1 // @HEADER
2 // ************************************************************************
3 //
4 //               Rapid Optimization Library (ROL) Package
5 //                 Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 //              Drew Kouri   (dpkouri@sandia.gov) and
39 //              Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 /*! \file  example_07.cpp
45     \brief Shows how to solve a steady Burgers' optimal control problem using
46            full-space methods.
47 */
48 
49 #include "ROL_OptimizationSolver.hpp"
50 #include "ROL_Reduced_Objective_SimOpt.hpp"
51 #include "ROL_MonteCarloGenerator.hpp"
52 #include "ROL_ParameterList.hpp"
53 
54 #include "ROL_Stream.hpp"
55 #include "Teuchos_GlobalMPISession.hpp"
56 #include "Teuchos_Comm.hpp"
57 #include "Teuchos_DefaultComm.hpp"
58 #include "Teuchos_CommHelpers.hpp"
59 
60 #include <iostream>
61 #include <fstream>
62 #include <algorithm>
63 
64 #include "example_07.hpp"
65 
66 typedef double RealT;
67 typedef H1VectorPrimal<RealT> PrimalStateVector;
68 typedef H1VectorDual<RealT> DualStateVector;
69 typedef L2VectorPrimal<RealT> PrimalControlVector;
70 typedef L2VectorDual<RealT> DualControlVector;
71 typedef H1VectorDual<RealT> PrimalConstraintVector;
72 typedef H1VectorPrimal<RealT> DualConstraintVector;
73 
main(int argc,char * argv[])74 int main(int argc, char *argv[]) {
75 
76   Teuchos::GlobalMPISession mpiSession(&argc, &argv);
77   ROL::Ptr<const Teuchos::Comm<int>> comm
78     = ROL::toPtr(Teuchos::DefaultComm<int>::getComm());
79 
80   // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
81   int iprint = argc - 1;
82   bool print = (iprint>0);
83   ROL::Ptr<std::ostream> outStream;
84   ROL::nullstream bhs; // outputs nothing
85   if (print)
86     outStream = ROL::makePtrFromRef(std::cout);
87   else
88     outStream = ROL::makePtrFromRef(bhs);
89 
90   bool print0 = print && !(comm->getRank());
91   ROL::Ptr<std::ostream> outStream0;
92   if (print0)
93     outStream0 = ROL::makePtrFromRef(std::cout);
94   else
95     outStream0 = ROL::makePtrFromRef(bhs);
96 
97   int errorFlag  = 0;
98 
99   // *** Example body.
100 
101   try {
102     /*************************************************************************/
103     /************* INITIALIZE BURGERS FEM CLASS ******************************/
104     /*************************************************************************/
105     int nx    = 512;   // Set spatial discretization.
106     RealT x   = 0.0;   // Set penalty parameter.
107     RealT nl  = 1.0;   // Nonlinearity parameter (1 = Burgers, 0 = linear).
108     RealT cH1 = 1.0;   // Scale for derivative term in H1 norm.
109     RealT cL2 = 0.0;   // Scale for mass term in H1 norm.
110     ROL::Ptr<BurgersFEM<RealT>> fem
111       = ROL::makePtr<BurgersFEM<RealT>>(nx,nl,cH1,cL2);
112     fem->test_inverse_mass(*outStream0);
113     fem->test_inverse_H1(*outStream0);
114     /*************************************************************************/
115     /************* INITIALIZE SIMOPT OBJECTIVE FUNCTION **********************/
116     /*************************************************************************/
117     ROL::Ptr<ROL::Objective_SimOpt<RealT>> pobj
118       = ROL::makePtr<Objective_BurgersControl<RealT>>(fem,x);
119     /*************************************************************************/
120     /************* INITIALIZE SIMOPT EQUALITY CONSTRAINT *********************/
121     /*************************************************************************/
122     bool hess = true;
123     ROL::Ptr<ROL::Constraint_SimOpt<RealT>> pcon
124       = ROL::makePtr<Constraint_BurgersControl<RealT>>(fem,hess);
125     /*************************************************************************/
126     /************* INITIALIZE VECTOR STORAGE *********************************/
127     /*************************************************************************/
128     ROL::Ptr<std::vector<RealT>> z_ptr, u_ptr, c_ptr, l_ptr;
129     z_ptr = ROL::makePtr<std::vector<RealT>>(nx+2, 0.0);
130     u_ptr = ROL::makePtr<std::vector<RealT>>(nx, 1.0);
131     c_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
132     l_ptr = ROL::makePtr<std::vector<RealT>>(nx, 0.0);
133     ROL::Ptr<ROL::Vector<RealT>> zp, up, cp, lp;
134     zp = ROL::makePtr<PrimalControlVector>(z_ptr,fem);
135     up = ROL::makePtr<PrimalStateVector>(u_ptr,fem);
136     cp = ROL::makePtr<PrimalConstraintVector>(c_ptr,fem);
137     lp = ROL::makePtr<DualConstraintVector>(l_ptr,fem);
138     /*************************************************************************/
139     /************* INITIALIZE SAMPLE GENERATOR *******************************/
140     /*************************************************************************/
141     int dim = 4, nSamp = 1000;
142     std::vector<RealT> tmp(2,0.0); tmp[0] = -1.0; tmp[1] = 1.0;
143     std::vector<std::vector<RealT>> bounds(dim,tmp);
144     ROL::Ptr<ROL::BatchManager<RealT>> bman
145       = ROL::makePtr<L2VectorBatchManager<RealT,int>>(comm);
146     ROL::Ptr<ROL::SampleGenerator<RealT>> sampler
147       = ROL::makePtr<ROL::MonteCarloGenerator<RealT>>(
148           nSamp,bounds,bman,false,false,100);
149     /*************************************************************************/
150     /************* INITIALIZE OBJECTIVE FUNCTION *****************************/
151     /*************************************************************************/
152     bool storage = true, fdhess = false;
153     ROL::Ptr<ROL::Objective<RealT>> robj
154       = ROL::makePtr<ROL::Reduced_Objective_SimOpt<RealT>>(
155           pobj,pcon,up,zp,lp,storage,fdhess);
156     /*************************************************************************/
157     /************* INITIALIZE BOUND CONSTRAINTS ******************************/
158     /*************************************************************************/
159     std::vector<RealT> Zlo(nx+2,0.0), Zhi(nx+2,10.0);
160     for (int i = 0; i < nx+2; i++) {
161       if ( i < (int)((nx+2)/3) ) {
162         Zlo[i] = -1.0;
163         Zhi[i] = 1.0;
164       }
165       if ( i >= (int)((nx+2)/3) && i < (int)(2*(nx+2)/3) ) {
166         Zlo[i] = 1.0;
167         Zhi[i] = 5.0;
168       }
169       if ( i >= (int)(2*(nx+2)/3) ) {
170         Zlo[i] = 5.0;
171         Zhi[i] = 10.0;
172       }
173     }
174     ROL::Ptr<ROL::BoundConstraint<RealT>> bnd
175       = ROL::makePtr<L2BoundConstraint<RealT>>(Zlo,Zhi,fem);
176     /*************************************************************************/
177     /************* INITIALIZE RISK-AVERSE OPTIMIZATION PROBLEM ***************/
178     /*************************************************************************/
179     RealT order = 2.0, threshold = -0.85*(1.0-x);
180     ROL::Ptr<ROL::ParameterList> bpoelist = ROL::makePtr<ROL::ParameterList>();
181     bpoelist->sublist("SOL").set("Store Sampled Value and Gradient",true);
182     bpoelist->sublist("SOL").set("Stochastic Component Type","Probability");
183     bpoelist->sublist("SOL").sublist("Probability").set("Name","bPOE");
184     bpoelist->sublist("SOL").sublist("Probability").sublist("bPOE").set("Threshold",threshold);
185     bpoelist->sublist("SOL").sublist("Probability").sublist("bPOE").set("Moment Order",order);
186     ROL::OptimizationProblem<RealT> problem(robj,zp,bnd);
187     problem.setStochasticObjective(*bpoelist,sampler);
188     // CHECK OBJECTIVE DERIVATIVES
189     bool derivcheck = false;
190     if (derivcheck) {
191       problem.check(*outStream0);
192     }
193     /*************************************************************************/
194     /************* RUN OPTIMIZATION ******************************************/
195     /*************************************************************************/
196     // READ IN XML INPUT
197     std::string filename = "input.xml";
198     auto parlist = ROL::getParametersFromXmlFile( filename );
199     // RUN OPTIMIZATION
200     ROL::OptimizationSolver<RealT> solver(problem,*parlist);
201     solver.solve(*outStream);
202     /*************************************************************************/
203     /************* PRINT CONTROL AND STATE TO SCREEN *************************/
204     /*************************************************************************/
205     if ( print0 ) {
206       std::ofstream ofs;
207       ofs.open("output_example_09.txt",std::ofstream::out);
208       for ( int i = 0; i < nx+2; i++ ) {
209         ofs << std::scientific << std::setprecision(10);
210         ofs << std::setw(20) << std::left << (RealT)i/((RealT)nx+1.0);
211         ofs << std::setw(20) << std::left << (*z_ptr)[i];
212         ofs << "\n";
213       }
214       ofs.close();
215     }
216     *outStream0 << "Scalar Parameter: " << problem.getSolutionStatistic() << "\n\n";
217   }
218   catch (std::logic_error& err) {
219     *outStream << err.what() << "\n";
220     errorFlag = -1000;
221   }; // end try
222 
223   comm->barrier();
224   if (errorFlag != 0)
225     std::cout << "End Result: TEST FAILED\n";
226   else
227     std::cout << "End Result: TEST PASSED\n";
228 
229   return 0;
230 }
231