1
2
3     ************************************************************************
4     *************** Dalton - An Electronic Structure Program ***************
5     ************************************************************************
6
7    This is output from DALTON release Dalton2019.alpha (2019)
8         ( Web site: http://daltonprogram.org )
9
10   ----------------------------------------------------------------------------
11
12    NOTE:
13
14    Dalton is an experimental code for the evaluation of molecular
15    properties using (MC)SCF, DFT, CI, and CC wave functions.
16    The authors accept no responsibility for the performance of
17    the code or for the correctness of the results.
18
19    The code (in whole or part) is provided under a licence and
20    is not to be reproduced for further distribution without
21    the written permission of the authors or their representatives.
22
23    See the home page "http://daltonprogram.org" for further information.
24
25    If results obtained with this code are published,
26    the appropriate citations would be both of:
27
28       K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
29       L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
30       P. Dahle, E. K. Dalskov, U. Ekstroem,
31       T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
32       L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
33       C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
34       H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
35       M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
36       P. Joergensen, J. Kauczor, S. Kirpekar,
37       T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
38       J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
39       O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
40       C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
41       J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
42       T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
43       T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
44       A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
45       B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
46       K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
47       E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
48       O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
49       and H. Agren,
50       "The Dalton quantum chemistry program system",
51       WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172)
52
53    and
54
55       Dalton, a molecular electronic structure program,
56       Release Dalton2019.alpha (2019), see http://daltonprogram.org
57   ----------------------------------------------------------------------------
58
59    Authors in alphabetical order (major contribution(s) in parenthesis):
60
61  Kestutis Aidas,           Vilnius University,           Lithuania   (QM/MM)
62  Celestino Angeli,         University of Ferrara,        Italy       (NEVPT2)
63  Keld L. Bak,              UNI-C,                        Denmark     (AOSOPPA, non-adiabatic coupling, magnetic properties)
64  Vebjoern Bakken,          University of Oslo,           Norway      (DALTON; geometry optimizer, symmetry detection)
65  Radovan Bast,             UiT The Arctic U. of Norway,  Norway      (DALTON installation and execution frameworks)
66  Pablo Baudin,             University of Valencia,       Spain       (Cholesky excitation energies)
67  Linus Boman,              NTNU,                         Norway      (Cholesky decomposition and subsystems)
68  Ove Christiansen,         Aarhus University,            Denmark     (CC module)
69  Renzo Cimiraglia,         University of Ferrara,        Italy       (NEVPT2)
70  Sonia Coriani,            Technical Univ. of Denmark,   Denmark     (CC module, MCD in RESPONS)
71  Janusz Cukras,            University of Trieste,        Italy       (MChD in RESPONS)
72  Paal Dahle,               University of Oslo,           Norway      (Parallelization)
73  Erik K. Dalskov,          UNI-C,                        Denmark     (SOPPA)
74  Thomas Enevoldsen,        Univ. of Southern Denmark,    Denmark     (SOPPA)
75  Janus J. Eriksen,         Aarhus University,            Denmark     (Polarizable embedding model, TDA)
76  Rasmus Faber,             University of Copenhagen,     Denmark     (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
77  Tobias Fahleson,          KTH Stockholm,                Sweden      (Damped cubic response)
78  Berta Fernandez,          U. of Santiago de Compostela, Spain       (doublet spin, ESR in RESPONS)
79  Lara Ferrighi,            Aarhus University,            Denmark     (PCM Cubic response)
80  Heike Fliegl,             University of Oslo,           Norway      (CCSD(R12))
81  Luca Frediani,            UiT The Arctic U. of Norway,  Norway      (PCM)
82  Bin Gao,                  UiT The Arctic U. of Norway,  Norway      (Gen1Int library)
83  Christof Haettig,         Ruhr-University Bochum,       Germany     (CC module)
84  Kasper Hald,              Aarhus University,            Denmark     (CC module)
85  Asger Halkier,            Aarhus University,            Denmark     (CC module)
86  Frederik Beyer Hansen,    University of Copenhagen,     Denmark     (Parallel AO-SOPPA)
87  Erik D. Hedegaard,        Univ. of Southern Denmark,    Denmark     (Polarizable embedding model, QM/MM)
88  Hanne Heiberg,            University of Oslo,           Norway      (geometry analysis, selected one-electron integrals)
89  Trygve Helgaker,          University of Oslo,           Norway      (DALTON; ABACUS, ERI, DFT modules, London, and much more)
90  Alf Christian Hennum,     University of Oslo,           Norway      (Parity violation)
91  Hinne Hettema,            University of Auckland,       New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
92  Eirik Hjertenaes,         NTNU,                         Norway      (Cholesky decomposition)
93  Pi A. B. Haase,           University of Copenhagen,     Denmark     (Triplet AO-SOPPA)
94  Maria Francesca Iozzi,    University of Oslo,           Norway      (RPA)
95  Christoph Jacob           TU Braunschweig               Germany     (Frozen density embedding model)
96  Brano Jansik              Technical Univ. of Ostrava    Czech Rep.  (DFT cubic response)
97  Hans Joergen Aa. Jensen,  Univ. of Southern Denmark,    Denmark     (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
98  Dan Jonsson,              UiT The Arctic U. of Norway,  Norway      (cubic response in RESPONS module)
99  Poul Joergensen,          Aarhus University,            Denmark     (RESPONS, ABACUS, and CC modules)
100  Maciej Kaminski,          University of Warsaw,         Poland      (CPPh in RESPONS)
101  Joanna Kauczor,           Linkoeping University,        Sweden      (Complex polarization propagator (CPP) module)
102  Sheela Kirpekar,          Univ. of Southern Denmark,    Denmark     (Mass-velocity & Darwin integrals)
103  Wim Klopper,              KIT Karlsruhe,                Germany     (R12 code in CC, SIRIUS, and ABACUS modules)
104  Stefan Knecht,            ETH Zurich,                   Switzerland (Parallel CI and MCSCF)
105  Rika Kobayashi,           Australian National Univ.,    Australia   (DIIS in CC, London in MCSCF)
106  Henrik Koch,              NTNU,                         Norway      (CC module, Cholesky decomposition)
107  Jacob Kongsted,           Univ. of Southern Denmark,    Denmark     (Polarizable embedding model, QM/MM)
108  Andrea Ligabue,           University of Modena,         Italy       (CTOCD, AOSOPPA)
109  Nanna H. List             Univ. of Southern Denmark,    Denmark     (Polarizable embedding model)
110  Ola B. Lutnaes,           University of Oslo,           Norway      (DFT Hessian)
111  Juan I. Melo,             University of Buenos Aires,   Argentina   (LRESC, Relativistic Effects on NMR Shieldings)
112  Kurt V. Mikkelsen,        University of Copenhagen,     Denmark     (MC-SCRF and QM/MM)
113  Rolf H. Myhre,            NTNU,                         Norway      (Subsystems and CC3)
114  Christian Neiss,          Univ. Erlangen-Nuernberg,     Germany     (CCSD(R12))
115  Christian B. Nielsen,     University of Copenhagen,     Denmark     (QM/MM)
116  Patrick Norman,           KTH Stockholm,                Sweden      (Cubic response and complex frequency response in RESPONS)
117  Jeppe Olsen,              Aarhus University,            Denmark     (SIRIUS CI/density modules)
118  Jogvan Magnus H. Olsen,   Univ. of Southern Denmark,    Denmark     (Polarizable embedding model, QM/MM)
119  Anders Osted,             Copenhagen University,        Denmark     (QM/MM)
120  Martin J. Packer,         University of Sheffield,      UK          (SOPPA)
121  Filip Pawlowski,          Kazimierz Wielki University,  Poland      (CC3)
122  Morten N. Pedersen,       Univ. of Southern Denmark,    Denmark     (Polarizable embedding model)
123  Thomas B. Pedersen,       University of Oslo,           Norway      (Cholesky decomposition)
124  Patricio F. Provasi,      University of Northeastern,   Argentina   (Analysis of coupling constants in localized orbitals)
125  Zilvinas Rinkevicius,     KTH Stockholm,                Sweden      (open-shell DFT, ESR)
126  Elias Rudberg,            KTH Stockholm,                Sweden      (DFT grid and basis info)
127  Torgeir A. Ruden,         University of Oslo,           Norway      (Numerical derivatives in ABACUS)
128  Kenneth Ruud,             UiT The Arctic U. of Norway,  Norway      (DALTON; ABACUS magnetic properties and much more)
129  Pawel Salek,              KTH Stockholm,                Sweden      (DALTON; DFT code)
130  Claire C. M. Samson       University of Karlsruhe       Germany     (Boys localization, r12 integrals in ERI)
131  Alfredo Sanchez de Meras, University of Valencia,       Spain       (CC module, Cholesky decomposition)
132  Trond Saue,               Paul Sabatier University,     France      (direct Fock matrix construction)
133  Stephan P. A. Sauer,      University of Copenhagen,     Denmark     (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
134  Andre S. P. Gomes,        CNRS/Universite de Lille,     France      (Frozen density embedding model)
135  Bernd Schimmelpfennig,    Forschungszentrum Karlsruhe,  Germany     (AMFI module)
136  Kristian Sneskov,         Aarhus University,            Denmark     (Polarizable embedding model, QM/MM)
137  Arnfinn H. Steindal,      UiT The Arctic U. of Norway,  Norway      (parallel QM/MM, Polarizable embedding model)
138  Casper Steinmann,         Univ. of Southern Denmark,    Denmark     (QFIT, Polarizable embedding model)
139  K. O. Sylvester-Hvid,     University of Copenhagen,     Denmark     (MC-SCRF)
140  Peter R. Taylor,          VLSCI/Univ. of Melbourne,     Australia   (Symmetry handling ABACUS, integral transformation)
141  Andrew M. Teale,          University of Nottingham,     England     (DFT-AC, DFT-D)
142  David P. Tew,             University of Bristol,        England     (CCSD(R12))
143  Olav Vahtras,             KTH Stockholm,                Sweden      (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
144  Lucas Visscher,           Vrije Universiteit Amsterdam, Netherlands (Frozen density embedding model)
145  David J. Wilson,          La Trobe University,          Australia   (DFT Hessian and DFT magnetizabilities)
146  Hans Agren,               KTH Stockholm,                Sweden      (SIRIUS module, RESPONS, MC-SCRF solvation model)
147 --------------------------------------------------------------------------------
148
149     Date and time (Linux)  : Sun Feb 10 14:01:34 2019
150     Host name              : s12p32.deic.sdu.dk
151
152 * Work memory size             :   320000000 =  2.384 gigabytes.
153
154 * Directories for basis set searches:
155   1) /work/sdujk/kjellgren/tpss_test/archive
156   2) /gpfs/gss1/work/sdujk/kjellgren/programs/dalton/srdft_dalton_metaGGA/basis
157
158
159Compilation information
160-----------------------
161
162 Who compiled             | kjellgren
163 Host                     | fe1.deic.sdu.dk
164 System                   | Linux-3.10.0-327.36.3.el7.x86_64
165 CMake generator          | Unix Makefiles
166 Processor                | x86_64
167 64-bit integers          | OFF
168 MPI                      | ON
169 Fortran compiler         | /opt/sys/apps/intel/2018.05/impi_latest/intel64/bi
170                          | n/mpiifort
171 Fortran compiler version | unknown
172 C compiler               | /opt/sys/apps/intel/2018.05/impi_latest/intel64/bi
173                          | n/mpiicc
174 C compiler version       | unknown
175 C++ compiler             | /opt/sys/apps/intel/2018.05/impi_latest/intel64/bi
176                          | n/mpiicpc
177 C++ compiler version     | unknown
178 Static linking           | OFF
179 Last Git revision        | ccd5c8166e61c7e0af9069525144932388c6f570
180 Git branch               | kjellgren-srdft_metagga
181 Configuration time       | 2019-02-08 13:53:55.048444
182
183 * MPI parallel run using 24 processes.
184
185
186   Content of the .dal input file
187 ----------------------------------
188
189*DALTON INPUT
190.RUN RESPONSE
191**INTEGRALS
192*TWOINT
193.DOSRINTEGRALS
194.ERF
195 0.4
196**WAVE FUNCTIONS
197.HFSRDFT
198.MP2
199.MCSRDFT
200.SRFUN
201 SRXTPSS_S SRCTPSS_S
202*OPTIMIZATION
203.DETERMINANTS
204*CI VECTOR
205.PLUS COMBINATIONS
206*CONFIGURATION INPUT
207.SYMMETRY
208 1
209.SPIN MUL
210 1
211.INACTIVE
212 2 1 1 0
213.ELECTRONS
214 2
215.CAS SPACE
216 1 0 1 0
217**RESPONSE
218*LINEAR
219.SINGLE RESIDUE
220.TRIPLET
221.ROOTS
222 0 1 0 0 0 0 0 0 0
223**END OF DALTON INPUT
224
225
226   Content of the .mol file
227 ----------------------------
228
229BASIS
230MINI(Scaled)
231
232
233Atomtypes=2 Angstrom
234Charge=8.0 Atoms=1
235O 0.000000    0.000000    0.118835
236Charge=1.0 Atoms=2
237H 0.000000    0.764176   -0.475338
238H 0.000000   -0.764176   -0.475338
239
240
241       *******************************************************************
242       *********** Output from DALTON general input processing ***********
243       *******************************************************************
244
245 --------------------------------------------------------------------------------
246   Overall default print level:    0
247   Print level for DALTON.STAT:    1
248
249    Parallel calculation using MPI
250    AO-direct calculation (in sections where implemented)
251    HERMIT 1- and 2-electron integral sections will be executed
252    "Old" integral transformation used (limited to max 255 basis functions)
253    Wave function sections will be executed (SIRIUS module)
254    Dynamic molecular response properties section will be executed (RESPONSE module)
255 --------------------------------------------------------------------------------
256
257
258   ****************************************************************************
259   *************** Output of molecule and basis set information ***************
260   ****************************************************************************
261
262
263    The two title cards from your ".mol" input:
264    ------------------------------------------------------------------------
265 1:
266 2:
267    ------------------------------------------------------------------------
268
269  Coordinates are entered in Angstrom and converted to atomic units.
270          - Conversion factor : 1 bohr = 0.52917721 A
271
272  Atomic type no.    1
273  --------------------
274  Nuclear charge:   8.00000
275  Number of symmetry independent centers:    1
276  Number of basis sets to read;    2
277  Basis set file used for this atomic type with Z =   8 :
278     "/gpfs/gss1/work/sdujk/kjellgren/programs/dalton/srdft_dalton_metaGGA/basis/MINI(Scaled)"
279
280  Atomic type no.    2
281  --------------------
282  Nuclear charge:   1.00000
283  Number of symmetry independent centers:    2
284  Number of basis sets to read;    2
285  Basis set file used for this atomic type with Z =   1 :
286     "/gpfs/gss1/work/sdujk/kjellgren/programs/dalton/srdft_dalton_metaGGA/basis/MINI(Scaled)"
287
288
289                      SYMADD: Requested addition of symmetry
290                      --------------------------------------
291
292 Symmetry test threshold:  5.00E-06
293
294@   The molecule is centered at center of mass and rotated
295@   so principal axes of inertia are along coordinate axes.
296
297 Symmetry class found: C(2v)
298
299 Symmetry Independent Centres
300 ----------------------------
301       8 :      0.00000000     0.00000000    -0.12566073  Isotope  1
302       1 :      0.00000000     1.44408335     0.99716351  Isotope  1
303
304 The following symmetry elements were found:   X  Y
305
306
307                         SYMGRP: Point group information
308                         -------------------------------
309
310@    Full point group is: C(2v)
311@    Represented as:      C2v
312
313@  * The irrep name for each symmetry:    1: A1     2: B1     3: B2     4: A2
314
315   * The point group was generated by:
316
317      Reflection in the yz-plane
318      Reflection in the xz-plane
319
320   * Group multiplication table
321
322        |  E   C2z  Oxz  Oyz
323   -----+--------------------
324     E  |  E   C2z  Oxz  Oyz
325    C2z | C2z   E   Oyz  Oxz
326    Oxz | Oxz  Oyz   E   C2z
327    Oyz | Oyz  Oxz  C2z   E
328
329   * Character table
330
331        |  E   C2z  Oxz  Oyz
332   -----+--------------------
333    A1  |   1    1    1    1
334    B1  |   1   -1    1   -1
335    B2  |   1   -1   -1    1
336    A2  |   1    1   -1   -1
337
338   * Direct product table
339
340        | A1   B1   B2   A2
341   -----+--------------------
342    A1  | A1   B1   B2   A2
343    B1  | B1   A1   A2   B2
344    B2  | B2   A2   A1   B1
345    A2  | A2   B2   B1   A1
346
347
348                                 Isotopic Masses
349                                 ---------------
350
351                           O          15.994915
352                           H   _1      1.007825
353                           H   _2      1.007825
354
355                       Total mass:    18.010565 amu
356                       Natural abundance:  99.730 %
357
358 Center-of-mass coordinates (a.u.):    0.000000   -0.000000   -0.000000
359 Center-of-mass coordinates (Angs):    0.000000   -0.000000   -0.000000
360
361
362  Atoms and basis sets
363  --------------------
364
365  Number of atom types :    2
366  Total number of atoms:    3
367
368  Basis set used is "MINI(Scaled)" from the basis set library.
369
370  label    atoms   charge   prim   cont     basis
371  ----------------------------------------------------------------------
372  O           1    8.0000    15     5      [6s3p|2s1p]
373  H           2    1.0000     3     1      [3s|1s]
374  ----------------------------------------------------------------------
375  total:      3   10.0000    21     7
376  ----------------------------------------------------------------------
377
378  Threshold for neglecting AO integrals:  1.00D-12
379
380
381  Cartesian Coordinates (a.u.)
382  ----------------------------
383
384  Total number of coordinates:    9
385  O       :     1  x   0.0000000000    2  y   0.0000000000    3  z  -0.1256607264
386  H   / 1 :     4  x   0.0000000000    5  y   1.4440833513    6  z   0.9971635144
387  H   / 2 :     7  x   0.0000000000    8  y  -1.4440833513    9  z   0.9971635144
388
389
390  Symmetry Coordinates
391  --------------------
392
393  Number of coordinates in each symmetry:     3    2    3    1
394
395  Symmetry  A1  ( 1)
396
397    1   O     z    3
398    2   H     y    [  5  -    8 ]/2
399    3   H     z    [  6  +    9 ]/2
400
401  Symmetry  B1  ( 2)
402
403    4   O     x    1
404    5   H     x    [  4  +    7 ]/2
405
406  Symmetry  B2  ( 3)
407
408    6   O     y    2
409    7   H     y    [  5  +    8 ]/2
410    8   H     z    [  6  -    9 ]/2
411
412  Symmetry  A2  ( 4)
413
414    9   H     x    [  4  -    7 ]/2
415
416
417   Interatomic separations (in Angstrom):
418   --------------------------------------
419
420            O           H   _1      H   _2
421            ------      ------      ------
422 O     :    0.000000
423 H   _1:    0.967991    0.000000
424 H   _2:    0.967991    1.528352    0.000000
425
426
427  Max    interatomic separation is    1.5284 Angstrom (    2.8882 Bohr)
428  between atoms    3 and    2, "H   _2" and "H   _1".
429
430  Min HX interatomic separation is    0.9680 Angstrom (    1.8292 Bohr)
431
432
433  Bond distances (Angstrom):
434  --------------------------
435
436                  atom 1     atom 2       distance
437                  ------     ------       --------
438  bond distance:  H   _1     O            0.967991
439  bond distance:  H   _2     O            0.967991
440
441
442  Bond angles (degrees):
443  ----------------------
444
445                  atom 1     atom 2     atom 3         angle
446                  ------     ------     ------         -----
447  bond angle:     H   _1     O          H   _2       104.267
448
449
450
451
452 Principal moments of inertia (u*A**2) and principal axes
453 --------------------------------------------------------
454
455   IA       0.631969          0.000000    1.000000    0.000000
456   IB       1.177069          0.000000    0.000000    1.000000
457   IC       1.809038          1.000000    0.000000    0.000000
458
459
460 Rotational constants
461 --------------------
462
463@    The molecule is planar.
464
465               A                   B                   C
466
467         799689.9693         429353.7755         279363.4555 MHz
468           26.674786           14.321700            9.318562 cm-1
469
470
471@  Nuclear repulsion energy :    9.093052777509 Hartree
472
473
474  Symmetry Orbitals
475  -----------------
476
477  Number of orbitals in each symmetry:           4    1    2    0
478
479
480  Symmetry  A1 ( 1)
481
482    1     O        1s         1
483    2     O        1s         2
484    3     O        2pz        5
485    4     H        1s         6 +    7
486
487
488  Symmetry  B1 ( 2)
489
490    5     O        2px        3
491
492
493  Symmetry  B2 ( 3)
494
495    6     O        2py        4
496    7     H        1s         6 -    7
497
498
499  No orbitals in symmetry  A2 ( 4)
500
501  Symmetries of electric field:  B1 (2)  B2 (3)  A1 (1)
502
503  Symmetries of magnetic field:  B2 (3)  B1 (2)  A2 (4)
504
505
506                     .---------------------------------------.
507                     | Starting in Integral Section (HERMIT) |
508                     `---------------------------------------'
509
510
511
512 ***************************************************************************************
513 ****************** Output from **INTEGRALS input processing (HERMIT) ******************
514 ***************************************************************************************
515
516
517
518    *************************************************************************
519    ****************** Output from HERMIT input processing ******************
520    *************************************************************************
521
522
523 Default print level:        1
524
525 Calculation of one-electron Hamiltonian integrals.
526
527 Center of mass  (bohr):      0.000000000000     -0.000000000000     -0.000000000000
528 Operator center (bohr):      0.000000000000      0.000000000000      0.000000000000
529 Gauge origin    (bohr):      0.000000000000     -0.000000000000     -0.000000000000
530 Dipole origin   (bohr):      0.000000000000     -0.000000000000     -0.000000000000
531
532
533  Set-up from HR2INP:
534  -------------------
535
536 Print level in TWOINT:    1
537
538 DFT-hybrid : Using a Erf type two-elec. operator
539              with the coupling parameter :    0.40000
540 * Direct calculation of Fock matrices in AO-basis.
541 * Program controlled screening thresholds used for this.
542 * Separate density screening of Coulomb integral batches
543 * Separate density screening of exchange integral batches
544
545
546     ************************************************************************
547     ************************** Output from HERINT **************************
548     ************************************************************************
549
550
551
552                      Nuclear contribution to dipole moments
553                      --------------------------------------
554
555                 au               Debye          C m (/(10**-30)
556
557      z      0.98904122         2.51389186         8.38544065
558
559
560  Total CPU  time used in HERMIT:   0.00 seconds
561  Total wall time used in HERMIT:   0.00 seconds
562
563
564                        .----------------------------------.
565                        | End of Integral Section (HERMIT) |
566                        `----------------------------------'
567
568
569
570                   .--------------------------------------------.
571                   | Starting in Wave Function Section (SIRIUS) |
572                   `--------------------------------------------'
573
574
575 CI program in use: SIRIUS-CI
576
577 *** Output from Huckel module :
578
579     Using EWMO model:          F
580     Using EHT  model:          T
581     Number of Huckel orbitals each symmetry:    4    1    2    0
582
583 Huckel EHT eigenvalues for symmetry :  1
584          -20.704599      -1.501427      -0.671220      -0.295546
585
586 Huckel EHT eigenvalues for symmetry :  2
587           -0.616200
588
589 Huckel EHT eigenvalues for symmetry :  3
590           -0.730742      -0.260166
591
592 SETCI, core memory needed for CI:
593 LCINDX =          53
594 LACIMX =          83
595 LBCIMX =           0
596
597 Number of determinants:             2
598
599 Number of configurations:           2
600
601 Time used in SETCI :      0.48s
602
603 **********************************************************************
604 *SIRIUS* a direct, restricted step, second order MCSCF program       *
605 **********************************************************************
606
607
608     Date and time (Linux)  : Sun Feb 10 14:01:34 2019
609     Host name              : s12p32.deic.sdu.dk
610
611 Title lines from ".mol" input file:
612
613
614
615 Print level on unit LUPRI =   2 is   0
616 Print level on unit LUW4  =   2 is   5
617
618@    MC-SCF optimization.
619
620@    Multi-configurational response calculation.
621@              Type: complete active space calculation (CAS).
622
623@    This is a combination run starting with
624@              a restricted, closed shell HF-srDFT hybrid calculation
625@              an MP2 calculation
626
627 Fock matrices are calculated directly and in parallel without use of integrals on disk.
628
629 Initial molecular orbitals are obtained according to
630 ".MOSTART EHT   " input option
631
632     Wave function specification
633     ============================
634@    Wave function type        --- MC-SCF ---
635@    Number of closed shell electrons           8
636@    Number of electrons in active shells       2
637@    Total charge of the molecule               0
638
639@    Spin multiplicity and 2 M_S                1         0
640@    Total number of symmetries                 4 (point group: C2v)
641@    Reference state symmetry                   1 (irrep name : A1 )
642
643@    This is a lrWFT-srDFT calculation using the
644@      SRXTPSS_S  short range exchange functional
645@      SRCTPSS_S  short range correlation functional
646
647@    sr-DFT and exact sr-HF exchange weights:    1.000000    0.000000
648
649     Orbital specifications
650     ======================
651@    Abelian symmetry species          All |    1    2    3    4
652@                                          |  A1   B1   B2   A2
653                                       --- |  ---  ---  ---  ---
654@    Inactive orbitals                   4 |    2    1    1    0
655@    Active orbitals                     2 |    1    0    1    0
656@    Secondary orbitals                  1 |    1    0    0    0
657@    Total number of orbitals            7 |    4    1    2    0
658@    Number of basis functions           7 |    4    1    2    0
659
660      ** Automatic occupation of RHF-srDFT orbitals **
661
662      -- Initial occupation of symmetries is determined from extended Huckel guess.
663      -- Initial occupation of symmetries is :
664@    Occupied SCF orbitals               5 |    3    1    1    0
665
666     Optimization information
667     ========================
668@    Number of determinants                   2
669@    Number of orbital rotations              6
670     ------------------------------------------
671@    Total number of variables                8
672
673     Maximum number of macro iterations      25
674     Maximum number of micro iterations     600
675     Threshold for MCSCF gradient      1.00D-05
676     Number of initial trial vectors          1
677     Number of initial CI iterations          3
678     Number of simultaneous trial vectors     1
679
680@    This calculation converges to the lowest state for the specified symmetry and spin species.
681
682     Maximum number of NEO/NR iterations  24
683
684
685 ***********************************************
686 ***** DIIS acceleration of SCF iterations *****
687 ***********************************************
688
689 C1-DIIS algorithm; max error vectors =    3
690
691 Automatic occupation of symmetries with  10 electrons.
692
693 Iter     Total energy    Error norm  Delta(E)    SCF occupation
694 -----------------------------------------------------------------------------
695
696***  INFO  GETGAB: GABSRXXX not found on AOPROPER. Regenerating.
697
698   Ex-sr + Ec-sr                         -7.3316870966
699 + EJsr = sr Coulomb energy              27.7937979742
700 = Total E(srDFT)                        20.4621108776
701
702
703 Corrections needed for correct CI energy evaluation:
704 - 0.5 Tr(Vxc-sr Dcore)                   5.0663086393
705 -     Tr(Vxc-sr Dval)                    0.0000000000
706 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
707   1  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -5    1    F  6.00D-01  6.18D-01
708@  1  -75.8203199670       1.77D+00  -7.58D+01     3   1   1   0
709      Virial theorem: -V/T =      1.999276
710@    MULPOP   O      -0.50; H   _1  0.25; H   _2  0.25;
711   1  Level shift: doubly occupied orbital energies shifted by -2.00D-01
712 -----------------------------------------------------------------------------
713
714   Ex-sr + Ec-sr                         -7.3494173820
715 + EJsr = sr Coulomb energy              27.9558417736
716 = Total E(srDFT)                        20.6064243916
717
718
719 Corrections needed for correct CI energy evaluation:
720 - 0.5 Tr(Vxc-sr Dcore)                   5.0786277378
721 -     Tr(Vxc-sr Dval)                    0.0000000000
722 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
723   2  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -6    2    F  4.58D-02  4.60D-02
724@  2  -75.8930693361       2.08D-01  -7.27D-02     3   1   1   0
725      Virial theorem: -V/T =      2.000529
726@    MULPOP   O      -0.61; H   _1  0.31; H   _2  0.31;
727   2  Level shift: doubly occupied orbital energies shifted by -5.00D-02
728 -----------------------------------------------------------------------------
729
730   Ex-sr + Ec-sr                         -7.3458959335
731 + EJsr = sr Coulomb energy              27.8778673240
732 = Total E(srDFT)                        20.5319713905
733
734
735 Corrections needed for correct CI energy evaluation:
736 - 0.5 Tr(Vxc-sr Dcore)                   5.0760695896
737 -     Tr(Vxc-sr Dval)                    0.0000000000
738 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
739   3  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -7    3    F  4.36D-02  4.40D-02
740@  3  -75.8979330916       4.54D-02  -4.86D-03     3   1   1   0
741      Virial theorem: -V/T =      2.000130
742@    MULPOP   O      -0.59; H   _1  0.30; H   _2  0.30;
743   3  Level shift: doubly occupied orbital energies shifted by -1.25D-02
744 -----------------------------------------------------------------------------
745
746   Ex-sr + Ec-sr                         -7.3502956200
747 + EJsr = sr Coulomb energy              27.9057667196
748 = Total E(srDFT)                        20.5554710996
749
750
751 Corrections needed for correct CI energy evaluation:
752 - 0.5 Tr(Vxc-sr Dcore)                   5.0790285902
753 -     Tr(Vxc-sr Dval)                    0.0000000000
754 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
755   4  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -7    4    F  4.42D-02  4.40D-02
756@  4  -75.8981473162       8.38D-03  -2.14D-04     3   1   1   0
757      Virial theorem: -V/T =      1.999471
758@    MULPOP   O      -0.60; H   _1  0.30; H   _2  0.30;
759 -----------------------------------------------------------------------------
760
761   Ex-sr + Ec-sr                         -7.3490506058
762 + EJsr = sr Coulomb energy              27.8933673571
763 = Total E(srDFT)                        20.5443167513
764
765
766 Corrections needed for correct CI energy evaluation:
767 - 0.5 Tr(Vxc-sr Dcore)                   5.0781747292
768 -     Tr(Vxc-sr Dval)                    0.0000000000
769 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
770   5  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -8    5    F  4.34D-02  4.40D-02
771@  5  -75.8981551309       2.09D-03  -7.81D-06     3   1   1   0
772      Virial theorem: -V/T =      1.999570
773@    MULPOP   O      -0.60; H   _1  0.30; H   _2  0.30;
774 -----------------------------------------------------------------------------
775
776   Ex-sr + Ec-sr                         -7.3492396185
777 + EJsr = sr Coulomb energy              27.8947755655
778 = Total E(srDFT)                        20.5455359470
779
780
781 Corrections needed for correct CI energy evaluation:
782 - 0.5 Tr(Vxc-sr Dcore)                   5.0783024358
783 -     Tr(Vxc-sr Dval)                    0.0000000000
784 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
785   6  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -8    6    F  4.46D-02  4.50D-02
786@  6  -75.8981557841       5.41D-04  -6.53D-07     3   1   1   0
787      Virial theorem: -V/T =      1.999546
788@    MULPOP   O      -0.60; H   _1  0.30; H   _2  0.30;
789 -----------------------------------------------------------------------------
790
791   Ex-sr + Ec-sr                         -7.3492339388
792 + EJsr = sr Coulomb energy              27.8946116084
793 = Total E(srDFT)                        20.5453776697
794
795
796 Corrections needed for correct CI energy evaluation:
797 - 0.5 Tr(Vxc-sr Dcore)                   5.0782980828
798 -     Tr(Vxc-sr Dval)                    0.0000000000
799 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
800   7  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -8    7    F  5.46D-02  5.50D-02
801@  7  -75.8981558420       4.16D-05  -5.80D-08     3   1   1   0
802
803@ *** DIIS converged in   7 iterations !
804@     Converged SCF energy, gradient:    -75.898155842034    4.16D-05
805    - total time used in SIRFCK :              0.00 seconds
806
807 --- Writing SIRIFC interface file
808
809 CPU and wall time for SCF :       0.881       0.902
810
811
812WARNING - DFT spin density is not implemented in MP2 module and is ignored.
813
814
815 ----- Output from SIRIUS MP2 module -----
816
817 Reference: H.J.Aa.Jensen, P.Jørgensen, H.Ågren, and J.Olsen,
818            J. Chem. Phys. 88, 3834 (1988); 89, 5354 (1988)
819
820 Checking that the closed shell orbitals are canonical Hartree-Fock orbitals
821
822    Number of electrons  :   10
823    Closed shell orbitals:    3    1    1    0
824
825 Generating Fock matrix
826
827   Ex-sr + Ec-sr                         -7.3492339388
828 + EJsr = sr Coulomb energy              27.8946116084
829 = Total E(srDFT)                        20.5453776697
830
831
832 Corrections needed for correct CI energy evaluation:
833 - 0.5 Tr(Vxc-sr Dcore)                   5.0782980828
834 -     Tr(Vxc-sr Dval)                    0.0000000000
835 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
836
837 Hartree-Fock electronic energy:         -84.991208619543
838 Hartree-Fock total      energy:         -75.898155842034
839
840 Hartree-Fock orbital energies, symmetry 1 ( A1 ),    3 occupied SCF orbitals
841
842       -18.83349545    -1.11465947    -0.42597849     0.45647942
843
844 Hartree-Fock orbital energies, symmetry 2 ( B1 ),    1 occupied SCF orbitals
845
846        -0.36424549
847
848 Hartree-Fock orbital energies, symmetry 3 ( B2 ),    1 occupied SCF orbitals
849
850        -0.61533981     0.53213065
851
852    E(LUMO) :     0.45647942   (in symmetry 1)
853  - E(HOMO) :    -0.36424549   (in symmetry 2)
854  --------------------------
855    gap     :     0.82072491
856
857---> (Re)generating AOTWOINT
858---> and (re)generating AOSR2INT
859
860
861     ************************************************************************
862     ************************** Output from HERINT **************************
863     ************************************************************************
864
865
866 Threshold for neglecting two-electron integrals:  1.00D-12
867 HERMIT - Number of two-electron integrals written:         138 ( 34.0% )
868 HERMIT - Megabytes written:                              0.007
869
870
871 Threshold for neglecting two-electron integrals:  1.00D-12
872 HERMIT - Number of two-electron integrals written:         138 ( 34.0% )
873 HERMIT - Megabytes written:                              0.007
874
875
876 2-el. integral transformation level 5: Total CPU and WALL times (sec)       0.002       0.005
877
878 MP2 move   0.000505 electrons to unoccupied HF orbitals
879
880
881@   Short-range Hartree-Fock total energy        :           -75.8981558420
882@   + MP2 contribution from long-range integrals :            -0.0005454956
883@   = short-range MP2 second order energy        :           -75.8987013376
884
885 *******************************************************
886 MP2-SRDFT natural orbitals: Short-range self-consistent
887 contributions are NOT taken into account.
888 *******************************************************
889
890 Natural orbital occupation numbers, symmetry 1 (irrep A1 )
891 Sum =     6.00004105; RHF =     6.00000000; Difference =     0.00004105
892
893         2.00000000     1.99998928     1.99980649     0.00024529
894
895 Natural orbital occupation numbers, symmetry 2 (irrep B1 )
896 Sum =     1.99999992; RHF =     2.00000000; Difference =    -0.00000008
897
898         1.99999992
899
900 Natural orbital occupation numbers, symmetry 3 (irrep B2 )
901 Sum =     1.99995903; RHF =     2.00000000; Difference =    -0.00004097
902
903         1.99969927     0.00025977
904
905 Time used for MP2 natural orbitals :       0.069 CPU seconds,       0.072 wall seconds.
906
907 CPU and wall time for MP2 :       0.069       0.072
908
909
910        SIRIUS MC-srDFT optimization (SIROPT)
911 ================================================
912
913
914 Fock matrix screening setting for SIRCNO: IFTHRS =    9
915
916INFO : spin density ignored in initial CI iterations.
917
918
919 ----- Output from SIRIUS CI module (CICTL) -----
920
921
922
923
924 2-el. integral transformation level 0: Total CPU and WALL times (sec)       0.000       0.001
925
926
927 --- SIRCI.CIST1: plus combination of all degenerate
928                 configurations is used as start vectors.
929
930
931 (CIST1) 2 lowest diagonal elements:
932
933 Element no. Config.no.    Active energy      Total energy
934
935         1 :          1     -7.3750238776    -96.4422467839
936         2 :          2     -5.2022116056    -94.2694345119
937
938
939 Convergence threshold for CI optimization :     0.00000500
940
941
942 The requested root number is now converged.
943
944
945 *** CI converged in  2 iterations.
946
947
948SR 0-el. energy for input .STATE    1
949-------------------------------------
950
951   SR core    Hartree energy   :          21.566748591303
952 - SR valence Hartree energy   :          -0.651010863343
953 + SR Exchange-correlation     :          -7.349121091655
954 - SR Exchange-correlation pot.:           1.003998049072
955
956 = Total eff. SR 0-el. energy  :          14.570614685377
957
958CI-DFT energy for state no.    1
959-------------------------------------
960
961 SR eff. 1-el. energy          :           5.973476490453
962 SR total Hartree energy       :          27.893212267485
963 SR eff. total DFT energy      :          20.544091175830
964 LR total CI  energy           :         -96.442312336693
965
966 Total CI-DFT energy           :         -75.898221160863
967
968 Decomposition of the auxiliary CI-srDFT energy:
969 ELRCI        :         -96.442312336693
970 EMYDFTAUX    :          39.389269463094
971 ESRDV        :           5.973476490453
972 POTNUC       :           9.093052777509
973
974
975 Auxiliary CI-srDFT energy for root 1:       -60.172619160655
976
977
978@ Final CI energies and residuals in symmetry 1 (irrep A1 )
979@    1      -75.898221160862917       4.36D-15
980
981   --- OUTPUT FROM SIRCNO     Keyword = FD+NO
982
983
984   Ex-sr + Ec-sr                         -7.3491168449
985 + EJsr = sr Coulomb energy              27.8931724710
986 = Total E(srDFT)                        20.5440556262
987
988
989 Corrections needed for correct CI energy evaluation:
990 - 0.5 Tr(Vxc-sr Dcore)                   4.5823430364
991 -     Tr(Vxc-sr Dval)                    0.9917473182
992 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -3.4887097534
993
994
995 --- MACRO ITERATION  1 ---
996 --------------------------
997
998 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.001       0.001
999
1000 Fock matrix screening setting for this macro iteration: 10^( -9)
1001
1002   Ex-sr + Ec-sr                         -7.3491168449
1003 + EJsr = sr Coulomb energy              27.8931724710
1004 = Total E(srDFT)                        20.5440556262
1005
1006
1007 Corrections needed for correct CI energy evaluation:
1008 - 0.5 Tr(Vxc-sr Dcore)                   4.5823430364
1009 -     Tr(Vxc-sr Dval)                    0.9917473182
1010 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -3.4887097534
1011
1012 Total MC-srDFT energy    :           -75.898220819587721  (MACRO    1)
1013
1014 - Nuclear repulsion      :             9.093052777509254
1015 - Inactive energy        :           -78.338156002577222
1016 - Active energy          :            -1.389381350839940
1017 - srDFT effective energy :            -5.263736243679814
1018
1019 Norm of total gradient   :             0.001431373638
1020 -    of CI gradient      :             0.000099947721
1021 -    of orbital gradient :             0.001427879878
1022      Virial theorem: -V/T =      1.999547
1023@    MULPOP   O      -0.60; H   _1  0.30; H   _2  0.30;
1024
1025 Residual norm when dim(red L) =   8
1026 NEO root     CSF        orbital          total
1027    1     0.00000000     0.00000000     0.00000000 converged
1028
1029 (NEONEX) NEO vector is converged.
1030
1031   --- OUTPUT FROM SIRCNO     Keyword = FD+NO
1032
1033
1034   Ex-sr + Ec-sr                         -7.3492094265
1035 + EJsr = sr Coulomb energy              27.8942971622
1036 = Total E(srDFT)                        20.5450877357
1037
1038
1039 Corrections needed for correct CI energy evaluation:
1040 - 0.5 Tr(Vxc-sr Dcore)                   4.5526934916
1041 -     Tr(Vxc-sr Dval)                    1.0511746093
1042 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -3.6879494065
1043
1044
1045 --- MACRO ITERATION  2 ---
1046 --------------------------
1047
1048 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.001       0.002
1049
1050 Fock matrix screening setting for this macro iteration: 10^( -9)
1051
1052   Ex-sr + Ec-sr                         -7.3492094265
1053 + EJsr = sr Coulomb energy              27.8942971622
1054 = Total E(srDFT)                        20.5450877357
1055
1056
1057 Corrections needed for correct CI energy evaluation:
1058 - 0.5 Tr(Vxc-sr Dcore)                   4.5526934916
1059 -     Tr(Vxc-sr Dval)                    1.0511746093
1060 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -3.6879494065
1061
1062 Total MC-srDFT energy    :           -75.898225590665206  (MACRO    2)
1063
1064 - Nuclear repulsion      :             9.093052777509254
1065 - Inactive energy        :           -78.307443554220242
1066 - Active energy          :            -1.250544081822419
1067 - srDFT effective energy :            -5.433290732131798
1068
1069 Norm of total gradient   :             0.001380070650
1070 -    of CI gradient      :             0.001379582265
1071 -    of orbital gradient :             0.000036712044
1072      Virial theorem: -V/T =      1.999542
1073@    MULPOP   O      -0.60; H   _1  0.30; H   _2  0.30;
1074
1075 Residual norm when dim(red L) =   8
1076 NEO root     CSF        orbital          total
1077    1     0.00000000     0.00000000     0.00000000 converged
1078
1079 (NEONEX) NEO vector is converged.
1080
1081   --- OUTPUT FROM SIRCNO     Keyword = FD+NO
1082
1083
1084   Ex-sr + Ec-sr                         -7.3492148739
1085 + EJsr = sr Coulomb energy              27.8943515046
1086 = Total E(srDFT)                        20.5451366308
1087
1088
1089 Corrections needed for correct CI energy evaluation:
1090 - 0.5 Tr(Vxc-sr Dcore)                   4.5591841344
1091 -     Tr(Vxc-sr Dval)                    1.0382008386
1092 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -3.6467024275
1093
1094
1095 --- MACRO ITERATION  3 ---
1096 --------------------------
1097
1098 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.001       0.002
1099
1100 Fock matrix screening setting for this macro iteration: 10^( -9)
1101
1102   Ex-sr + Ec-sr                         -7.3492148739
1103 + EJsr = sr Coulomb energy              27.8943515046
1104 = Total E(srDFT)                        20.5451366308
1105
1106
1107 Corrections needed for correct CI energy evaluation:
1108 - 0.5 Tr(Vxc-sr Dcore)                   4.5591841344
1109 -     Tr(Vxc-sr Dval)                    1.0382008386
1110 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -3.6467024275
1111
1112 Total MC-srDFT energy    :           -75.898226378003358  (MACRO    3)
1113
1114 - Nuclear repulsion      :             9.093052777509254
1115 - Inactive energy        :           -78.325329806394492
1116 - Active energy          :            -1.267417020808722
1117 - srDFT effective energy :            -5.398532328309398
1118
1119 Norm of total gradient   :             0.000050889806
1120 -    of CI gradient      :             0.000050837882
1121 -    of orbital gradient :             0.000002298285
1122      Virial theorem: -V/T =      1.999542
1123@    MULPOP   O      -0.60; H   _1  0.30; H   _2  0.30;
1124
1125 Residual norm when dim(red L) =   6
1126 NEO root     CSF        orbital          total
1127    1     0.00000000     0.00000555     0.00000555 converged
1128
1129 (NEONEX) NEO vector is converged.
1130
1131   --- OUTPUT FROM SIRCNO     Keyword = FD+NO
1132
1133
1134   Ex-sr + Ec-sr                         -7.3492151190
1135 + EJsr = sr Coulomb energy              27.8943525836
1136 = Total E(srDFT)                        20.5451374646
1137
1138
1139 Corrections needed for correct CI energy evaluation:
1140 - 0.5 Tr(Vxc-sr Dcore)                   4.5598191471
1141 -     Tr(Vxc-sr Dval)                    1.0369311409
1142 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -3.6426528712
1143
1144
1145 --- MACRO ITERATION  4 ---
1146 --------------------------
1147
1148 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.001       0.002
1149
1150 Fock matrix screening setting for this macro iteration: 10^( -9)
1151
1152   Ex-sr + Ec-sr                         -7.3492151190
1153 + EJsr = sr Coulomb energy              27.8943525836
1154 = Total E(srDFT)                        20.5451374646
1155
1156
1157 Corrections needed for correct CI energy evaluation:
1158 - 0.5 Tr(Vxc-sr Dcore)                   4.5598191471
1159 -     Tr(Vxc-sr Dval)                    1.0369311409
1160 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -3.6426528712
1161
1162 Total MC-srDFT energy    :           -75.898226381943417  (MACRO    4)
1163
1164 - Nuclear repulsion      :             9.093052777509254
1165 - Inactive energy        :           -78.326770574762605
1166 - Active energy          :            -1.269390882467127
1167 - srDFT effective energy :            -5.395117702222952
1168
1169 Norm of total gradient   :             0.000005570578
1170 -    of CI gradient      :             0.000000554992
1171 -    of orbital gradient :             0.000005542863
1172      Virial theorem: -V/T =      1.999542
1173@    MULPOP   O      -0.60; H   _1  0.30; H   _2  0.30;
1174
1175 (SIRSTP) Energy difference;
1176 actual, predicted and ratio:  -0.000000003940059  -0.000000003925551    1.003696
1177 Close to convergence, ratio set to one.
1178
1179 *** Optimization control: MC-srDFT converged ***
1180     Number of macro iterations used            4
1181     Number of micro iterations used           19
1182     Total number of CPU seconds used         1.69
1183
1184 CPU and wall time for MCSCF :       1.693       1.706
1185
1186
1187                     .----------------------------------------.
1188                     | --- SIRIUS OPTIMIZATION STATISTICS --- |
1189                     `----------------------------------------'
1190
1191
1192
1193     Date and time (Linux)  : Sun Feb 10 14:01:36 2019
1194     Host name              : s12p32.deic.sdu.dk
1195
1196
1197  ITER ITMIC     EMCSCF           GRDNRM        RATIO      STPLNG
1198 ---------------------------------------------------------------------
1199    1    7    -75.898220819588   0.0014313736  0.000000   0.2235843799
1200    2    7    -75.898225590665   0.0013800707  0.713243   0.0422243939
1201    3    5    -75.898226378003   0.0000508898  1.041431   0.0041746636
1202    4    0    -75.898226381943   0.0000055706  1.000000   0.0000000000
1203
1204
1205  ITER  INDGCM  GCIMAX      GCINRM     INDGOM  GOBMAX      GOBNRM      GRDNRM
1206 ------------------------------------------------------------------------------
1207    1      2   -0.000100    0.000100      6    0.001256    0.001428    0.001431
1208    2      2   -0.001380    0.001380      4    0.000025    0.000037    0.001380
1209    3      2   -0.000051    0.000051      2    0.000002    0.000002    0.000051
1210    4      2   -0.000001    0.000001      4   -0.000004    0.000006    0.000006
1211
1212
1213  ITER ITMIC NCLIN NOLIN   TIMMAC    TIMITR    TIMMIC    TIMLIN    TIMMIC/ITMIC
1214 ------------------------------------------------------------------------------
1215
1216    1     7     1     6      0.63      0.00      0.57      0.52      0.08
1217    2     7     1     6      0.55      0.00      0.50      0.45      0.07
1218    3     5     1     4      0.39      0.00      0.34      0.30      0.07
1219    4     0     0     0      0.05      0.00      0.00      0.00
1220
1221
1222 ITER         EMY                 EACTIV              EMCSCF
1223
1224    1    -83.601892246257     -1.389381350840    -75.898220819588
1225    2    -83.740734286352     -1.250544081822    -75.898225590665
1226    3    -83.723862134704     -1.267417020809    -75.898226378003
1227    4    -83.721888276986     -1.269390882467    -75.898226381943
1228
1229
1230 ITER         DEPRED              DEACT               RATIO
1231
1232    1      0.000000000000      0.000000000000      0.000000000000
1233    2     -0.000006689275     -0.000004771077      0.713242878896
1234    3     -0.000000756016     -0.000000787338      1.041430684771
1235    4     -0.000000003926     -0.000000003940      1.000000000000
1236
1237
1238 ITER    BETA           GAMMA             STPLNG              RTRUST
1239
1240    1      0.20000000  1.00000000      0.223584379861      0.700000000000
1241    2      0.20000000  1.00000000      0.042224393934      0.700000000000
1242    3      0.20000000  1.00000000      0.004174663592      0.700000000000
1243    4      0.00000000  0.00000000      0.000000000000      0.700000000000
1244
1245
1246 Reduced L root no.  1
1247 ITER         EVAL              EVEC(1)           EVEC(2)           EVEC(3)
1248 ----------------------------------------------------------------------------
1249    1   -0.000000534074    0.999001697406   -0.044200896937   -0.005987931954
1250    2   -0.000000060477    0.999964343918   -0.000108376035   -0.008260869833
1251    3   -0.000000000314    0.999999651444   -0.000004884705   -0.000802666805
1252    4    0.000000000000    0.000000000000    0.000000000000    0.000000000000
1253
1254
1255                       .-----------------------------------.
1256                       | --- Final results from SIRIUS --- |
1257                       `-----------------------------------'
1258
1259
1260@    Spin multiplicity:           1
1261@    Spatial symmetry:            1 ( irrep  A1  in C2v )
1262@    Total charge of molecule:    0
1263@    State number:                1
1264
1265@    Final MC-SRDFT energy:       -75.898226381943
1266@    Nuclear repulsion:             9.093052777509
1267@    Electronic energy:           -84.991279159453
1268
1269@    Final gradient norm:           0.000005570578
1270
1271
1272     Date and time (Linux)  : Sun Feb 10 14:01:36 2019
1273     Host name              : s12p32.deic.sdu.dk
1274
1275 Occupancies of natural orbitals
1276 -------------------------------
1277
1278 Symmetry 1  ( A1 ) -- Total occupation in this symmetry is   5.999891297
1279
1280   2.000000000   2.000000000   1.999891297
1281
1282 Symmetry 2  ( B1 ) -- Total occupation in this symmetry is   2.000000000
1283
1284   2.000000000
1285
1286 Symmetry 3  ( B2 ) -- Total occupation in this symmetry is   2.000108703
1287
1288   2.000000000   0.000108703
1289
1290 Symmetry 4  ( A2 ) -- No occupied orbitals
1291
1292File label for MO orbitals:  10Feb19   (CNOORB)
1293
1294 (Only coefficients > 0.0100 are printed.)
1295
1296 Molecular orbitals for symmetry species 1  (A1 )
1297 ------------------------------------------------
1298
1299    Orbital         1        2        3        4
1300   1 O   :1s     0.9900  -0.2306   0.0580   0.1299
1301   2 O   :1s     0.0495   0.8767  -0.3840  -0.9197
1302   3 O   :2pz    0.0156   0.0494   0.8273  -0.7300
1303   4 H   :1s    -0.0120   0.1313   0.2336   0.8397
1304
1305 Molecular orbitals for symmetry species 2  (B1 )
1306 ------------------------------------------------
1307
1308    Orbital         1
1309   1 O   :2px    1.0000
1310
1311 Molecular orbitals for symmetry species 3  (B2 )
1312 ------------------------------------------------
1313
1314    Orbital         1        2
1315   1 O   :2py    0.6573  -1.0035
1316   2 H   :1s     0.3822   0.8896
1317
1318 Printout of CI-coefficients abs greater than 0.05000 for root  1
1319 *** NOTE: this root is the reference state ***
1320
1321
1322  Printout of coefficients in interval   0.3162E+00 to  0.1000E+01
1323  ==============================================================
1324
1325 Coefficient of determinant         1 is      0.99997282  9.99972824E-01
1326 alpha-string:  1
1327  beta-string:  1
1328
1329
1330  Printout of coefficients in interval   0.1000E+00 to  0.3162E+00
1331  ==============================================================
1332   ( no coefficients )
1333
1334
1335  Printout of coefficients in interval   0.5000E-01 to  0.1000E+00
1336  ==============================================================
1337   ( no coefficients )
1338
1339 Norm of printed part of CI vector ..      0.99994565
1340
1341  Magnitude of CI coefficients
1342  ============================
1343
1344  ( Ranges are relative to norm of vector :  1.00E+00 )
1345
1346  10- 1 to 10- 0         1    0.99994565E+00    0.99994565E+00
1347  10- 3 to 10- 2         1    0.54351580E-04    0.10000000E+01
1348  Number of coefficients less than 10^-11 times norm is             0
1349
1350  Total CPU  time used in SIRIUS :   2.65 seconds
1351  Total wall time used in SIRIUS :   2.69 seconds
1352
1353
1354     Date and time (Linux)  : Sun Feb 10 14:01:36 2019
1355     Host name              : s12p32.deic.sdu.dk
1356
1357 NOTE:    1 warnings have been issued.
1358 Check output, result, and error files for "WARNING".
1359
1360
1361                     .---------------------------------------.
1362                     | End of Wave Function Section (SIRIUS) |
1363                     `---------------------------------------'
1364
1365
1366
1367                 .------------------------------------------------.
1368                 | Starting in Dynamic Property Section (RESPONS) |
1369                 `------------------------------------------------'
1370
1371
1372 ----------------------------------------------------------------------------------------
1373  RESPONSE  -  an MCSCF, MC-srDFT, DFT, SOPPA and SOPPA-srDFT response property program
1374 ----------------------------------------------------------------------------------------
1375
1376srDFT INFO: DFT_SPINDNS set to false for singlet reference.
1377
1378
1379 -------- OUTPUT FROM RESPONSE INPUT PROCESSING --------
1380
1381
1382
1383
1384  Linear Response single residue calculation
1385 -------------------------------------------
1386
1387
1388    3 input options by user.
1389
1390 Print level                                    : IPRPP  =   2
1391 Maximum number of iterations for eigenval.eqs. : MAXITP =  60
1392 Threshold for convergence of eigenvalue eqs.   : THCPP  = 1.000D-03
1393 Maximum iterations in optimal orbital algorithm: MAXITO =   5
1394
1395      1 Excitation energies are calculated for symmetry no.    2
1396
1397 TRACTL_1: Integral transformation abandoned,
1398 the required MO integrals are already available.
1399
1400 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.000       0.000
1401
1402 Sorting integrals to Dirac format: Total CPU and WALL times (sec)       0.000       0.001
1403
1404
1405 MCSCF energy         :      -75.898226381943417
1406 -- inactive part     :      -83.721888276985553
1407 --   active part     :       -1.269390882467127
1408 -- nuclear repulsion :        9.093052777509254
1409
1410
1411                      *************************************
1412                      *** MC-srDFT response calculation ***
1413                      *************************************
1414
1415 ----------------------------------------------------------------
1416 ----- Linear response calculation
1417 ----- Symmetry of excitation/property operator(s)    2  ( B1 )
1418 ----------------------------------------------------------------
1419
1420 Number of excitations of this symmetry            1
1421 Number of response properties of this symmetry    0
1422 Number of C6/C8 properties of this symmetry       0
1423
1424
1425 Perturbation symmetry.     KSYMOP:           2
1426 Perturbation spin symmetry.TRPLET:           T
1427 Orbital variables.         KZWOPT:           2
1428 Configuration variables.   KZCONF:           0
1429 Total number of variables. KZVAR :           2
1430
1431
1432
1433 --- EXCITATION ENERGIES AND TRANSITION MOMENT CALCULATION (MCTDHF) ---
1434
1435 Operator symmetry = 2  ( B1 ); triplet =   T
1436
1437
1438 ** RSPCTL MICROITERATION NUMBER    1
1439
1440      Root  Residual tot.,    conf., and orb.    Bnorm      Eigenvalue
1441      ----------------------------------------------------------------
1442         1    1.59029D-04  0.00D+00  1.59D-04  7.08D-01    4.40304D-01
1443
1444 *** THE REQUESTED    1 SOLUTION VECTORS CONVERGED
1445
1446 Convergence of RSP solution vectors, threshold = 1.00D-03
1447 ---------------------------------------------------------------
1448 (dimension of paired reduced space:    2)
1449 RSP solution vector no.    1; norm of residual   2.25D-04
1450
1451 *** RSPCTL MICROITERATIONS CONVERGED
1452
1453
1454 **************************************************************************************
1455 *** @ Excit. operator sym 2 & ref. state sym 1 => excited state symmetry 2  ( B1 ) ***
1456 **************************************************************************************
1457
1458
1459
1460 @ Excited state no:    1 in symmetry 2  ( B1 ) - triplet excitation
1461 -------------------------------------------------------------------
1462
1463@ Excitation energy :  0.44030357     au
1464@                       11.981269     eV;   96635.462     cm-1;   1156.0168     kJ / mol
1465
1466@ Total energy :       -75.457923     au
1467
1468 Eigenvector for state no.  1
1469
1470     Response orbital operator symmetry = 2
1471     (only scaled elements abs greater than   10.00 % of max abs value)
1472
1473      Index(r,s)      r      s        (r s) operator      (s r) operator      (r s) scaled        (s r) scaled
1474      ----------    -----  -----      --------------      --------------      --------------      --------------
1475           2         5(2)   4(1)       -0.7075441621        0.0248745112       -1.0006185500        0.0351778711
1476
1477        1 elements with absolute value ≤ 1.00D-01 not printed.
1478
1479 The numbers in parenthesis give the orbital symmetry.
1480
1481     Configuration operator symmetry = 2
1482     >> NO ELEMENTS <<
1483
1484
1485 Time used in polarization propagator calculation is      0.05 CPU seconds for symmetry 2
1486
1487  Total CPU  time used in RESPONSE:   0.05 seconds
1488  Total wall time used in RESPONSE:   0.06 seconds
1489
1490
1491                   .-------------------------------------------.
1492                   | End of Dynamic Property Section (RESPONS) |
1493                   `-------------------------------------------'
1494
1495  Total CPU  time used in DALTON:   2.73 seconds
1496  Total wall time used in DALTON:   2.78 seconds
1497
1498
1499     Date and time (Linux)  : Sun Feb 10 14:01:37 2019
1500     Host name              : s12p32.deic.sdu.dk
1501