1*> \brief \b ZLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLAQR0 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr0.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr0.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr0.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
22*                          IHIZ, Z, LDZ, WORK, LWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
26*       LOGICAL            WANTT, WANTZ
27*       ..
28*       .. Array Arguments ..
29*       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
30*       ..
31*
32*
33*> \par Purpose:
34*  =============
35*>
36*> \verbatim
37*>
38*>    ZLAQR0 computes the eigenvalues of a Hessenberg matrix H
39*>    and, optionally, the matrices T and Z from the Schur decomposition
40*>    H = Z T Z**H, where T is an upper triangular matrix (the
41*>    Schur form), and Z is the unitary matrix of Schur vectors.
42*>
43*>    Optionally Z may be postmultiplied into an input unitary
44*>    matrix Q so that this routine can give the Schur factorization
45*>    of a matrix A which has been reduced to the Hessenberg form H
46*>    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
47*> \endverbatim
48*
49*  Arguments:
50*  ==========
51*
52*> \param[in] WANTT
53*> \verbatim
54*>          WANTT is LOGICAL
55*>          = .TRUE. : the full Schur form T is required;
56*>          = .FALSE.: only eigenvalues are required.
57*> \endverbatim
58*>
59*> \param[in] WANTZ
60*> \verbatim
61*>          WANTZ is LOGICAL
62*>          = .TRUE. : the matrix of Schur vectors Z is required;
63*>          = .FALSE.: Schur vectors are not required.
64*> \endverbatim
65*>
66*> \param[in] N
67*> \verbatim
68*>          N is INTEGER
69*>           The order of the matrix H.  N >= 0.
70*> \endverbatim
71*>
72*> \param[in] ILO
73*> \verbatim
74*>          ILO is INTEGER
75*> \endverbatim
76*>
77*> \param[in] IHI
78*> \verbatim
79*>          IHI is INTEGER
80*>
81*>           It is assumed that H is already upper triangular in rows
82*>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
83*>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
84*>           previous call to ZGEBAL, and then passed to ZGEHRD when the
85*>           matrix output by ZGEBAL is reduced to Hessenberg form.
86*>           Otherwise, ILO and IHI should be set to 1 and N,
87*>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
88*>           If N = 0, then ILO = 1 and IHI = 0.
89*> \endverbatim
90*>
91*> \param[in,out] H
92*> \verbatim
93*>          H is COMPLEX*16 array, dimension (LDH,N)
94*>           On entry, the upper Hessenberg matrix H.
95*>           On exit, if INFO = 0 and WANTT is .TRUE., then H
96*>           contains the upper triangular matrix T from the Schur
97*>           decomposition (the Schur form). If INFO = 0 and WANT is
98*>           .FALSE., then the contents of H are unspecified on exit.
99*>           (The output value of H when INFO > 0 is given under the
100*>           description of INFO below.)
101*>
102*>           This subroutine may explicitly set H(i,j) = 0 for i > j and
103*>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
104*> \endverbatim
105*>
106*> \param[in] LDH
107*> \verbatim
108*>          LDH is INTEGER
109*>           The leading dimension of the array H. LDH >= max(1,N).
110*> \endverbatim
111*>
112*> \param[out] W
113*> \verbatim
114*>          W is COMPLEX*16 array, dimension (N)
115*>           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
116*>           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
117*>           stored in the same order as on the diagonal of the Schur
118*>           form returned in H, with W(i) = H(i,i).
119*> \endverbatim
120*>
121*> \param[in] ILOZ
122*> \verbatim
123*>          ILOZ is INTEGER
124*> \endverbatim
125*>
126*> \param[in] IHIZ
127*> \verbatim
128*>          IHIZ is INTEGER
129*>           Specify the rows of Z to which transformations must be
130*>           applied if WANTZ is .TRUE..
131*>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
132*> \endverbatim
133*>
134*> \param[in,out] Z
135*> \verbatim
136*>          Z is COMPLEX*16 array, dimension (LDZ,IHI)
137*>           If WANTZ is .FALSE., then Z is not referenced.
138*>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
139*>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
140*>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
141*>           (The output value of Z when INFO > 0 is given under
142*>           the description of INFO below.)
143*> \endverbatim
144*>
145*> \param[in] LDZ
146*> \verbatim
147*>          LDZ is INTEGER
148*>           The leading dimension of the array Z.  if WANTZ is .TRUE.
149*>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
150*> \endverbatim
151*>
152*> \param[out] WORK
153*> \verbatim
154*>          WORK is COMPLEX*16 array, dimension LWORK
155*>           On exit, if LWORK = -1, WORK(1) returns an estimate of
156*>           the optimal value for LWORK.
157*> \endverbatim
158*>
159*> \param[in] LWORK
160*> \verbatim
161*>          LWORK is INTEGER
162*>           The dimension of the array WORK.  LWORK >= max(1,N)
163*>           is sufficient, but LWORK typically as large as 6*N may
164*>           be required for optimal performance.  A workspace query
165*>           to determine the optimal workspace size is recommended.
166*>
167*>           If LWORK = -1, then ZLAQR0 does a workspace query.
168*>           In this case, ZLAQR0 checks the input parameters and
169*>           estimates the optimal workspace size for the given
170*>           values of N, ILO and IHI.  The estimate is returned
171*>           in WORK(1).  No error message related to LWORK is
172*>           issued by XERBLA.  Neither H nor Z are accessed.
173*> \endverbatim
174*>
175*> \param[out] INFO
176*> \verbatim
177*>          INFO is INTEGER
178*>             = 0:  successful exit
179*>             > 0:  if INFO = i, ZLAQR0 failed to compute all of
180*>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
181*>                and WI contain those eigenvalues which have been
182*>                successfully computed.  (Failures are rare.)
183*>
184*>                If INFO > 0 and WANT is .FALSE., then on exit,
185*>                the remaining unconverged eigenvalues are the eigen-
186*>                values of the upper Hessenberg matrix rows and
187*>                columns ILO through INFO of the final, output
188*>                value of H.
189*>
190*>                If INFO > 0 and WANTT is .TRUE., then on exit
191*>
192*>           (*)  (initial value of H)*U  = U*(final value of H)
193*>
194*>                where U is a unitary matrix.  The final
195*>                value of  H is upper Hessenberg and triangular in
196*>                rows and columns INFO+1 through IHI.
197*>
198*>                If INFO > 0 and WANTZ is .TRUE., then on exit
199*>
200*>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
201*>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
202*>
203*>                where U is the unitary matrix in (*) (regard-
204*>                less of the value of WANTT.)
205*>
206*>                If INFO > 0 and WANTZ is .FALSE., then Z is not
207*>                accessed.
208*> \endverbatim
209*
210*  Authors:
211*  ========
212*
213*> \author Univ. of Tennessee
214*> \author Univ. of California Berkeley
215*> \author Univ. of Colorado Denver
216*> \author NAG Ltd.
217*
218*> \date December 2016
219*
220*> \ingroup complex16OTHERauxiliary
221*
222*> \par Contributors:
223*  ==================
224*>
225*>       Karen Braman and Ralph Byers, Department of Mathematics,
226*>       University of Kansas, USA
227*
228*> \par References:
229*  ================
230*>
231*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
232*>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
233*>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
234*>       929--947, 2002.
235*> \n
236*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
237*>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
238*>       of Matrix Analysis, volume 23, pages 948--973, 2002.
239*>
240*  =====================================================================
241      SUBROUTINE ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
242     $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
243*
244*  -- LAPACK auxiliary routine (version 3.7.0) --
245*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
246*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
247*     December 2016
248*
249*     .. Scalar Arguments ..
250      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
251      LOGICAL            WANTT, WANTZ
252*     ..
253*     .. Array Arguments ..
254      COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
255*     ..
256*
257*  ================================================================
258*
259*     .. Parameters ..
260*
261*     ==== Matrices of order NTINY or smaller must be processed by
262*     .    ZLAHQR because of insufficient subdiagonal scratch space.
263*     .    (This is a hard limit.) ====
264      INTEGER            NTINY
265      PARAMETER          ( NTINY = 11 )
266*
267*     ==== Exceptional deflation windows:  try to cure rare
268*     .    slow convergence by varying the size of the
269*     .    deflation window after KEXNW iterations. ====
270      INTEGER            KEXNW
271      PARAMETER          ( KEXNW = 5 )
272*
273*     ==== Exceptional shifts: try to cure rare slow convergence
274*     .    with ad-hoc exceptional shifts every KEXSH iterations.
275*     .    ====
276      INTEGER            KEXSH
277      PARAMETER          ( KEXSH = 6 )
278*
279*     ==== The constant WILK1 is used to form the exceptional
280*     .    shifts. ====
281      DOUBLE PRECISION   WILK1
282      PARAMETER          ( WILK1 = 0.75d0 )
283      COMPLEX*16         ZERO, ONE
284      PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
285     $                   ONE = ( 1.0d0, 0.0d0 ) )
286      DOUBLE PRECISION   TWO
287      PARAMETER          ( TWO = 2.0d0 )
288*     ..
289*     .. Local Scalars ..
290      COMPLEX*16         AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
291      DOUBLE PRECISION   S
292      INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
293     $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
294     $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
295     $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
296      LOGICAL            SORTED
297      CHARACTER          JBCMPZ*2
298*     ..
299*     .. External Functions ..
300      INTEGER            ILAENV
301      EXTERNAL           ILAENV
302*     ..
303*     .. Local Arrays ..
304      COMPLEX*16         ZDUM( 1, 1 )
305*     ..
306*     .. External Subroutines ..
307      EXTERNAL           ZLACPY, ZLAHQR, ZLAQR3, ZLAQR4, ZLAQR5
308*     ..
309*     .. Intrinsic Functions ..
310      INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX, MIN, MOD,
311     $                   SQRT
312*     ..
313*     .. Statement Functions ..
314      DOUBLE PRECISION   CABS1
315*     ..
316*     .. Statement Function definitions ..
317      CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
318*     ..
319*     .. Executable Statements ..
320      INFO = 0
321*
322*     ==== Quick return for N = 0: nothing to do. ====
323*
324      IF( N.EQ.0 ) THEN
325         WORK( 1 ) = ONE
326         RETURN
327      END IF
328*
329      IF( N.LE.NTINY ) THEN
330*
331*        ==== Tiny matrices must use ZLAHQR. ====
332*
333         LWKOPT = 1
334         IF( LWORK.NE.-1 )
335     $      CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
336     $                   IHIZ, Z, LDZ, INFO )
337      ELSE
338*
339*        ==== Use small bulge multi-shift QR with aggressive early
340*        .    deflation on larger-than-tiny matrices. ====
341*
342*        ==== Hope for the best. ====
343*
344         INFO = 0
345*
346*        ==== Set up job flags for ILAENV. ====
347*
348         IF( WANTT ) THEN
349            JBCMPZ( 1: 1 ) = 'S'
350         ELSE
351            JBCMPZ( 1: 1 ) = 'E'
352         END IF
353         IF( WANTZ ) THEN
354            JBCMPZ( 2: 2 ) = 'V'
355         ELSE
356            JBCMPZ( 2: 2 ) = 'N'
357         END IF
358*
359*        ==== NWR = recommended deflation window size.  At this
360*        .    point,  N .GT. NTINY = 11, so there is enough
361*        .    subdiagonal workspace for NWR.GE.2 as required.
362*        .    (In fact, there is enough subdiagonal space for
363*        .    NWR.GE.3.) ====
364*
365         NWR = ILAENV( 13, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
366         NWR = MAX( 2, NWR )
367         NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
368*
369*        ==== NSR = recommended number of simultaneous shifts.
370*        .    At this point N .GT. NTINY = 11, so there is at
371*        .    enough subdiagonal workspace for NSR to be even
372*        .    and greater than or equal to two as required. ====
373*
374         NSR = ILAENV( 15, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
375         NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
376         NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
377*
378*        ==== Estimate optimal workspace ====
379*
380*        ==== Workspace query call to ZLAQR3 ====
381*
382         CALL ZLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
383     $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
384     $                LDH, WORK, -1 )
385*
386*        ==== Optimal workspace = MAX(ZLAQR5, ZLAQR3) ====
387*
388         LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
389*
390*        ==== Quick return in case of workspace query. ====
391*
392         IF( LWORK.EQ.-1 ) THEN
393            WORK( 1 ) = DCMPLX( LWKOPT, 0 )
394            RETURN
395         END IF
396*
397*        ==== ZLAHQR/ZLAQR0 crossover point ====
398*
399         NMIN = ILAENV( 12, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
400         NMIN = MAX( NTINY, NMIN )
401*
402*        ==== Nibble crossover point ====
403*
404         NIBBLE = ILAENV( 14, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
405         NIBBLE = MAX( 0, NIBBLE )
406*
407*        ==== Accumulate reflections during ttswp?  Use block
408*        .    2-by-2 structure during matrix-matrix multiply? ====
409*
410         KACC22 = ILAENV( 16, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
411         KACC22 = MAX( 0, KACC22 )
412         KACC22 = MIN( 2, KACC22 )
413*
414*        ==== NWMAX = the largest possible deflation window for
415*        .    which there is sufficient workspace. ====
416*
417         NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
418         NW = NWMAX
419*
420*        ==== NSMAX = the Largest number of simultaneous shifts
421*        .    for which there is sufficient workspace. ====
422*
423         NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
424         NSMAX = NSMAX - MOD( NSMAX, 2 )
425*
426*        ==== NDFL: an iteration count restarted at deflation. ====
427*
428         NDFL = 1
429*
430*        ==== ITMAX = iteration limit ====
431*
432         ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
433*
434*        ==== Last row and column in the active block ====
435*
436         KBOT = IHI
437*
438*        ==== Main Loop ====
439*
440         DO 70 IT = 1, ITMAX
441*
442*           ==== Done when KBOT falls below ILO ====
443*
444            IF( KBOT.LT.ILO )
445     $         GO TO 80
446*
447*           ==== Locate active block ====
448*
449            DO 10 K = KBOT, ILO + 1, -1
450               IF( H( K, K-1 ).EQ.ZERO )
451     $            GO TO 20
452   10       CONTINUE
453            K = ILO
454   20       CONTINUE
455            KTOP = K
456*
457*           ==== Select deflation window size:
458*           .    Typical Case:
459*           .      If possible and advisable, nibble the entire
460*           .      active block.  If not, use size MIN(NWR,NWMAX)
461*           .      or MIN(NWR+1,NWMAX) depending upon which has
462*           .      the smaller corresponding subdiagonal entry
463*           .      (a heuristic).
464*           .
465*           .    Exceptional Case:
466*           .      If there have been no deflations in KEXNW or
467*           .      more iterations, then vary the deflation window
468*           .      size.   At first, because, larger windows are,
469*           .      in general, more powerful than smaller ones,
470*           .      rapidly increase the window to the maximum possible.
471*           .      Then, gradually reduce the window size. ====
472*
473            NH = KBOT - KTOP + 1
474            NWUPBD = MIN( NH, NWMAX )
475            IF( NDFL.LT.KEXNW ) THEN
476               NW = MIN( NWUPBD, NWR )
477            ELSE
478               NW = MIN( NWUPBD, 2*NW )
479            END IF
480            IF( NW.LT.NWMAX ) THEN
481               IF( NW.GE.NH-1 ) THEN
482                  NW = NH
483               ELSE
484                  KWTOP = KBOT - NW + 1
485                  IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
486     $                CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
487               END IF
488            END IF
489            IF( NDFL.LT.KEXNW ) THEN
490               NDEC = -1
491            ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
492               NDEC = NDEC + 1
493               IF( NW-NDEC.LT.2 )
494     $            NDEC = 0
495               NW = NW - NDEC
496            END IF
497*
498*           ==== Aggressive early deflation:
499*           .    split workspace under the subdiagonal into
500*           .      - an nw-by-nw work array V in the lower
501*           .        left-hand-corner,
502*           .      - an NW-by-at-least-NW-but-more-is-better
503*           .        (NW-by-NHO) horizontal work array along
504*           .        the bottom edge,
505*           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
506*           .        vertical work array along the left-hand-edge.
507*           .        ====
508*
509            KV = N - NW + 1
510            KT = NW + 1
511            NHO = ( N-NW-1 ) - KT + 1
512            KWV = NW + 2
513            NVE = ( N-NW ) - KWV + 1
514*
515*           ==== Aggressive early deflation ====
516*
517            CALL ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
518     $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
519     $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
520     $                   LWORK )
521*
522*           ==== Adjust KBOT accounting for new deflations. ====
523*
524            KBOT = KBOT - LD
525*
526*           ==== KS points to the shifts. ====
527*
528            KS = KBOT - LS + 1
529*
530*           ==== Skip an expensive QR sweep if there is a (partly
531*           .    heuristic) reason to expect that many eigenvalues
532*           .    will deflate without it.  Here, the QR sweep is
533*           .    skipped if many eigenvalues have just been deflated
534*           .    or if the remaining active block is small.
535*
536            IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
537     $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
538*
539*              ==== NS = nominal number of simultaneous shifts.
540*              .    This may be lowered (slightly) if ZLAQR3
541*              .    did not provide that many shifts. ====
542*
543               NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
544               NS = NS - MOD( NS, 2 )
545*
546*              ==== If there have been no deflations
547*              .    in a multiple of KEXSH iterations,
548*              .    then try exceptional shifts.
549*              .    Otherwise use shifts provided by
550*              .    ZLAQR3 above or from the eigenvalues
551*              .    of a trailing principal submatrix. ====
552*
553               IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
554                  KS = KBOT - NS + 1
555                  DO 30 I = KBOT, KS + 1, -2
556                     W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
557                     W( I-1 ) = W( I )
558   30             CONTINUE
559               ELSE
560*
561*                 ==== Got NS/2 or fewer shifts? Use ZLAQR4 or
562*                 .    ZLAHQR on a trailing principal submatrix to
563*                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
564*                 .    there is enough space below the subdiagonal
565*                 .    to fit an NS-by-NS scratch array.) ====
566*
567                  IF( KBOT-KS+1.LE.NS / 2 ) THEN
568                     KS = KBOT - NS + 1
569                     KT = N - NS + 1
570                     CALL ZLACPY( 'A', NS, NS, H( KS, KS ), LDH,
571     $                            H( KT, 1 ), LDH )
572                     IF( NS.GT.NMIN ) THEN
573                        CALL ZLAQR4( .false., .false., NS, 1, NS,
574     $                               H( KT, 1 ), LDH, W( KS ), 1, 1,
575     $                               ZDUM, 1, WORK, LWORK, INF )
576                     ELSE
577                        CALL ZLAHQR( .false., .false., NS, 1, NS,
578     $                               H( KT, 1 ), LDH, W( KS ), 1, 1,
579     $                               ZDUM, 1, INF )
580                     END IF
581                     KS = KS + INF
582*
583*                    ==== In case of a rare QR failure use
584*                    .    eigenvalues of the trailing 2-by-2
585*                    .    principal submatrix.  Scale to avoid
586*                    .    overflows, underflows and subnormals.
587*                    .    (The scale factor S can not be zero,
588*                    .    because H(KBOT,KBOT-1) is nonzero.) ====
589*
590                     IF( KS.GE.KBOT ) THEN
591                        S = CABS1( H( KBOT-1, KBOT-1 ) ) +
592     $                      CABS1( H( KBOT, KBOT-1 ) ) +
593     $                      CABS1( H( KBOT-1, KBOT ) ) +
594     $                      CABS1( H( KBOT, KBOT ) )
595                        AA = H( KBOT-1, KBOT-1 ) / S
596                        CC = H( KBOT, KBOT-1 ) / S
597                        BB = H( KBOT-1, KBOT ) / S
598                        DD = H( KBOT, KBOT ) / S
599                        TR2 = ( AA+DD ) / TWO
600                        DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
601                        RTDISC = SQRT( -DET )
602                        W( KBOT-1 ) = ( TR2+RTDISC )*S
603                        W( KBOT ) = ( TR2-RTDISC )*S
604*
605                        KS = KBOT - 1
606                     END IF
607                  END IF
608*
609                  IF( KBOT-KS+1.GT.NS ) THEN
610*
611*                    ==== Sort the shifts (Helps a little) ====
612*
613                     SORTED = .false.
614                     DO 50 K = KBOT, KS + 1, -1
615                        IF( SORTED )
616     $                     GO TO 60
617                        SORTED = .true.
618                        DO 40 I = KS, K - 1
619                           IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
620     $                          THEN
621                              SORTED = .false.
622                              SWAP = W( I )
623                              W( I ) = W( I+1 )
624                              W( I+1 ) = SWAP
625                           END IF
626   40                   CONTINUE
627   50                CONTINUE
628   60                CONTINUE
629                  END IF
630               END IF
631*
632*              ==== If there are only two shifts, then use
633*              .    only one.  ====
634*
635               IF( KBOT-KS+1.EQ.2 ) THEN
636                  IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
637     $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
638                     W( KBOT-1 ) = W( KBOT )
639                  ELSE
640                     W( KBOT ) = W( KBOT-1 )
641                  END IF
642               END IF
643*
644*              ==== Use up to NS of the the smallest magnitude
645*              .    shifts.  If there aren't NS shifts available,
646*              .    then use them all, possibly dropping one to
647*              .    make the number of shifts even. ====
648*
649               NS = MIN( NS, KBOT-KS+1 )
650               NS = NS - MOD( NS, 2 )
651               KS = KBOT - NS + 1
652*
653*              ==== Small-bulge multi-shift QR sweep:
654*              .    split workspace under the subdiagonal into
655*              .    - a KDU-by-KDU work array U in the lower
656*              .      left-hand-corner,
657*              .    - a KDU-by-at-least-KDU-but-more-is-better
658*              .      (KDU-by-NHo) horizontal work array WH along
659*              .      the bottom edge,
660*              .    - and an at-least-KDU-but-more-is-better-by-KDU
661*              .      (NVE-by-KDU) vertical work WV arrow along
662*              .      the left-hand-edge. ====
663*
664               KDU = 3*NS - 3
665               KU = N - KDU + 1
666               KWH = KDU + 1
667               NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
668               KWV = KDU + 4
669               NVE = N - KDU - KWV + 1
670*
671*              ==== Small-bulge multi-shift QR sweep ====
672*
673               CALL ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
674     $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
675     $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
676     $                      NHO, H( KU, KWH ), LDH )
677            END IF
678*
679*           ==== Note progress (or the lack of it). ====
680*
681            IF( LD.GT.0 ) THEN
682               NDFL = 1
683            ELSE
684               NDFL = NDFL + 1
685            END IF
686*
687*           ==== End of main loop ====
688   70    CONTINUE
689*
690*        ==== Iteration limit exceeded.  Set INFO to show where
691*        .    the problem occurred and exit. ====
692*
693         INFO = KBOT
694   80    CONTINUE
695      END IF
696*
697*     ==== Return the optimal value of LWORK. ====
698*
699      WORK( 1 ) = DCMPLX( LWKOPT, 0 )
700*
701*     ==== End of ZLAQR0 ====
702*
703      END
704