {
86   return (yz() == 0.0 && xz() == 0.0) ? 0.0 : std::atan2(yz(),xz());
87 		// or ----  return (yz() == 0.0) ? 0.0 : std::atan2(yz(),xz());
88 }
89 
thetaX() const90 double HepRotationX::thetaX() const {
91   return safe_acos(zx());
92 		// or ----  return CLHEP::halfpi;
93 }
94 
thetaY() const95 double HepRotationX::thetaY() const {
96   return safe_acos(zy());
97 }
98 
thetaZ() const99 double HepRotationX::thetaZ() const {
100   return safe_acos(zz());
101 		// or ---- return d;
102 }
103 
setDelta(double ddelta)104 void HepRotationX::setDelta ( double ddelta ) {
105   set(ddelta);
106 }
107 
decompose(HepAxisAngle & rotation,Hep3Vector & boost) const108 void HepRotationX::decompose
109 	(HepAxisAngle & rotation, Hep3Vector & boost) const {
110   boost.set(0,0,0);
111   rotation = axisAngle();
112 }
113 
decompose(Hep3Vector & boost,HepAxisAngle & rotation) const114 void HepRotationX::decompose
115 	(Hep3Vector & boost, HepAxisAngle & rotation) const {
116   boost.set(0,0,0);
117   rotation = axisAngle();
118 }
119 
decompose(HepRotation & rotation,HepBoost & boost) const120 void HepRotationX::decompose
121         (HepRotation & rotation, HepBoost & boost) const {
122   boost.set(0,0,0);
123   rotation = HepRotation(*this);
124 }
125 
decompose(HepBoost & boost,HepRotation & rotation) const126 void HepRotationX::decompose
127         (HepBoost & boost, HepRotation & rotation) const {
128   boost.set(0,0,0);
129   rotation = HepRotation(*this);
130 }
131 
distance2(const HepRotationX & r) const132 double HepRotationX::distance2( const HepRotationX & r  ) const {
133   double answer = 2.0 * ( 1.0 - ( its_s * r.its_s + its_c * r.its_c ) ) ;
134   return (answer >= 0) ? answer : 0;
135 }
136 
distance2(const HepRotation & r) const137 double HepRotationX::distance2( const HepRotation & r  ) const {
138   double sum =        r.xx() +
139                 		  yy() * r.yy() + yz() * r.yz()
140                 		+ zy() * r.zy() + zz() * r.zz();
141   double answer = 3.0 - sum;
142   return (answer >= 0 ) ? answer : 0;
143 }
144 
distance2(const HepLorentzRotation & lt) const145 double HepRotationX::distance2( const HepLorentzRotation & lt  ) const {
146   HepAxisAngle a;
147   Hep3Vector   b;
148   lt.decompose(b, a);
149   double bet = b.beta();
150   double bet2 = bet*bet;
151   HepRotation r(a);
152   return bet2/(1-bet2) + distance2(r);
153 }
154 
distance2(const HepBoost & lt) const155 double HepRotationX::distance2( const HepBoost & lt ) const {
156   return distance2( HepLorentzRotation(lt));
157 }
158 
howNear(const HepRotationX & r) const159 double HepRotationX::howNear( const HepRotationX & r ) const {
160   return std::sqrt(distance2(r));
161 }
howNear(const HepRotation & r) const162 double HepRotationX::howNear( const HepRotation & r ) const {
163   return std::sqrt(distance2(r));
164 }
howNear(const HepBoost & b) const165 double HepRotationX::howNear( const HepBoost & b ) const {
166   return std::sqrt(distance2(b));
167 }
howNear(const HepLorentzRotation & lt) const168 double HepRotationX::howNear( const HepLorentzRotation & lt ) const {
169   return std::sqrt(distance2(lt));
170 }
isNear(const HepRotationX & r,double epsilon) const171 bool HepRotationX::isNear(const HepRotationX & r,double epsilon)const{
172   return (distance2(r) <= epsilon*epsilon);
173 }
isNear(const HepRotation & r,double epsilon) const174 bool HepRotationX::isNear(const HepRotation & r,double epsilon) const{
175   return (distance2(r) <= epsilon*epsilon);
176 }
isNear(const HepBoost & lt,double epsilon) const177 bool HepRotationX::isNear( const HepBoost & lt,double epsilon) const {
178   return (distance2(lt) <= epsilon*epsilon);
179 }
180 
isNear(const HepLorentzRotation & lt,double epsilon) const181 bool HepRotationX::isNear( const HepLorentzRotation & lt,
182                                      double epsilon ) const {
183   return (distance2(lt) <= epsilon*epsilon);
184 }
185 
norm2() const186 double HepRotationX::norm2() const {
187   return 2.0 - 2.0 * its_c;
188 }
189 
print(std::ostream & os) const190 std::ostream & HepRotationX::print( std::ostream & os ) const {
191   os << "\nRotation about X (" << its_d <<
192 		") [cos d = " << its_c << " sin d = " << its_s << "]\n";
193   return os;
194 }
195 
196 }  // namespace CLHEP
197 
198