1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2013,2014,2015,2016,2017 The GROMACS development team.
7  * Copyright (c) 2018,2019,2020,2021, by the GROMACS development team, led by
8  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9  * and including many others, as listed in the AUTHORS file in the
10  * top-level source directory and at http://www.gromacs.org.
11  *
12  * GROMACS is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public License
14  * as published by the Free Software Foundation; either version 2.1
15  * of the License, or (at your option) any later version.
16  *
17  * GROMACS is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with GROMACS; if not, see
24  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
26  *
27  * If you want to redistribute modifications to GROMACS, please
28  * consider that scientific software is very special. Version
29  * control is crucial - bugs must be traceable. We will be happy to
30  * consider code for inclusion in the official distribution, but
31  * derived work must not be called official GROMACS. Details are found
32  * in the README & COPYING files - if they are missing, get the
33  * official version at http://www.gromacs.org.
34  *
35  * To help us fund GROMACS development, we humbly ask that you cite
36  * the research papers on the package. Check out http://www.gromacs.org.
37  */
38 /*! \internal \file
39  *
40  * \brief This file defines integrators for energy minimization
41  *
42  * \author Berk Hess <hess@kth.se>
43  * \author Erik Lindahl <erik@kth.se>
44  * \ingroup module_mdrun
45  */
46 #include "gmxpre.h"
47 
48 #include "config.h"
49 
50 #include <cmath>
51 #include <cstring>
52 #include <ctime>
53 
54 #include <algorithm>
55 #include <limits>
56 #include <vector>
57 
58 #include "gromacs/commandline/filenm.h"
59 #include "gromacs/domdec/collect.h"
60 #include "gromacs/domdec/dlbtiming.h"
61 #include "gromacs/domdec/domdec.h"
62 #include "gromacs/domdec/domdec_struct.h"
63 #include "gromacs/domdec/mdsetup.h"
64 #include "gromacs/domdec/partition.h"
65 #include "gromacs/ewald/pme_pp.h"
66 #include "gromacs/fileio/confio.h"
67 #include "gromacs/fileio/mtxio.h"
68 #include "gromacs/gmxlib/network.h"
69 #include "gromacs/gmxlib/nrnb.h"
70 #include "gromacs/imd/imd.h"
71 #include "gromacs/linearalgebra/sparsematrix.h"
72 #include "gromacs/listed_forces/listed_forces.h"
73 #include "gromacs/math/functions.h"
74 #include "gromacs/math/vec.h"
75 #include "gromacs/mdlib/constr.h"
76 #include "gromacs/mdlib/coupling.h"
77 #include "gromacs/mdlib/dispersioncorrection.h"
78 #include "gromacs/mdlib/ebin.h"
79 #include "gromacs/mdlib/enerdata_utils.h"
80 #include "gromacs/mdlib/energyoutput.h"
81 #include "gromacs/mdlib/force.h"
82 #include "gromacs/mdlib/force_flags.h"
83 #include "gromacs/mdlib/forcerec.h"
84 #include "gromacs/mdlib/gmx_omp_nthreads.h"
85 #include "gromacs/mdlib/md_support.h"
86 #include "gromacs/mdlib/mdatoms.h"
87 #include "gromacs/mdlib/stat.h"
88 #include "gromacs/mdlib/tgroup.h"
89 #include "gromacs/mdlib/trajectory_writing.h"
90 #include "gromacs/mdlib/update.h"
91 #include "gromacs/mdlib/vsite.h"
92 #include "gromacs/mdrunutility/handlerestart.h"
93 #include "gromacs/mdrunutility/printtime.h"
94 #include "gromacs/mdtypes/checkpointdata.h"
95 #include "gromacs/mdtypes/commrec.h"
96 #include "gromacs/mdtypes/forcebuffers.h"
97 #include "gromacs/mdtypes/forcerec.h"
98 #include "gromacs/mdtypes/inputrec.h"
99 #include "gromacs/mdtypes/interaction_const.h"
100 #include "gromacs/mdtypes/md_enums.h"
101 #include "gromacs/mdtypes/mdatom.h"
102 #include "gromacs/mdtypes/mdrunoptions.h"
103 #include "gromacs/mdtypes/state.h"
104 #include "gromacs/pbcutil/pbc.h"
105 #include "gromacs/timing/wallcycle.h"
106 #include "gromacs/timing/walltime_accounting.h"
107 #include "gromacs/topology/mtop_util.h"
108 #include "gromacs/topology/topology.h"
109 #include "gromacs/utility/cstringutil.h"
110 #include "gromacs/utility/exceptions.h"
111 #include "gromacs/utility/fatalerror.h"
112 #include "gromacs/utility/logger.h"
113 #include "gromacs/utility/smalloc.h"
114 
115 #include "legacysimulator.h"
116 #include "shellfc.h"
117 
118 using gmx::ArrayRef;
119 using gmx::MdrunScheduleWorkload;
120 using gmx::RVec;
121 using gmx::VirtualSitesHandler;
122 
123 //! Utility structure for manipulating states during EM
124 typedef struct em_state
125 {
126     //! Copy of the global state
127     t_state s;
128     //! Force array
129     gmx::ForceBuffers f;
130     //! Potential energy
131     real epot;
132     //! Norm of the force
133     real fnorm;
134     //! Maximum force
135     real fmax;
136     //! Direction
137     int a_fmax;
138 } em_state_t;
139 
140 //! Print the EM starting conditions
print_em_start(FILE * fplog,const t_commrec * cr,gmx_walltime_accounting_t walltime_accounting,gmx_wallcycle_t wcycle,const char * name)141 static void print_em_start(FILE*                     fplog,
142                            const t_commrec*          cr,
143                            gmx_walltime_accounting_t walltime_accounting,
144                            gmx_wallcycle_t           wcycle,
145                            const char*               name)
146 {
147     walltime_accounting_start_time(walltime_accounting);
148     wallcycle_start(wcycle, ewcRUN);
149     print_start(fplog, cr, walltime_accounting, name);
150 }
151 
152 //! Stop counting time for EM
em_time_end(gmx_walltime_accounting_t walltime_accounting,gmx_wallcycle_t wcycle)153 static void em_time_end(gmx_walltime_accounting_t walltime_accounting, gmx_wallcycle_t wcycle)
154 {
155     wallcycle_stop(wcycle, ewcRUN);
156 
157     walltime_accounting_end_time(walltime_accounting);
158 }
159 
160 //! Printing a log file and console header
sp_header(FILE * out,const char * minimizer,real ftol,int nsteps)161 static void sp_header(FILE* out, const char* minimizer, real ftol, int nsteps)
162 {
163     fprintf(out, "\n");
164     fprintf(out, "%s:\n", minimizer);
165     fprintf(out, "   Tolerance (Fmax)   = %12.5e\n", ftol);
166     fprintf(out, "   Number of steps    = %12d\n", nsteps);
167 }
168 
169 //! Print warning message
warn_step(FILE * fp,real ftol,real fmax,gmx_bool bLastStep,gmx_bool bConstrain)170 static void warn_step(FILE* fp, real ftol, real fmax, gmx_bool bLastStep, gmx_bool bConstrain)
171 {
172     constexpr bool realIsDouble = GMX_DOUBLE;
173     char           buffer[2048];
174 
175     if (!std::isfinite(fmax))
176     {
177         sprintf(buffer,
178                 "\nEnergy minimization has stopped because the force "
179                 "on at least one atom is not finite. This usually means "
180                 "atoms are overlapping. Modify the input coordinates to "
181                 "remove atom overlap or use soft-core potentials with "
182                 "the free energy code to avoid infinite forces.\n%s",
183                 !realIsDouble ? "You could also be lucky that switching to double precision "
184                                 "is sufficient to obtain finite forces.\n"
185                               : "");
186     }
187     else if (bLastStep)
188     {
189         sprintf(buffer,
190                 "\nEnergy minimization reached the maximum number "
191                 "of steps before the forces reached the requested "
192                 "precision Fmax < %g.\n",
193                 ftol);
194     }
195     else
196     {
197         sprintf(buffer,
198                 "\nEnergy minimization has stopped, but the forces have "
199                 "not converged to the requested precision Fmax < %g (which "
200                 "may not be possible for your system). It stopped "
201                 "because the algorithm tried to make a new step whose size "
202                 "was too small, or there was no change in the energy since "
203                 "last step. Either way, we regard the minimization as "
204                 "converged to within the available machine precision, "
205                 "given your starting configuration and EM parameters.\n%s%s",
206                 ftol,
207                 !realIsDouble ? "\nDouble precision normally gives you higher accuracy, but "
208                                 "this is often not needed for preparing to run molecular "
209                                 "dynamics.\n"
210                               : "",
211                 bConstrain ? "You might need to increase your constraint accuracy, or turn\n"
212                              "off constraints altogether (set constraints = none in mdp file)\n"
213                            : "");
214     }
215 
216     fputs(wrap_lines(buffer, 78, 0, FALSE), stderr);
217     fputs(wrap_lines(buffer, 78, 0, FALSE), fp);
218 }
219 
220 //! Print message about convergence of the EM
print_converged(FILE * fp,const char * alg,real ftol,int64_t count,gmx_bool bDone,int64_t nsteps,const em_state_t * ems,double sqrtNumAtoms)221 static void print_converged(FILE*             fp,
222                             const char*       alg,
223                             real              ftol,
224                             int64_t           count,
225                             gmx_bool          bDone,
226                             int64_t           nsteps,
227                             const em_state_t* ems,
228                             double            sqrtNumAtoms)
229 {
230     char buf[STEPSTRSIZE];
231 
232     if (bDone)
233     {
234         fprintf(fp, "\n%s converged to Fmax < %g in %s steps\n", alg, ftol, gmx_step_str(count, buf));
235     }
236     else if (count < nsteps)
237     {
238         fprintf(fp,
239                 "\n%s converged to machine precision in %s steps,\n"
240                 "but did not reach the requested Fmax < %g.\n",
241                 alg, gmx_step_str(count, buf), ftol);
242     }
243     else
244     {
245         fprintf(fp, "\n%s did not converge to Fmax < %g in %s steps.\n", alg, ftol,
246                 gmx_step_str(count, buf));
247     }
248 
249 #if GMX_DOUBLE
250     fprintf(fp, "Potential Energy  = %21.14e\n", ems->epot);
251     fprintf(fp, "Maximum force     = %21.14e on atom %d\n", ems->fmax, ems->a_fmax + 1);
252     fprintf(fp, "Norm of force     = %21.14e\n", ems->fnorm / sqrtNumAtoms);
253 #else
254     fprintf(fp, "Potential Energy  = %14.7e\n", ems->epot);
255     fprintf(fp, "Maximum force     = %14.7e on atom %d\n", ems->fmax, ems->a_fmax + 1);
256     fprintf(fp, "Norm of force     = %14.7e\n", ems->fnorm / sqrtNumAtoms);
257 #endif
258 }
259 
260 //! Compute the norm and max of the force array in parallel
get_f_norm_max(const t_commrec * cr,t_grpopts * opts,t_mdatoms * mdatoms,gmx::ArrayRef<const gmx::RVec> f,real * fnorm,real * fmax,int * a_fmax)261 static void get_f_norm_max(const t_commrec*               cr,
262                            t_grpopts*                     opts,
263                            t_mdatoms*                     mdatoms,
264                            gmx::ArrayRef<const gmx::RVec> f,
265                            real*                          fnorm,
266                            real*                          fmax,
267                            int*                           a_fmax)
268 {
269     double fnorm2, *sum;
270     real   fmax2, fam;
271     int    la_max, a_max, start, end, i, m, gf;
272 
273     /* This routine finds the largest force and returns it.
274      * On parallel machines the global max is taken.
275      */
276     fnorm2 = 0;
277     fmax2  = 0;
278     la_max = -1;
279     start  = 0;
280     end    = mdatoms->homenr;
281     if (mdatoms->cFREEZE)
282     {
283         for (i = start; i < end; i++)
284         {
285             gf  = mdatoms->cFREEZE[i];
286             fam = 0;
287             for (m = 0; m < DIM; m++)
288             {
289                 if (!opts->nFreeze[gf][m])
290                 {
291                     fam += gmx::square(f[i][m]);
292                 }
293             }
294             fnorm2 += fam;
295             if (fam > fmax2)
296             {
297                 fmax2  = fam;
298                 la_max = i;
299             }
300         }
301     }
302     else
303     {
304         for (i = start; i < end; i++)
305         {
306             fam = norm2(f[i]);
307             fnorm2 += fam;
308             if (fam > fmax2)
309             {
310                 fmax2  = fam;
311                 la_max = i;
312             }
313         }
314     }
315 
316     if (la_max >= 0 && DOMAINDECOMP(cr))
317     {
318         a_max = cr->dd->globalAtomIndices[la_max];
319     }
320     else
321     {
322         a_max = la_max;
323     }
324     if (PAR(cr))
325     {
326         snew(sum, 2 * cr->nnodes + 1);
327         sum[2 * cr->nodeid]     = fmax2;
328         sum[2 * cr->nodeid + 1] = a_max;
329         sum[2 * cr->nnodes]     = fnorm2;
330         gmx_sumd(2 * cr->nnodes + 1, sum, cr);
331         fnorm2 = sum[2 * cr->nnodes];
332         /* Determine the global maximum */
333         for (i = 0; i < cr->nnodes; i++)
334         {
335             if (sum[2 * i] > fmax2)
336             {
337                 fmax2 = sum[2 * i];
338                 a_max = gmx::roundToInt(sum[2 * i + 1]);
339             }
340         }
341         sfree(sum);
342     }
343 
344     if (fnorm)
345     {
346         *fnorm = sqrt(fnorm2);
347     }
348     if (fmax)
349     {
350         *fmax = sqrt(fmax2);
351     }
352     if (a_fmax)
353     {
354         *a_fmax = a_max;
355     }
356 }
357 
358 //! Compute the norm of the force
get_state_f_norm_max(const t_commrec * cr,t_grpopts * opts,t_mdatoms * mdatoms,em_state_t * ems)359 static void get_state_f_norm_max(const t_commrec* cr, t_grpopts* opts, t_mdatoms* mdatoms, em_state_t* ems)
360 {
361     get_f_norm_max(cr, opts, mdatoms, ems->f.view().force(), &ems->fnorm, &ems->fmax, &ems->a_fmax);
362 }
363 
364 //! Initialize the energy minimization
init_em(FILE * fplog,const gmx::MDLogger & mdlog,const char * title,const t_commrec * cr,t_inputrec * ir,gmx::ImdSession * imdSession,pull_t * pull_work,t_state * state_global,const gmx_mtop_t * top_global,em_state_t * ems,gmx_localtop_t * top,t_nrnb * nrnb,t_forcerec * fr,gmx::MDAtoms * mdAtoms,gmx_global_stat_t * gstat,VirtualSitesHandler * vsite,gmx::Constraints * constr,gmx_shellfc_t ** shellfc)365 static void init_em(FILE*                fplog,
366                     const gmx::MDLogger& mdlog,
367                     const char*          title,
368                     const t_commrec*     cr,
369                     t_inputrec*          ir,
370                     gmx::ImdSession*     imdSession,
371                     pull_t*              pull_work,
372                     t_state*             state_global,
373                     const gmx_mtop_t*    top_global,
374                     em_state_t*          ems,
375                     gmx_localtop_t*      top,
376                     t_nrnb*              nrnb,
377                     t_forcerec*          fr,
378                     gmx::MDAtoms*        mdAtoms,
379                     gmx_global_stat_t*   gstat,
380                     VirtualSitesHandler* vsite,
381                     gmx::Constraints*    constr,
382                     gmx_shellfc_t**      shellfc)
383 {
384     real dvdl_constr;
385 
386     if (fplog)
387     {
388         fprintf(fplog, "Initiating %s\n", title);
389     }
390 
391     if (MASTER(cr))
392     {
393         state_global->ngtc = 0;
394     }
395     int*                fep_state = MASTER(cr) ? &state_global->fep_state : nullptr;
396     gmx::ArrayRef<real> lambda    = MASTER(cr) ? state_global->lambda : gmx::ArrayRef<real>();
397     initialize_lambdas(fplog, *ir, MASTER(cr), fep_state, lambda);
398 
399     if (ir->eI == eiNM)
400     {
401         GMX_ASSERT(shellfc != nullptr, "With NM we always support shells");
402 
403         *shellfc =
404                 init_shell_flexcon(stdout, top_global, constr ? constr->numFlexibleConstraints() : 0,
405                                    ir->nstcalcenergy, DOMAINDECOMP(cr), thisRankHasDuty(cr, DUTY_PME));
406     }
407     else
408     {
409         GMX_ASSERT(EI_ENERGY_MINIMIZATION(ir->eI),
410                    "This else currently only handles energy minimizers, consider if your algorithm "
411                    "needs shell/flexible-constraint support");
412 
413         /* With energy minimization, shells and flexible constraints are
414          * automatically minimized when treated like normal DOFS.
415          */
416         if (shellfc != nullptr)
417         {
418             *shellfc = nullptr;
419         }
420     }
421 
422     if (DOMAINDECOMP(cr))
423     {
424         dd_init_local_state(cr->dd, state_global, &ems->s);
425 
426         /* Distribute the charge groups over the nodes from the master node */
427         dd_partition_system(fplog, mdlog, ir->init_step, cr, TRUE, 1, state_global, *top_global, ir,
428                             imdSession, pull_work, &ems->s, &ems->f, mdAtoms, top, fr, vsite,
429                             constr, nrnb, nullptr, FALSE);
430         dd_store_state(cr->dd, &ems->s);
431     }
432     else
433     {
434         state_change_natoms(state_global, state_global->natoms);
435         /* Just copy the state */
436         ems->s = *state_global;
437         state_change_natoms(&ems->s, ems->s.natoms);
438 
439         mdAlgorithmsSetupAtomData(cr, ir, *top_global, top, fr, &ems->f, mdAtoms, constr, vsite,
440                                   shellfc ? *shellfc : nullptr);
441     }
442 
443     update_mdatoms(mdAtoms->mdatoms(), ems->s.lambda[efptMASS]);
444 
445     if (constr)
446     {
447         // TODO how should this cross-module support dependency be managed?
448         if (ir->eConstrAlg == econtSHAKE && gmx_mtop_ftype_count(top_global, F_CONSTR) > 0)
449         {
450             gmx_fatal(FARGS, "Can not do energy minimization with %s, use %s\n",
451                       econstr_names[econtSHAKE], econstr_names[econtLINCS]);
452         }
453 
454         if (!ir->bContinuation)
455         {
456             /* Constrain the starting coordinates */
457             bool needsLogging  = true;
458             bool computeEnergy = true;
459             bool computeVirial = false;
460             dvdl_constr        = 0;
461             constr->apply(needsLogging, computeEnergy, -1, 0, 1.0, ems->s.x.arrayRefWithPadding(),
462                           ems->s.x.arrayRefWithPadding(), ArrayRef<RVec>(), ems->s.box,
463                           ems->s.lambda[efptFEP], &dvdl_constr, gmx::ArrayRefWithPadding<RVec>(),
464                           computeVirial, nullptr, gmx::ConstraintVariable::Positions);
465         }
466     }
467 
468     if (PAR(cr))
469     {
470         *gstat = global_stat_init(ir);
471     }
472     else
473     {
474         *gstat = nullptr;
475     }
476 
477     calc_shifts(ems->s.box, fr->shift_vec);
478 }
479 
480 //! Finalize the minimization
finish_em(const t_commrec * cr,gmx_mdoutf_t outf,gmx_walltime_accounting_t walltime_accounting,gmx_wallcycle_t wcycle)481 static void finish_em(const t_commrec*          cr,
482                       gmx_mdoutf_t              outf,
483                       gmx_walltime_accounting_t walltime_accounting,
484                       gmx_wallcycle_t           wcycle)
485 {
486     if (!thisRankHasDuty(cr, DUTY_PME))
487     {
488         /* Tell the PME only node to finish */
489         gmx_pme_send_finish(cr);
490     }
491 
492     done_mdoutf(outf);
493 
494     em_time_end(walltime_accounting, wcycle);
495 }
496 
497 //! Swap two different EM states during minimization
swap_em_state(em_state_t ** ems1,em_state_t ** ems2)498 static void swap_em_state(em_state_t** ems1, em_state_t** ems2)
499 {
500     em_state_t* tmp;
501 
502     tmp   = *ems1;
503     *ems1 = *ems2;
504     *ems2 = tmp;
505 }
506 
507 //! Save the EM trajectory
write_em_traj(FILE * fplog,const t_commrec * cr,gmx_mdoutf_t outf,gmx_bool bX,gmx_bool bF,const char * confout,const gmx_mtop_t * top_global,t_inputrec * ir,int64_t step,em_state_t * state,t_state * state_global,ObservablesHistory * observablesHistory)508 static void write_em_traj(FILE*               fplog,
509                           const t_commrec*    cr,
510                           gmx_mdoutf_t        outf,
511                           gmx_bool            bX,
512                           gmx_bool            bF,
513                           const char*         confout,
514                           const gmx_mtop_t*   top_global,
515                           t_inputrec*         ir,
516                           int64_t             step,
517                           em_state_t*         state,
518                           t_state*            state_global,
519                           ObservablesHistory* observablesHistory)
520 {
521     int mdof_flags = 0;
522 
523     if (bX)
524     {
525         mdof_flags |= MDOF_X;
526     }
527     if (bF)
528     {
529         mdof_flags |= MDOF_F;
530     }
531 
532     /* If we want IMD output, set appropriate MDOF flag */
533     if (ir->bIMD)
534     {
535         mdof_flags |= MDOF_IMD;
536     }
537 
538     gmx::WriteCheckpointDataHolder checkpointDataHolder;
539     mdoutf_write_to_trajectory_files(fplog, cr, outf, mdof_flags, top_global->natoms, step,
540                                      static_cast<double>(step), &state->s, state_global,
541                                      observablesHistory, state->f.view().force(), &checkpointDataHolder);
542 
543     if (confout != nullptr)
544     {
545         if (DOMAINDECOMP(cr))
546         {
547             /* If bX=true, x was collected to state_global in the call above */
548             if (!bX)
549             {
550                 auto globalXRef = MASTER(cr) ? state_global->x : gmx::ArrayRef<gmx::RVec>();
551                 dd_collect_vec(cr->dd, state->s.ddp_count, state->s.ddp_count_cg_gl, state->s.cg_gl,
552                                state->s.x, globalXRef);
553             }
554         }
555         else
556         {
557             /* Copy the local state pointer */
558             state_global = &state->s;
559         }
560 
561         if (MASTER(cr))
562         {
563             if (ir->pbcType != PbcType::No && !ir->bPeriodicMols && DOMAINDECOMP(cr))
564             {
565                 /* Make molecules whole only for confout writing */
566                 do_pbc_mtop(ir->pbcType, state->s.box, top_global, state_global->x.rvec_array());
567             }
568 
569             write_sto_conf_mtop(confout, *top_global->name, top_global,
570                                 state_global->x.rvec_array(), nullptr, ir->pbcType, state->s.box);
571         }
572     }
573 }
574 
575 //! \brief Do one minimization step
576 //
577 // \returns true when the step succeeded, false when a constraint error occurred
do_em_step(const t_commrec * cr,t_inputrec * ir,t_mdatoms * md,em_state_t * ems1,real a,gmx::ArrayRefWithPadding<const gmx::RVec> force,em_state_t * ems2,gmx::Constraints * constr,int64_t count)578 static bool do_em_step(const t_commrec*                          cr,
579                        t_inputrec*                               ir,
580                        t_mdatoms*                                md,
581                        em_state_t*                               ems1,
582                        real                                      a,
583                        gmx::ArrayRefWithPadding<const gmx::RVec> force,
584                        em_state_t*                               ems2,
585                        gmx::Constraints*                         constr,
586                        int64_t                                   count)
587 
588 {
589     t_state *s1, *s2;
590     int      start, end;
591     real     dvdl_constr;
592     int nthreads gmx_unused;
593 
594     bool validStep = true;
595 
596     s1 = &ems1->s;
597     s2 = &ems2->s;
598 
599     if (DOMAINDECOMP(cr) && s1->ddp_count != cr->dd->ddp_count)
600     {
601         gmx_incons("state mismatch in do_em_step");
602     }
603 
604     s2->flags = s1->flags;
605 
606     if (s2->natoms != s1->natoms)
607     {
608         state_change_natoms(s2, s1->natoms);
609         ems2->f.resize(s2->natoms);
610     }
611     if (DOMAINDECOMP(cr) && s2->cg_gl.size() != s1->cg_gl.size())
612     {
613         s2->cg_gl.resize(s1->cg_gl.size());
614     }
615 
616     copy_mat(s1->box, s2->box);
617     /* Copy free energy state */
618     s2->lambda = s1->lambda;
619     copy_mat(s1->box, s2->box);
620 
621     start = 0;
622     end   = md->homenr;
623 
624     nthreads = gmx_omp_nthreads_get(emntUpdate);
625 #pragma omp parallel num_threads(nthreads)
626     {
627         const rvec* x1 = s1->x.rvec_array();
628         rvec*       x2 = s2->x.rvec_array();
629         const rvec* f  = as_rvec_array(force.unpaddedArrayRef().data());
630 
631         int gf = 0;
632 #pragma omp for schedule(static) nowait
633         for (int i = start; i < end; i++)
634         {
635             try
636             {
637                 if (md->cFREEZE)
638                 {
639                     gf = md->cFREEZE[i];
640                 }
641                 for (int m = 0; m < DIM; m++)
642                 {
643                     if (ir->opts.nFreeze[gf][m])
644                     {
645                         x2[i][m] = x1[i][m];
646                     }
647                     else
648                     {
649                         x2[i][m] = x1[i][m] + a * f[i][m];
650                     }
651                 }
652             }
653             GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
654         }
655 
656         if (s2->flags & (1 << estCGP))
657         {
658             /* Copy the CG p vector */
659             const rvec* p1 = s1->cg_p.rvec_array();
660             rvec*       p2 = s2->cg_p.rvec_array();
661 #pragma omp for schedule(static) nowait
662             for (int i = start; i < end; i++)
663             {
664                 // Trivial OpenMP block that does not throw
665                 copy_rvec(p1[i], p2[i]);
666             }
667         }
668 
669         if (DOMAINDECOMP(cr))
670         {
671             /* OpenMP does not supported unsigned loop variables */
672 #pragma omp for schedule(static) nowait
673             for (gmx::index i = 0; i < gmx::ssize(s2->cg_gl); i++)
674             {
675                 s2->cg_gl[i] = s1->cg_gl[i];
676             }
677         }
678     }
679 
680     if (DOMAINDECOMP(cr))
681     {
682         s2->ddp_count       = s1->ddp_count;
683         s2->ddp_count_cg_gl = s1->ddp_count_cg_gl;
684     }
685 
686     if (constr)
687     {
688         dvdl_constr = 0;
689         validStep   = constr->apply(
690                 TRUE, TRUE, count, 0, 1.0, s1->x.arrayRefWithPadding(), s2->x.arrayRefWithPadding(),
691                 ArrayRef<RVec>(), s2->box, s2->lambda[efptBONDED], &dvdl_constr,
692                 gmx::ArrayRefWithPadding<RVec>(), false, nullptr, gmx::ConstraintVariable::Positions);
693 
694         if (cr->nnodes > 1)
695         {
696             /* This global reduction will affect performance at high
697              * parallelization, but we can not really avoid it.
698              * But usually EM is not run at high parallelization.
699              */
700             int reductionBuffer = static_cast<int>(!validStep);
701             gmx_sumi(1, &reductionBuffer, cr);
702             validStep = (reductionBuffer == 0);
703         }
704 
705         // We should move this check to the different minimizers
706         if (!validStep && ir->eI != eiSteep)
707         {
708             gmx_fatal(FARGS,
709                       "The coordinates could not be constrained. Minimizer '%s' can not handle "
710                       "constraint failures, use minimizer '%s' before using '%s'.",
711                       EI(ir->eI), EI(eiSteep), EI(ir->eI));
712         }
713     }
714 
715     return validStep;
716 }
717 
718 //! Prepare EM for using domain decomposition parallellization
em_dd_partition_system(FILE * fplog,const gmx::MDLogger & mdlog,int step,const t_commrec * cr,const gmx_mtop_t * top_global,t_inputrec * ir,gmx::ImdSession * imdSession,pull_t * pull_work,em_state_t * ems,gmx_localtop_t * top,gmx::MDAtoms * mdAtoms,t_forcerec * fr,VirtualSitesHandler * vsite,gmx::Constraints * constr,t_nrnb * nrnb,gmx_wallcycle_t wcycle)719 static void em_dd_partition_system(FILE*                fplog,
720                                    const gmx::MDLogger& mdlog,
721                                    int                  step,
722                                    const t_commrec*     cr,
723                                    const gmx_mtop_t*    top_global,
724                                    t_inputrec*          ir,
725                                    gmx::ImdSession*     imdSession,
726                                    pull_t*              pull_work,
727                                    em_state_t*          ems,
728                                    gmx_localtop_t*      top,
729                                    gmx::MDAtoms*        mdAtoms,
730                                    t_forcerec*          fr,
731                                    VirtualSitesHandler* vsite,
732                                    gmx::Constraints*    constr,
733                                    t_nrnb*              nrnb,
734                                    gmx_wallcycle_t      wcycle)
735 {
736     /* Repartition the domain decomposition */
737     dd_partition_system(fplog, mdlog, step, cr, FALSE, 1, nullptr, *top_global, ir, imdSession, pull_work,
738                         &ems->s, &ems->f, mdAtoms, top, fr, vsite, constr, nrnb, wcycle, FALSE);
739     dd_store_state(cr->dd, &ems->s);
740 }
741 
742 namespace
743 {
744 
745 /*! \brief Class to handle the work of setting and doing an energy evaluation.
746  *
747  * This class is a mere aggregate of parameters to pass to evaluate an
748  * energy, so that future changes to names and types of them consume
749  * less time when refactoring other code.
750  *
751  * Aggregate initialization is used, for which the chief risk is that
752  * if a member is added at the end and not all initializer lists are
753  * updated, then the member will be value initialized, which will
754  * typically mean initialization to zero.
755  *
756  * Use a braced initializer list to construct one of these. */
757 class EnergyEvaluator
758 {
759 public:
760     /*! \brief Evaluates an energy on the state in \c ems.
761      *
762      * \todo In practice, the same objects mu_tot, vir, and pres
763      * are always passed to this function, so we would rather have
764      * them as data members. However, their C-array types are
765      * unsuited for aggregate initialization. When the types
766      * improve, the call signature of this method can be reduced.
767      */
768     void run(em_state_t* ems, rvec mu_tot, tensor vir, tensor pres, int64_t count, gmx_bool bFirst);
769     //! Handles logging (deprecated).
770     FILE* fplog;
771     //! Handles logging.
772     const gmx::MDLogger& mdlog;
773     //! Handles communication.
774     const t_commrec* cr;
775     //! Coordinates multi-simulations.
776     const gmx_multisim_t* ms;
777     //! Holds the simulation topology.
778     const gmx_mtop_t* top_global;
779     //! Holds the domain topology.
780     gmx_localtop_t* top;
781     //! User input options.
782     t_inputrec* inputrec;
783     //! The Interactive Molecular Dynamics session.
784     gmx::ImdSession* imdSession;
785     //! The pull work object.
786     pull_t* pull_work;
787     //! Manages flop accounting.
788     t_nrnb* nrnb;
789     //! Manages wall cycle accounting.
790     gmx_wallcycle_t wcycle;
791     //! Coordinates global reduction.
792     gmx_global_stat_t gstat;
793     //! Handles virtual sites.
794     VirtualSitesHandler* vsite;
795     //! Handles constraints.
796     gmx::Constraints* constr;
797     //! Per-atom data for this domain.
798     gmx::MDAtoms* mdAtoms;
799     //! Handles how to calculate the forces.
800     t_forcerec* fr;
801     //! Schedule of force-calculation work each step for this task.
802     MdrunScheduleWorkload* runScheduleWork;
803     //! Stores the computed energies.
804     gmx_enerdata_t* enerd;
805 };
806 
run(em_state_t * ems,rvec mu_tot,tensor vir,tensor pres,int64_t count,gmx_bool bFirst)807 void EnergyEvaluator::run(em_state_t* ems, rvec mu_tot, tensor vir, tensor pres, int64_t count, gmx_bool bFirst)
808 {
809     real     t;
810     gmx_bool bNS;
811     tensor   force_vir, shake_vir, ekin;
812     real     dvdl_constr;
813     real     terminate = 0;
814 
815     /* Set the time to the initial time, the time does not change during EM */
816     t = inputrec->init_t;
817 
818     if (bFirst || (DOMAINDECOMP(cr) && ems->s.ddp_count < cr->dd->ddp_count))
819     {
820         /* This is the first state or an old state used before the last ns */
821         bNS = TRUE;
822     }
823     else
824     {
825         bNS = FALSE;
826         if (inputrec->nstlist > 0)
827         {
828             bNS = TRUE;
829         }
830     }
831 
832     if (vsite)
833     {
834         vsite->construct(ems->s.x, 1, {}, ems->s.box);
835     }
836 
837     if (DOMAINDECOMP(cr) && bNS)
838     {
839         /* Repartition the domain decomposition */
840         em_dd_partition_system(fplog, mdlog, count, cr, top_global, inputrec, imdSession, pull_work,
841                                ems, top, mdAtoms, fr, vsite, constr, nrnb, wcycle);
842     }
843 
844     /* Calc force & energy on new trial position  */
845     /* do_force always puts the charge groups in the box and shifts again
846      * We do not unshift, so molecules are always whole in congrad.c
847      */
848     do_force(fplog, cr, ms, inputrec, nullptr, nullptr, imdSession, pull_work, count, nrnb, wcycle,
849              top, ems->s.box, ems->s.x.arrayRefWithPadding(), &ems->s.hist, &ems->f.view(), force_vir,
850              mdAtoms->mdatoms(), enerd, ems->s.lambda, fr, runScheduleWork, vsite, mu_tot, t, nullptr,
851              GMX_FORCE_STATECHANGED | GMX_FORCE_ALLFORCES | GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY
852                      | (bNS ? GMX_FORCE_NS : 0),
853              DDBalanceRegionHandler(cr));
854 
855     /* Clear the unused shake virial and pressure */
856     clear_mat(shake_vir);
857     clear_mat(pres);
858 
859     /* Communicate stuff when parallel */
860     if (PAR(cr) && inputrec->eI != eiNM)
861     {
862         wallcycle_start(wcycle, ewcMoveE);
863 
864         global_stat(gstat, cr, enerd, force_vir, shake_vir, inputrec, nullptr, nullptr, nullptr, 1,
865                     &terminate, nullptr, FALSE, CGLO_ENERGY | CGLO_PRESSURE | CGLO_CONSTRAINT);
866 
867         wallcycle_stop(wcycle, ewcMoveE);
868     }
869 
870     if (fr->dispersionCorrection)
871     {
872         /* Calculate long range corrections to pressure and energy */
873         const DispersionCorrection::Correction correction =
874                 fr->dispersionCorrection->calculate(ems->s.box, ems->s.lambda[efptVDW]);
875 
876         enerd->term[F_DISPCORR] = correction.energy;
877         enerd->term[F_EPOT] += correction.energy;
878         enerd->term[F_PRES] += correction.pressure;
879         enerd->term[F_DVDL] += correction.dvdl;
880     }
881     else
882     {
883         enerd->term[F_DISPCORR] = 0;
884     }
885 
886     ems->epot = enerd->term[F_EPOT];
887 
888     if (constr)
889     {
890         /* Project out the constraint components of the force */
891         bool needsLogging  = false;
892         bool computeEnergy = false;
893         bool computeVirial = true;
894         dvdl_constr        = 0;
895         auto f             = ems->f.view().forceWithPadding();
896         constr->apply(needsLogging, computeEnergy, count, 0, 1.0, ems->s.x.arrayRefWithPadding(), f,
897                       f.unpaddedArrayRef(), ems->s.box, ems->s.lambda[efptBONDED], &dvdl_constr,
898                       gmx::ArrayRefWithPadding<RVec>(), computeVirial, shake_vir,
899                       gmx::ConstraintVariable::ForceDispl);
900         enerd->term[F_DVDL_CONSTR] += dvdl_constr;
901         m_add(force_vir, shake_vir, vir);
902     }
903     else
904     {
905         copy_mat(force_vir, vir);
906     }
907 
908     clear_mat(ekin);
909     enerd->term[F_PRES] = calc_pres(fr->pbcType, inputrec->nwall, ems->s.box, ekin, vir, pres);
910 
911     if (inputrec->efep != efepNO)
912     {
913         accumulateKineticLambdaComponents(enerd, ems->s.lambda, *inputrec->fepvals);
914     }
915 
916     if (EI_ENERGY_MINIMIZATION(inputrec->eI))
917     {
918         get_state_f_norm_max(cr, &(inputrec->opts), mdAtoms->mdatoms(), ems);
919     }
920 }
921 
922 } // namespace
923 
924 //! Parallel utility summing energies and forces
reorder_partsum(const t_commrec * cr,t_grpopts * opts,const gmx_mtop_t * top_global,const em_state_t * s_min,const em_state_t * s_b)925 static double reorder_partsum(const t_commrec*  cr,
926                               t_grpopts*        opts,
927                               const gmx_mtop_t* top_global,
928                               const em_state_t* s_min,
929                               const em_state_t* s_b)
930 {
931     if (debug)
932     {
933         fprintf(debug, "Doing reorder_partsum\n");
934     }
935 
936     auto fm = s_min->f.view().force();
937     auto fb = s_b->f.view().force();
938 
939     /* Collect fm in a global vector fmg.
940      * This conflicts with the spirit of domain decomposition,
941      * but to fully optimize this a much more complicated algorithm is required.
942      */
943     const int natoms = top_global->natoms;
944     rvec*     fmg;
945     snew(fmg, natoms);
946 
947     gmx::ArrayRef<const int> indicesMin = s_min->s.cg_gl;
948     int                      i          = 0;
949     for (int a : indicesMin)
950     {
951         copy_rvec(fm[i], fmg[a]);
952         i++;
953     }
954     gmx_sum(top_global->natoms * 3, fmg[0], cr);
955 
956     /* Now we will determine the part of the sum for the cgs in state s_b */
957     gmx::ArrayRef<const int> indicesB = s_b->s.cg_gl;
958 
959     double partsum                        = 0;
960     i                                     = 0;
961     int                                gf = 0;
962     gmx::ArrayRef<const unsigned char> grpnrFREEZE =
963             top_global->groups.groupNumbers[SimulationAtomGroupType::Freeze];
964     for (int a : indicesB)
965     {
966         if (!grpnrFREEZE.empty())
967         {
968             gf = grpnrFREEZE[i];
969         }
970         for (int m = 0; m < DIM; m++)
971         {
972             if (!opts->nFreeze[gf][m])
973             {
974                 partsum += (fb[i][m] - fmg[a][m]) * fb[i][m];
975             }
976         }
977         i++;
978     }
979 
980     sfree(fmg);
981 
982     return partsum;
983 }
984 
985 //! Print some stuff, like beta, whatever that means.
pr_beta(const t_commrec * cr,t_grpopts * opts,t_mdatoms * mdatoms,const gmx_mtop_t * top_global,const em_state_t * s_min,const em_state_t * s_b)986 static real pr_beta(const t_commrec*  cr,
987                     t_grpopts*        opts,
988                     t_mdatoms*        mdatoms,
989                     const gmx_mtop_t* top_global,
990                     const em_state_t* s_min,
991                     const em_state_t* s_b)
992 {
993     double sum;
994 
995     /* This is just the classical Polak-Ribiere calculation of beta;
996      * it looks a bit complicated since we take freeze groups into account,
997      * and might have to sum it in parallel runs.
998      */
999 
1000     if (!DOMAINDECOMP(cr)
1001         || (s_min->s.ddp_count == cr->dd->ddp_count && s_b->s.ddp_count == cr->dd->ddp_count))
1002     {
1003         auto fm = s_min->f.view().force();
1004         auto fb = s_b->f.view().force();
1005         sum     = 0;
1006         int gf  = 0;
1007         /* This part of code can be incorrect with DD,
1008          * since the atom ordering in s_b and s_min might differ.
1009          */
1010         for (int i = 0; i < mdatoms->homenr; i++)
1011         {
1012             if (mdatoms->cFREEZE)
1013             {
1014                 gf = mdatoms->cFREEZE[i];
1015             }
1016             for (int m = 0; m < DIM; m++)
1017             {
1018                 if (!opts->nFreeze[gf][m])
1019                 {
1020                     sum += (fb[i][m] - fm[i][m]) * fb[i][m];
1021                 }
1022             }
1023         }
1024     }
1025     else
1026     {
1027         /* We need to reorder cgs while summing */
1028         sum = reorder_partsum(cr, opts, top_global, s_min, s_b);
1029     }
1030     if (PAR(cr))
1031     {
1032         gmx_sumd(1, &sum, cr);
1033     }
1034 
1035     return sum / gmx::square(s_min->fnorm);
1036 }
1037 
1038 namespace gmx
1039 {
1040 
do_cg()1041 void LegacySimulator::do_cg()
1042 {
1043     const char* CG = "Polak-Ribiere Conjugate Gradients";
1044 
1045     gmx_localtop_t    top(top_global->ffparams);
1046     gmx_global_stat_t gstat;
1047     double            tmp, minstep;
1048     real              stepsize;
1049     real              a, b, c, beta = 0.0;
1050     real              epot_repl = 0;
1051     real              pnorm;
1052     gmx_bool          converged, foundlower;
1053     rvec              mu_tot = { 0 };
1054     gmx_bool          do_log = FALSE, do_ene = FALSE, do_x, do_f;
1055     tensor            vir, pres;
1056     int               number_steps, neval = 0, nstcg = inputrec->nstcgsteep;
1057     int               m, step, nminstep;
1058     auto              mdatoms = mdAtoms->mdatoms();
1059 
1060     GMX_LOG(mdlog.info)
1061             .asParagraph()
1062             .appendText(
1063                     "Note that activating conjugate gradient energy minimization via the "
1064                     "integrator .mdp option and the command gmx mdrun may "
1065                     "be available in a different form in a future version of GROMACS, "
1066                     "e.g. gmx minimize and an .mdp option.");
1067 
1068     step = 0;
1069 
1070     if (MASTER(cr))
1071     {
1072         // In CG, the state is extended with a search direction
1073         state_global->flags |= (1 << estCGP);
1074 
1075         // Ensure the extra per-atom state array gets allocated
1076         state_change_natoms(state_global, state_global->natoms);
1077 
1078         // Initialize the search direction to zero
1079         for (RVec& cg_p : state_global->cg_p)
1080         {
1081             cg_p = { 0, 0, 0 };
1082         }
1083     }
1084 
1085     /* Create 4 states on the stack and extract pointers that we will swap */
1086     em_state_t  s0{}, s1{}, s2{}, s3{};
1087     em_state_t* s_min = &s0;
1088     em_state_t* s_a   = &s1;
1089     em_state_t* s_b   = &s2;
1090     em_state_t* s_c   = &s3;
1091 
1092     /* Init em and store the local state in s_min */
1093     init_em(fplog, mdlog, CG, cr, inputrec, imdSession, pull_work, state_global, top_global, s_min,
1094             &top, nrnb, fr, mdAtoms, &gstat, vsite, constr, nullptr);
1095     const bool        simulationsShareState = false;
1096     gmx_mdoutf*       outf = init_mdoutf(fplog, nfile, fnm, mdrunOptions, cr, outputProvider,
1097                                    mdModulesNotifier, inputrec, top_global, nullptr, wcycle,
1098                                    StartingBehavior::NewSimulation, simulationsShareState, ms);
1099     gmx::EnergyOutput energyOutput(mdoutf_get_fp_ene(outf), top_global, inputrec, pull_work,
1100                                    nullptr, false, StartingBehavior::NewSimulation,
1101                                    simulationsShareState, mdModulesNotifier);
1102 
1103     /* Print to log file */
1104     print_em_start(fplog, cr, walltime_accounting, wcycle, CG);
1105 
1106     /* Max number of steps */
1107     number_steps = inputrec->nsteps;
1108 
1109     if (MASTER(cr))
1110     {
1111         sp_header(stderr, CG, inputrec->em_tol, number_steps);
1112     }
1113     if (fplog)
1114     {
1115         sp_header(fplog, CG, inputrec->em_tol, number_steps);
1116     }
1117 
1118     EnergyEvaluator energyEvaluator{ fplog,    mdlog,      cr,        ms,   top_global,      &top,
1119                                      inputrec, imdSession, pull_work, nrnb, wcycle,          gstat,
1120                                      vsite,    constr,     mdAtoms,   fr,   runScheduleWork, enerd };
1121     /* Call the force routine and some auxiliary (neighboursearching etc.) */
1122     /* do_force always puts the charge groups in the box and shifts again
1123      * We do not unshift, so molecules are always whole in congrad.c
1124      */
1125     energyEvaluator.run(s_min, mu_tot, vir, pres, -1, TRUE);
1126 
1127     if (MASTER(cr))
1128     {
1129         /* Copy stuff to the energy bin for easy printing etc. */
1130         matrix nullBox = {};
1131         energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(step), mdatoms->tmass,
1132                                          enerd, nullptr, nullptr, nullBox, PTCouplingArrays(), 0,
1133                                          nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
1134 
1135         EnergyOutput::printHeader(fplog, step, step);
1136         energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE, fplog, step,
1137                                            step, fr->fcdata.get(), nullptr);
1138     }
1139 
1140     /* Estimate/guess the initial stepsize */
1141     stepsize = inputrec->em_stepsize / s_min->fnorm;
1142 
1143     if (MASTER(cr))
1144     {
1145         double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1146         fprintf(stderr, "   F-max             = %12.5e on atom %d\n", s_min->fmax, s_min->a_fmax + 1);
1147         fprintf(stderr, "   F-Norm            = %12.5e\n", s_min->fnorm / sqrtNumAtoms);
1148         fprintf(stderr, "\n");
1149         /* and copy to the log file too... */
1150         fprintf(fplog, "   F-max             = %12.5e on atom %d\n", s_min->fmax, s_min->a_fmax + 1);
1151         fprintf(fplog, "   F-Norm            = %12.5e\n", s_min->fnorm / sqrtNumAtoms);
1152         fprintf(fplog, "\n");
1153     }
1154     /* Start the loop over CG steps.
1155      * Each successful step is counted, and we continue until
1156      * we either converge or reach the max number of steps.
1157      */
1158     converged = FALSE;
1159     for (step = 0; (number_steps < 0 || step <= number_steps) && !converged; step++)
1160     {
1161 
1162         /* start taking steps in a new direction
1163          * First time we enter the routine, beta=0, and the direction is
1164          * simply the negative gradient.
1165          */
1166 
1167         /* Calculate the new direction in p, and the gradient in this direction, gpa */
1168         gmx::ArrayRef<gmx::RVec>       pm  = s_min->s.cg_p;
1169         gmx::ArrayRef<const gmx::RVec> sfm = s_min->f.view().force();
1170         double                         gpa = 0;
1171         int                            gf  = 0;
1172         for (int i = 0; i < mdatoms->homenr; i++)
1173         {
1174             if (mdatoms->cFREEZE)
1175             {
1176                 gf = mdatoms->cFREEZE[i];
1177             }
1178             for (m = 0; m < DIM; m++)
1179             {
1180                 if (!inputrec->opts.nFreeze[gf][m])
1181                 {
1182                     pm[i][m] = sfm[i][m] + beta * pm[i][m];
1183                     gpa -= pm[i][m] * sfm[i][m];
1184                     /* f is negative gradient, thus the sign */
1185                 }
1186                 else
1187                 {
1188                     pm[i][m] = 0;
1189                 }
1190             }
1191         }
1192 
1193         /* Sum the gradient along the line across CPUs */
1194         if (PAR(cr))
1195         {
1196             gmx_sumd(1, &gpa, cr);
1197         }
1198 
1199         /* Calculate the norm of the search vector */
1200         get_f_norm_max(cr, &(inputrec->opts), mdatoms, pm, &pnorm, nullptr, nullptr);
1201 
1202         /* Just in case stepsize reaches zero due to numerical precision... */
1203         if (stepsize <= 0)
1204         {
1205             stepsize = inputrec->em_stepsize / pnorm;
1206         }
1207 
1208         /*
1209          * Double check the value of the derivative in the search direction.
1210          * If it is positive it must be due to the old information in the
1211          * CG formula, so just remove that and start over with beta=0.
1212          * This corresponds to a steepest descent step.
1213          */
1214         if (gpa > 0)
1215         {
1216             beta = 0;
1217             step--;   /* Don't count this step since we are restarting */
1218             continue; /* Go back to the beginning of the big for-loop */
1219         }
1220 
1221         /* Calculate minimum allowed stepsize, before the average (norm)
1222          * relative change in coordinate is smaller than precision
1223          */
1224         minstep      = 0;
1225         auto s_min_x = makeArrayRef(s_min->s.x);
1226         for (int i = 0; i < mdatoms->homenr; i++)
1227         {
1228             for (m = 0; m < DIM; m++)
1229             {
1230                 tmp = fabs(s_min_x[i][m]);
1231                 if (tmp < 1.0)
1232                 {
1233                     tmp = 1.0;
1234                 }
1235                 tmp = pm[i][m] / tmp;
1236                 minstep += tmp * tmp;
1237             }
1238         }
1239         /* Add up from all CPUs */
1240         if (PAR(cr))
1241         {
1242             gmx_sumd(1, &minstep, cr);
1243         }
1244 
1245         minstep = GMX_REAL_EPS / sqrt(minstep / (3 * top_global->natoms));
1246 
1247         if (stepsize < minstep)
1248         {
1249             converged = TRUE;
1250             break;
1251         }
1252 
1253         /* Write coordinates if necessary */
1254         do_x = do_per_step(step, inputrec->nstxout);
1255         do_f = do_per_step(step, inputrec->nstfout);
1256 
1257         write_em_traj(fplog, cr, outf, do_x, do_f, nullptr, top_global, inputrec, step, s_min,
1258                       state_global, observablesHistory);
1259 
1260         /* Take a step downhill.
1261          * In theory, we should minimize the function along this direction.
1262          * That is quite possible, but it turns out to take 5-10 function evaluations
1263          * for each line. However, we dont really need to find the exact minimum -
1264          * it is much better to start a new CG step in a modified direction as soon
1265          * as we are close to it. This will save a lot of energy evaluations.
1266          *
1267          * In practice, we just try to take a single step.
1268          * If it worked (i.e. lowered the energy), we increase the stepsize but
1269          * the continue straight to the next CG step without trying to find any minimum.
1270          * If it didn't work (higher energy), there must be a minimum somewhere between
1271          * the old position and the new one.
1272          *
1273          * Due to the finite numerical accuracy, it turns out that it is a good idea
1274          * to even accept a SMALL increase in energy, if the derivative is still downhill.
1275          * This leads to lower final energies in the tests I've done. / Erik
1276          */
1277         s_a->epot = s_min->epot;
1278         a         = 0.0;
1279         c         = a + stepsize; /* reference position along line is zero */
1280 
1281         if (DOMAINDECOMP(cr) && s_min->s.ddp_count < cr->dd->ddp_count)
1282         {
1283             em_dd_partition_system(fplog, mdlog, step, cr, top_global, inputrec, imdSession,
1284                                    pull_work, s_min, &top, mdAtoms, fr, vsite, constr, nrnb, wcycle);
1285         }
1286 
1287         /* Take a trial step (new coords in s_c) */
1288         do_em_step(cr, inputrec, mdatoms, s_min, c, s_min->s.cg_p.constArrayRefWithPadding(), s_c,
1289                    constr, -1);
1290 
1291         neval++;
1292         /* Calculate energy for the trial step */
1293         energyEvaluator.run(s_c, mu_tot, vir, pres, -1, FALSE);
1294 
1295         /* Calc derivative along line */
1296         const rvec*                    pc  = s_c->s.cg_p.rvec_array();
1297         gmx::ArrayRef<const gmx::RVec> sfc = s_c->f.view().force();
1298         double                         gpc = 0;
1299         for (int i = 0; i < mdatoms->homenr; i++)
1300         {
1301             for (m = 0; m < DIM; m++)
1302             {
1303                 gpc -= pc[i][m] * sfc[i][m]; /* f is negative gradient, thus the sign */
1304             }
1305         }
1306         /* Sum the gradient along the line across CPUs */
1307         if (PAR(cr))
1308         {
1309             gmx_sumd(1, &gpc, cr);
1310         }
1311 
1312         /* This is the max amount of increase in energy we tolerate */
1313         tmp = std::sqrt(GMX_REAL_EPS) * fabs(s_a->epot);
1314 
1315         /* Accept the step if the energy is lower, or if it is not significantly higher
1316          * and the line derivative is still negative.
1317          */
1318         if (s_c->epot < s_a->epot || (gpc < 0 && s_c->epot < (s_a->epot + tmp)))
1319         {
1320             foundlower = TRUE;
1321             /* Great, we found a better energy. Increase step for next iteration
1322              * if we are still going down, decrease it otherwise
1323              */
1324             if (gpc < 0)
1325             {
1326                 stepsize *= 1.618034; /* The golden section */
1327             }
1328             else
1329             {
1330                 stepsize *= 0.618034; /* 1/golden section */
1331             }
1332         }
1333         else
1334         {
1335             /* New energy is the same or higher. We will have to do some work
1336              * to find a smaller value in the interval. Take smaller step next time!
1337              */
1338             foundlower = FALSE;
1339             stepsize *= 0.618034;
1340         }
1341 
1342 
1343         /* OK, if we didn't find a lower value we will have to locate one now - there must
1344          * be one in the interval [a=0,c].
1345          * The same thing is valid here, though: Don't spend dozens of iterations to find
1346          * the line minimum. We try to interpolate based on the derivative at the endpoints,
1347          * and only continue until we find a lower value. In most cases this means 1-2 iterations.
1348          *
1349          * I also have a safeguard for potentially really pathological functions so we never
1350          * take more than 20 steps before we give up ...
1351          *
1352          * If we already found a lower value we just skip this step and continue to the update.
1353          */
1354         double gpb;
1355         if (!foundlower)
1356         {
1357             nminstep = 0;
1358 
1359             do
1360             {
1361                 /* Select a new trial point.
1362                  * If the derivatives at points a & c have different sign we interpolate to zero,
1363                  * otherwise just do a bisection.
1364                  */
1365                 if (gpa < 0 && gpc > 0)
1366                 {
1367                     b = a + gpa * (a - c) / (gpc - gpa);
1368                 }
1369                 else
1370                 {
1371                     b = 0.5 * (a + c);
1372                 }
1373 
1374                 /* safeguard if interpolation close to machine accuracy causes errors:
1375                  * never go outside the interval
1376                  */
1377                 if (b <= a || b >= c)
1378                 {
1379                     b = 0.5 * (a + c);
1380                 }
1381 
1382                 if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
1383                 {
1384                     /* Reload the old state */
1385                     em_dd_partition_system(fplog, mdlog, -1, cr, top_global, inputrec, imdSession, pull_work,
1386                                            s_min, &top, mdAtoms, fr, vsite, constr, nrnb, wcycle);
1387                 }
1388 
1389                 /* Take a trial step to this new point - new coords in s_b */
1390                 do_em_step(cr, inputrec, mdatoms, s_min, b,
1391                            s_min->s.cg_p.constArrayRefWithPadding(), s_b, constr, -1);
1392 
1393                 neval++;
1394                 /* Calculate energy for the trial step */
1395                 energyEvaluator.run(s_b, mu_tot, vir, pres, -1, FALSE);
1396 
1397                 /* p does not change within a step, but since the domain decomposition
1398                  * might change, we have to use cg_p of s_b here.
1399                  */
1400                 const rvec*                    pb  = s_b->s.cg_p.rvec_array();
1401                 gmx::ArrayRef<const gmx::RVec> sfb = s_b->f.view().force();
1402                 gpb                                = 0;
1403                 for (int i = 0; i < mdatoms->homenr; i++)
1404                 {
1405                     for (m = 0; m < DIM; m++)
1406                     {
1407                         gpb -= pb[i][m] * sfb[i][m]; /* f is negative gradient, thus the sign */
1408                     }
1409                 }
1410                 /* Sum the gradient along the line across CPUs */
1411                 if (PAR(cr))
1412                 {
1413                     gmx_sumd(1, &gpb, cr);
1414                 }
1415 
1416                 if (debug)
1417                 {
1418                     fprintf(debug, "CGE: EpotA %f EpotB %f EpotC %f gpb %f\n", s_a->epot, s_b->epot,
1419                             s_c->epot, gpb);
1420                 }
1421 
1422                 epot_repl = s_b->epot;
1423 
1424                 /* Keep one of the intervals based on the value of the derivative at the new point */
1425                 if (gpb > 0)
1426                 {
1427                     /* Replace c endpoint with b */
1428                     swap_em_state(&s_b, &s_c);
1429                     c   = b;
1430                     gpc = gpb;
1431                 }
1432                 else
1433                 {
1434                     /* Replace a endpoint with b */
1435                     swap_em_state(&s_b, &s_a);
1436                     a   = b;
1437                     gpa = gpb;
1438                 }
1439 
1440                 /*
1441                  * Stop search as soon as we find a value smaller than the endpoints.
1442                  * Never run more than 20 steps, no matter what.
1443                  */
1444                 nminstep++;
1445             } while ((epot_repl > s_a->epot || epot_repl > s_c->epot) && (nminstep < 20));
1446 
1447             if (std::fabs(epot_repl - s_min->epot) < fabs(s_min->epot) * GMX_REAL_EPS || nminstep >= 20)
1448             {
1449                 /* OK. We couldn't find a significantly lower energy.
1450                  * If beta==0 this was steepest descent, and then we give up.
1451                  * If not, set beta=0 and restart with steepest descent before quitting.
1452                  */
1453                 if (beta == 0.0)
1454                 {
1455                     /* Converged */
1456                     converged = TRUE;
1457                     break;
1458                 }
1459                 else
1460                 {
1461                     /* Reset memory before giving up */
1462                     beta = 0.0;
1463                     continue;
1464                 }
1465             }
1466 
1467             /* Select min energy state of A & C, put the best in B.
1468              */
1469             if (s_c->epot < s_a->epot)
1470             {
1471                 if (debug)
1472                 {
1473                     fprintf(debug, "CGE: C (%f) is lower than A (%f), moving C to B\n", s_c->epot,
1474                             s_a->epot);
1475                 }
1476                 swap_em_state(&s_b, &s_c);
1477                 gpb = gpc;
1478             }
1479             else
1480             {
1481                 if (debug)
1482                 {
1483                     fprintf(debug, "CGE: A (%f) is lower than C (%f), moving A to B\n", s_a->epot,
1484                             s_c->epot);
1485                 }
1486                 swap_em_state(&s_b, &s_a);
1487                 gpb = gpa;
1488             }
1489         }
1490         else
1491         {
1492             if (debug)
1493             {
1494                 fprintf(debug, "CGE: Found a lower energy %f, moving C to B\n", s_c->epot);
1495             }
1496             swap_em_state(&s_b, &s_c);
1497             gpb = gpc;
1498         }
1499 
1500         /* new search direction */
1501         /* beta = 0 means forget all memory and restart with steepest descents. */
1502         if (nstcg && ((step % nstcg) == 0))
1503         {
1504             beta = 0.0;
1505         }
1506         else
1507         {
1508             /* s_min->fnorm cannot be zero, because then we would have converged
1509              * and broken out.
1510              */
1511 
1512             /* Polak-Ribiere update.
1513              * Change to fnorm2/fnorm2_old for Fletcher-Reeves
1514              */
1515             beta = pr_beta(cr, &inputrec->opts, mdatoms, top_global, s_min, s_b);
1516         }
1517         /* Limit beta to prevent oscillations */
1518         if (fabs(beta) > 5.0)
1519         {
1520             beta = 0.0;
1521         }
1522 
1523 
1524         /* update positions */
1525         swap_em_state(&s_min, &s_b);
1526         gpa = gpb;
1527 
1528         /* Print it if necessary */
1529         if (MASTER(cr))
1530         {
1531             if (mdrunOptions.verbose)
1532             {
1533                 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1534                 fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n", step,
1535                         s_min->epot, s_min->fnorm / sqrtNumAtoms, s_min->fmax, s_min->a_fmax + 1);
1536                 fflush(stderr);
1537             }
1538             /* Store the new (lower) energies */
1539             matrix nullBox = {};
1540             energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(step), mdatoms->tmass,
1541                                              enerd, nullptr, nullptr, nullBox, PTCouplingArrays(), 0,
1542                                              nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
1543 
1544             do_log = do_per_step(step, inputrec->nstlog);
1545             do_ene = do_per_step(step, inputrec->nstenergy);
1546 
1547             imdSession->fillEnergyRecord(step, TRUE);
1548 
1549             if (do_log)
1550             {
1551                 EnergyOutput::printHeader(fplog, step, step);
1552             }
1553             energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), do_ene, FALSE, FALSE,
1554                                                do_log ? fplog : nullptr, step, step,
1555                                                fr->fcdata.get(), nullptr);
1556         }
1557 
1558         /* Send energies and positions to the IMD client if bIMD is TRUE. */
1559         if (MASTER(cr) && imdSession->run(step, TRUE, state_global->box, state_global->x.rvec_array(), 0))
1560         {
1561             imdSession->sendPositionsAndEnergies();
1562         }
1563 
1564         /* Stop when the maximum force lies below tolerance.
1565          * If we have reached machine precision, converged is already set to true.
1566          */
1567         converged = converged || (s_min->fmax < inputrec->em_tol);
1568 
1569     } /* End of the loop */
1570 
1571     if (converged)
1572     {
1573         step--; /* we never took that last step in this case */
1574     }
1575     if (s_min->fmax > inputrec->em_tol)
1576     {
1577         if (MASTER(cr))
1578         {
1579             warn_step(fplog, inputrec->em_tol, s_min->fmax, step - 1 == number_steps, FALSE);
1580         }
1581         converged = FALSE;
1582     }
1583 
1584     if (MASTER(cr))
1585     {
1586         /* If we printed energy and/or logfile last step (which was the last step)
1587          * we don't have to do it again, but otherwise print the final values.
1588          */
1589         if (!do_log)
1590         {
1591             /* Write final value to log since we didn't do anything the last step */
1592             EnergyOutput::printHeader(fplog, step, step);
1593         }
1594         if (!do_ene || !do_log)
1595         {
1596             /* Write final energy file entries */
1597             energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), !do_ene, FALSE, FALSE,
1598                                                !do_log ? fplog : nullptr, step, step,
1599                                                fr->fcdata.get(), nullptr);
1600         }
1601     }
1602 
1603     /* Print some stuff... */
1604     if (MASTER(cr))
1605     {
1606         fprintf(stderr, "\nwriting lowest energy coordinates.\n");
1607     }
1608 
1609     /* IMPORTANT!
1610      * For accurate normal mode calculation it is imperative that we
1611      * store the last conformation into the full precision binary trajectory.
1612      *
1613      * However, we should only do it if we did NOT already write this step
1614      * above (which we did if do_x or do_f was true).
1615      */
1616     /* Note that with 0 < nstfout != nstxout we can end up with two frames
1617      * in the trajectory with the same step number.
1618      */
1619     do_x = !do_per_step(step, inputrec->nstxout);
1620     do_f = (inputrec->nstfout > 0 && !do_per_step(step, inputrec->nstfout));
1621 
1622     write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm), top_global, inputrec,
1623                   step, s_min, state_global, observablesHistory);
1624 
1625 
1626     if (MASTER(cr))
1627     {
1628         double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1629         print_converged(stderr, CG, inputrec->em_tol, step, converged, number_steps, s_min, sqrtNumAtoms);
1630         print_converged(fplog, CG, inputrec->em_tol, step, converged, number_steps, s_min, sqrtNumAtoms);
1631 
1632         fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
1633     }
1634 
1635     finish_em(cr, outf, walltime_accounting, wcycle);
1636 
1637     /* To print the actual number of steps we needed somewhere */
1638     walltime_accounting_set_nsteps_done(walltime_accounting, step);
1639 }
1640 
1641 
do_lbfgs()1642 void LegacySimulator::do_lbfgs()
1643 {
1644     static const char* LBFGS = "Low-Memory BFGS Minimizer";
1645     em_state_t         ems;
1646     gmx_localtop_t     top(top_global->ffparams);
1647     gmx_global_stat_t  gstat;
1648     int                ncorr, nmaxcorr, point, cp, neval, nminstep;
1649     double             stepsize, step_taken, gpa, gpb, gpc, tmp, minstep;
1650     real *             rho, *alpha, *p, *s, **dx, **dg;
1651     real               a, b, c, maxdelta, delta;
1652     real               diag, Epot0;
1653     real               dgdx, dgdg, sq, yr, beta;
1654     gmx_bool           converged;
1655     rvec               mu_tot = { 0 };
1656     gmx_bool           do_log, do_ene, do_x, do_f, foundlower, *frozen;
1657     tensor             vir, pres;
1658     int                start, end, number_steps;
1659     int                i, k, m, n, gf, step;
1660     int                mdof_flags;
1661     auto               mdatoms = mdAtoms->mdatoms();
1662 
1663     GMX_LOG(mdlog.info)
1664             .asParagraph()
1665             .appendText(
1666                     "Note that activating L-BFGS energy minimization via the "
1667                     "integrator .mdp option and the command gmx mdrun may "
1668                     "be available in a different form in a future version of GROMACS, "
1669                     "e.g. gmx minimize and an .mdp option.");
1670 
1671     if (PAR(cr))
1672     {
1673         gmx_fatal(FARGS, "L-BFGS minimization only supports a single rank");
1674     }
1675 
1676     if (nullptr != constr)
1677     {
1678         gmx_fatal(
1679                 FARGS,
1680                 "The combination of constraints and L-BFGS minimization is not implemented. Either "
1681                 "do not use constraints, or use another minimizer (e.g. steepest descent).");
1682     }
1683 
1684     n        = 3 * state_global->natoms;
1685     nmaxcorr = inputrec->nbfgscorr;
1686 
1687     snew(frozen, n);
1688 
1689     snew(p, n);
1690     snew(rho, nmaxcorr);
1691     snew(alpha, nmaxcorr);
1692 
1693     snew(dx, nmaxcorr);
1694     for (i = 0; i < nmaxcorr; i++)
1695     {
1696         snew(dx[i], n);
1697     }
1698 
1699     snew(dg, nmaxcorr);
1700     for (i = 0; i < nmaxcorr; i++)
1701     {
1702         snew(dg[i], n);
1703     }
1704 
1705     step  = 0;
1706     neval = 0;
1707 
1708     /* Init em */
1709     init_em(fplog, mdlog, LBFGS, cr, inputrec, imdSession, pull_work, state_global, top_global,
1710             &ems, &top, nrnb, fr, mdAtoms, &gstat, vsite, constr, nullptr);
1711     const bool        simulationsShareState = false;
1712     gmx_mdoutf*       outf = init_mdoutf(fplog, nfile, fnm, mdrunOptions, cr, outputProvider,
1713                                    mdModulesNotifier, inputrec, top_global, nullptr, wcycle,
1714                                    StartingBehavior::NewSimulation, simulationsShareState, ms);
1715     gmx::EnergyOutput energyOutput(mdoutf_get_fp_ene(outf), top_global, inputrec, pull_work,
1716                                    nullptr, false, StartingBehavior::NewSimulation,
1717                                    simulationsShareState, mdModulesNotifier);
1718 
1719     start = 0;
1720     end   = mdatoms->homenr;
1721 
1722     /* We need 4 working states */
1723     em_state_t  s0{}, s1{}, s2{}, s3{};
1724     em_state_t* sa   = &s0;
1725     em_state_t* sb   = &s1;
1726     em_state_t* sc   = &s2;
1727     em_state_t* last = &s3;
1728     /* Initialize by copying the state from ems (we could skip x and f here) */
1729     *sa = ems;
1730     *sb = ems;
1731     *sc = ems;
1732 
1733     /* Print to log file */
1734     print_em_start(fplog, cr, walltime_accounting, wcycle, LBFGS);
1735 
1736     do_log = do_ene = do_x = do_f = TRUE;
1737 
1738     /* Max number of steps */
1739     number_steps = inputrec->nsteps;
1740 
1741     /* Create a 3*natoms index to tell whether each degree of freedom is frozen */
1742     gf = 0;
1743     for (i = start; i < end; i++)
1744     {
1745         if (mdatoms->cFREEZE)
1746         {
1747             gf = mdatoms->cFREEZE[i];
1748         }
1749         for (m = 0; m < DIM; m++)
1750         {
1751             frozen[3 * i + m] = (inputrec->opts.nFreeze[gf][m] != 0);
1752         }
1753     }
1754     if (MASTER(cr))
1755     {
1756         sp_header(stderr, LBFGS, inputrec->em_tol, number_steps);
1757     }
1758     if (fplog)
1759     {
1760         sp_header(fplog, LBFGS, inputrec->em_tol, number_steps);
1761     }
1762 
1763     if (vsite)
1764     {
1765         vsite->construct(state_global->x, 1, {}, state_global->box);
1766     }
1767 
1768     /* Call the force routine and some auxiliary (neighboursearching etc.) */
1769     /* do_force always puts the charge groups in the box and shifts again
1770      * We do not unshift, so molecules are always whole
1771      */
1772     neval++;
1773     EnergyEvaluator energyEvaluator{ fplog,    mdlog,      cr,        ms,   top_global,      &top,
1774                                      inputrec, imdSession, pull_work, nrnb, wcycle,          gstat,
1775                                      vsite,    constr,     mdAtoms,   fr,   runScheduleWork, enerd };
1776     energyEvaluator.run(&ems, mu_tot, vir, pres, -1, TRUE);
1777 
1778     if (MASTER(cr))
1779     {
1780         /* Copy stuff to the energy bin for easy printing etc. */
1781         matrix nullBox = {};
1782         energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(step), mdatoms->tmass,
1783                                          enerd, nullptr, nullptr, nullBox, PTCouplingArrays(), 0,
1784                                          nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
1785 
1786         EnergyOutput::printHeader(fplog, step, step);
1787         energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE, fplog, step,
1788                                            step, fr->fcdata.get(), nullptr);
1789     }
1790 
1791     /* Set the initial step.
1792      * since it will be multiplied by the non-normalized search direction
1793      * vector (force vector the first time), we scale it by the
1794      * norm of the force.
1795      */
1796 
1797     if (MASTER(cr))
1798     {
1799         double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1800         fprintf(stderr, "Using %d BFGS correction steps.\n\n", nmaxcorr);
1801         fprintf(stderr, "   F-max             = %12.5e on atom %d\n", ems.fmax, ems.a_fmax + 1);
1802         fprintf(stderr, "   F-Norm            = %12.5e\n", ems.fnorm / sqrtNumAtoms);
1803         fprintf(stderr, "\n");
1804         /* and copy to the log file too... */
1805         fprintf(fplog, "Using %d BFGS correction steps.\n\n", nmaxcorr);
1806         fprintf(fplog, "   F-max             = %12.5e on atom %d\n", ems.fmax, ems.a_fmax + 1);
1807         fprintf(fplog, "   F-Norm            = %12.5e\n", ems.fnorm / sqrtNumAtoms);
1808         fprintf(fplog, "\n");
1809     }
1810 
1811     // Point is an index to the memory of search directions, where 0 is the first one.
1812     point = 0;
1813 
1814     // Set initial search direction to the force (-gradient), or 0 for frozen particles.
1815     real* fInit = static_cast<real*>(ems.f.view().force().data()[0]);
1816     for (i = 0; i < n; i++)
1817     {
1818         if (!frozen[i])
1819         {
1820             dx[point][i] = fInit[i]; /* Initial search direction */
1821         }
1822         else
1823         {
1824             dx[point][i] = 0;
1825         }
1826     }
1827 
1828     // Stepsize will be modified during the search, and actually it is not critical
1829     // (the main efficiency in the algorithm comes from changing directions), but
1830     // we still need an initial value, so estimate it as the inverse of the norm
1831     // so we take small steps where the potential fluctuates a lot.
1832     stepsize = 1.0 / ems.fnorm;
1833 
1834     /* Start the loop over BFGS steps.
1835      * Each successful step is counted, and we continue until
1836      * we either converge or reach the max number of steps.
1837      */
1838 
1839     ncorr = 0;
1840 
1841     /* Set the gradient from the force */
1842     converged = FALSE;
1843     for (step = 0; (number_steps < 0 || step <= number_steps) && !converged; step++)
1844     {
1845 
1846         /* Write coordinates if necessary */
1847         do_x = do_per_step(step, inputrec->nstxout);
1848         do_f = do_per_step(step, inputrec->nstfout);
1849 
1850         mdof_flags = 0;
1851         if (do_x)
1852         {
1853             mdof_flags |= MDOF_X;
1854         }
1855 
1856         if (do_f)
1857         {
1858             mdof_flags |= MDOF_F;
1859         }
1860 
1861         if (inputrec->bIMD)
1862         {
1863             mdof_flags |= MDOF_IMD;
1864         }
1865 
1866         gmx::WriteCheckpointDataHolder checkpointDataHolder;
1867         mdoutf_write_to_trajectory_files(fplog, cr, outf, mdof_flags, top_global->natoms, step,
1868                                          static_cast<real>(step), &ems.s, state_global, observablesHistory,
1869                                          ems.f.view().force(), &checkpointDataHolder);
1870 
1871         /* Do the linesearching in the direction dx[point][0..(n-1)] */
1872 
1873         /* make s a pointer to current search direction - point=0 first time we get here */
1874         s = dx[point];
1875 
1876         real* xx = static_cast<real*>(ems.s.x.rvec_array()[0]);
1877         real* ff = static_cast<real*>(ems.f.view().force().data()[0]);
1878 
1879         // calculate line gradient in position A
1880         for (gpa = 0, i = 0; i < n; i++)
1881         {
1882             gpa -= s[i] * ff[i];
1883         }
1884 
1885         /* Calculate minimum allowed stepsize along the line, before the average (norm)
1886          * relative change in coordinate is smaller than precision
1887          */
1888         for (minstep = 0, i = 0; i < n; i++)
1889         {
1890             tmp = fabs(xx[i]);
1891             if (tmp < 1.0)
1892             {
1893                 tmp = 1.0;
1894             }
1895             tmp = s[i] / tmp;
1896             minstep += tmp * tmp;
1897         }
1898         minstep = GMX_REAL_EPS / sqrt(minstep / n);
1899 
1900         if (stepsize < minstep)
1901         {
1902             converged = TRUE;
1903             break;
1904         }
1905 
1906         // Before taking any steps along the line, store the old position
1907         *last       = ems;
1908         real* lastx = static_cast<real*>(last->s.x.data()[0]);
1909         real* lastf = static_cast<real*>(last->f.view().force().data()[0]);
1910         Epot0       = ems.epot;
1911 
1912         *sa = ems;
1913 
1914         /* Take a step downhill.
1915          * In theory, we should find the actual minimum of the function in this
1916          * direction, somewhere along the line.
1917          * That is quite possible, but it turns out to take 5-10 function evaluations
1918          * for each line. However, we dont really need to find the exact minimum -
1919          * it is much better to start a new BFGS step in a modified direction as soon
1920          * as we are close to it. This will save a lot of energy evaluations.
1921          *
1922          * In practice, we just try to take a single step.
1923          * If it worked (i.e. lowered the energy), we increase the stepsize but
1924          * continue straight to the next BFGS step without trying to find any minimum,
1925          * i.e. we change the search direction too. If the line was smooth, it is
1926          * likely we are in a smooth region, and then it makes sense to take longer
1927          * steps in the modified search direction too.
1928          *
1929          * If it didn't work (higher energy), there must be a minimum somewhere between
1930          * the old position and the new one. Then we need to start by finding a lower
1931          * value before we change search direction. Since the energy was apparently
1932          * quite rough, we need to decrease the step size.
1933          *
1934          * Due to the finite numerical accuracy, it turns out that it is a good idea
1935          * to accept a SMALL increase in energy, if the derivative is still downhill.
1936          * This leads to lower final energies in the tests I've done. / Erik
1937          */
1938 
1939         // State "A" is the first position along the line.
1940         // reference position along line is initially zero
1941         a = 0.0;
1942 
1943         // Check stepsize first. We do not allow displacements
1944         // larger than emstep.
1945         //
1946         do
1947         {
1948             // Pick a new position C by adding stepsize to A.
1949             c = a + stepsize;
1950 
1951             // Calculate what the largest change in any individual coordinate
1952             // would be (translation along line * gradient along line)
1953             maxdelta = 0;
1954             for (i = 0; i < n; i++)
1955             {
1956                 delta = c * s[i];
1957                 if (delta > maxdelta)
1958                 {
1959                     maxdelta = delta;
1960                 }
1961             }
1962             // If any displacement is larger than the stepsize limit, reduce the step
1963             if (maxdelta > inputrec->em_stepsize)
1964             {
1965                 stepsize *= 0.1;
1966             }
1967         } while (maxdelta > inputrec->em_stepsize);
1968 
1969         // Take a trial step and move the coordinate array xc[] to position C
1970         real* xc = static_cast<real*>(sc->s.x.rvec_array()[0]);
1971         for (i = 0; i < n; i++)
1972         {
1973             xc[i] = lastx[i] + c * s[i];
1974         }
1975 
1976         neval++;
1977         // Calculate energy for the trial step in position C
1978         energyEvaluator.run(sc, mu_tot, vir, pres, step, FALSE);
1979 
1980         // Calc line gradient in position C
1981         real* fc = static_cast<real*>(sc->f.view().force()[0]);
1982         for (gpc = 0, i = 0; i < n; i++)
1983         {
1984             gpc -= s[i] * fc[i]; /* f is negative gradient, thus the sign */
1985         }
1986         /* Sum the gradient along the line across CPUs */
1987         if (PAR(cr))
1988         {
1989             gmx_sumd(1, &gpc, cr);
1990         }
1991 
1992         // This is the max amount of increase in energy we tolerate.
1993         // By allowing VERY small changes (close to numerical precision) we
1994         // frequently find even better (lower) final energies.
1995         tmp = std::sqrt(GMX_REAL_EPS) * fabs(sa->epot);
1996 
1997         // Accept the step if the energy is lower in the new position C (compared to A),
1998         // or if it is not significantly higher and the line derivative is still negative.
1999         foundlower = sc->epot < sa->epot || (gpc < 0 && sc->epot < (sa->epot + tmp));
2000         // If true, great, we found a better energy. We no longer try to alter the
2001         // stepsize, but simply accept this new better position. The we select a new
2002         // search direction instead, which will be much more efficient than continuing
2003         // to take smaller steps along a line. Set fnorm based on the new C position,
2004         // which will be used to update the stepsize to 1/fnorm further down.
2005 
2006         // If false, the energy is NOT lower in point C, i.e. it will be the same
2007         // or higher than in point A. In this case it is pointless to move to point C,
2008         // so we will have to do more iterations along the same line to find a smaller
2009         // value in the interval [A=0.0,C].
2010         // Here, A is still 0.0, but that will change when we do a search in the interval
2011         // [0.0,C] below. That search we will do by interpolation or bisection rather
2012         // than with the stepsize, so no need to modify it. For the next search direction
2013         // it will be reset to 1/fnorm anyway.
2014 
2015         if (!foundlower)
2016         {
2017             // OK, if we didn't find a lower value we will have to locate one now - there must
2018             // be one in the interval [a,c].
2019             // The same thing is valid here, though: Don't spend dozens of iterations to find
2020             // the line minimum. We try to interpolate based on the derivative at the endpoints,
2021             // and only continue until we find a lower value. In most cases this means 1-2 iterations.
2022             // I also have a safeguard for potentially really pathological functions so we never
2023             // take more than 20 steps before we give up.
2024             // If we already found a lower value we just skip this step and continue to the update.
2025             real fnorm = 0;
2026             nminstep   = 0;
2027             do
2028             {
2029                 // Select a new trial point B in the interval [A,C].
2030                 // If the derivatives at points a & c have different sign we interpolate to zero,
2031                 // otherwise just do a bisection since there might be multiple minima/maxima
2032                 // inside the interval.
2033                 if (gpa < 0 && gpc > 0)
2034                 {
2035                     b = a + gpa * (a - c) / (gpc - gpa);
2036                 }
2037                 else
2038                 {
2039                     b = 0.5 * (a + c);
2040                 }
2041 
2042                 /* safeguard if interpolation close to machine accuracy causes errors:
2043                  * never go outside the interval
2044                  */
2045                 if (b <= a || b >= c)
2046                 {
2047                     b = 0.5 * (a + c);
2048                 }
2049 
2050                 // Take a trial step to point B
2051                 real* xb = static_cast<real*>(sb->s.x.rvec_array()[0]);
2052                 for (i = 0; i < n; i++)
2053                 {
2054                     xb[i] = lastx[i] + b * s[i];
2055                 }
2056 
2057                 neval++;
2058                 // Calculate energy for the trial step in point B
2059                 energyEvaluator.run(sb, mu_tot, vir, pres, step, FALSE);
2060                 fnorm = sb->fnorm;
2061 
2062                 // Calculate gradient in point B
2063                 real* fb = static_cast<real*>(sb->f.view().force()[0]);
2064                 for (gpb = 0, i = 0; i < n; i++)
2065                 {
2066                     gpb -= s[i] * fb[i]; /* f is negative gradient, thus the sign */
2067                 }
2068                 /* Sum the gradient along the line across CPUs */
2069                 if (PAR(cr))
2070                 {
2071                     gmx_sumd(1, &gpb, cr);
2072                 }
2073 
2074                 // Keep one of the intervals [A,B] or [B,C] based on the value of the derivative
2075                 // at the new point B, and rename the endpoints of this new interval A and C.
2076                 if (gpb > 0)
2077                 {
2078                     /* Replace c endpoint with b */
2079                     c = b;
2080                     /* copy state b to c */
2081                     *sc = *sb;
2082                 }
2083                 else
2084                 {
2085                     /* Replace a endpoint with b */
2086                     a = b;
2087                     /* copy state b to a */
2088                     *sa = *sb;
2089                 }
2090 
2091                 /*
2092                  * Stop search as soon as we find a value smaller than the endpoints,
2093                  * or if the tolerance is below machine precision.
2094                  * Never run more than 20 steps, no matter what.
2095                  */
2096                 nminstep++;
2097             } while ((sb->epot > sa->epot || sb->epot > sc->epot) && (nminstep < 20));
2098 
2099             if (std::fabs(sb->epot - Epot0) < GMX_REAL_EPS || nminstep >= 20)
2100             {
2101                 /* OK. We couldn't find a significantly lower energy.
2102                  * If ncorr==0 this was steepest descent, and then we give up.
2103                  * If not, reset memory to restart as steepest descent before quitting.
2104                  */
2105                 if (ncorr == 0)
2106                 {
2107                     /* Converged */
2108                     converged = TRUE;
2109                     break;
2110                 }
2111                 else
2112                 {
2113                     /* Reset memory */
2114                     ncorr = 0;
2115                     /* Search in gradient direction */
2116                     for (i = 0; i < n; i++)
2117                     {
2118                         dx[point][i] = ff[i];
2119                     }
2120                     /* Reset stepsize */
2121                     stepsize = 1.0 / fnorm;
2122                     continue;
2123                 }
2124             }
2125 
2126             /* Select min energy state of A & C, put the best in xx/ff/Epot
2127              */
2128             if (sc->epot < sa->epot)
2129             {
2130                 /* Use state C */
2131                 ems        = *sc;
2132                 step_taken = c;
2133             }
2134             else
2135             {
2136                 /* Use state A */
2137                 ems        = *sa;
2138                 step_taken = a;
2139             }
2140         }
2141         else
2142         {
2143             /* found lower */
2144             /* Use state C */
2145             ems        = *sc;
2146             step_taken = c;
2147         }
2148 
2149         /* Update the memory information, and calculate a new
2150          * approximation of the inverse hessian
2151          */
2152 
2153         /* Have new data in Epot, xx, ff */
2154         if (ncorr < nmaxcorr)
2155         {
2156             ncorr++;
2157         }
2158 
2159         for (i = 0; i < n; i++)
2160         {
2161             dg[point][i] = lastf[i] - ff[i];
2162             dx[point][i] *= step_taken;
2163         }
2164 
2165         dgdg = 0;
2166         dgdx = 0;
2167         for (i = 0; i < n; i++)
2168         {
2169             dgdg += dg[point][i] * dg[point][i];
2170             dgdx += dg[point][i] * dx[point][i];
2171         }
2172 
2173         diag = dgdx / dgdg;
2174 
2175         rho[point] = 1.0 / dgdx;
2176         point++;
2177 
2178         if (point >= nmaxcorr)
2179         {
2180             point = 0;
2181         }
2182 
2183         /* Update */
2184         for (i = 0; i < n; i++)
2185         {
2186             p[i] = ff[i];
2187         }
2188 
2189         cp = point;
2190 
2191         /* Recursive update. First go back over the memory points */
2192         for (k = 0; k < ncorr; k++)
2193         {
2194             cp--;
2195             if (cp < 0)
2196             {
2197                 cp = ncorr - 1;
2198             }
2199 
2200             sq = 0;
2201             for (i = 0; i < n; i++)
2202             {
2203                 sq += dx[cp][i] * p[i];
2204             }
2205 
2206             alpha[cp] = rho[cp] * sq;
2207 
2208             for (i = 0; i < n; i++)
2209             {
2210                 p[i] -= alpha[cp] * dg[cp][i];
2211             }
2212         }
2213 
2214         for (i = 0; i < n; i++)
2215         {
2216             p[i] *= diag;
2217         }
2218 
2219         /* And then go forward again */
2220         for (k = 0; k < ncorr; k++)
2221         {
2222             yr = 0;
2223             for (i = 0; i < n; i++)
2224             {
2225                 yr += p[i] * dg[cp][i];
2226             }
2227 
2228             beta = rho[cp] * yr;
2229             beta = alpha[cp] - beta;
2230 
2231             for (i = 0; i < n; i++)
2232             {
2233                 p[i] += beta * dx[cp][i];
2234             }
2235 
2236             cp++;
2237             if (cp >= ncorr)
2238             {
2239                 cp = 0;
2240             }
2241         }
2242 
2243         for (i = 0; i < n; i++)
2244         {
2245             if (!frozen[i])
2246             {
2247                 dx[point][i] = p[i];
2248             }
2249             else
2250             {
2251                 dx[point][i] = 0;
2252             }
2253         }
2254 
2255         /* Print it if necessary */
2256         if (MASTER(cr))
2257         {
2258             if (mdrunOptions.verbose)
2259             {
2260                 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
2261                 fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n", step,
2262                         ems.epot, ems.fnorm / sqrtNumAtoms, ems.fmax, ems.a_fmax + 1);
2263                 fflush(stderr);
2264             }
2265             /* Store the new (lower) energies */
2266             matrix nullBox = {};
2267             energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(step), mdatoms->tmass,
2268                                              enerd, nullptr, nullptr, nullBox, PTCouplingArrays(), 0,
2269                                              nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
2270 
2271             do_log = do_per_step(step, inputrec->nstlog);
2272             do_ene = do_per_step(step, inputrec->nstenergy);
2273 
2274             imdSession->fillEnergyRecord(step, TRUE);
2275 
2276             if (do_log)
2277             {
2278                 EnergyOutput::printHeader(fplog, step, step);
2279             }
2280             energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), do_ene, FALSE, FALSE,
2281                                                do_log ? fplog : nullptr, step, step,
2282                                                fr->fcdata.get(), nullptr);
2283         }
2284 
2285         /* Send x and E to IMD client, if bIMD is TRUE. */
2286         if (imdSession->run(step, TRUE, state_global->box, state_global->x.rvec_array(), 0) && MASTER(cr))
2287         {
2288             imdSession->sendPositionsAndEnergies();
2289         }
2290 
2291         // Reset stepsize in we are doing more iterations
2292         stepsize = 1.0;
2293 
2294         /* Stop when the maximum force lies below tolerance.
2295          * If we have reached machine precision, converged is already set to true.
2296          */
2297         converged = converged || (ems.fmax < inputrec->em_tol);
2298 
2299     } /* End of the loop */
2300 
2301     if (converged)
2302     {
2303         step--; /* we never took that last step in this case */
2304     }
2305     if (ems.fmax > inputrec->em_tol)
2306     {
2307         if (MASTER(cr))
2308         {
2309             warn_step(fplog, inputrec->em_tol, ems.fmax, step - 1 == number_steps, FALSE);
2310         }
2311         converged = FALSE;
2312     }
2313 
2314     /* If we printed energy and/or logfile last step (which was the last step)
2315      * we don't have to do it again, but otherwise print the final values.
2316      */
2317     if (!do_log) /* Write final value to log since we didn't do anythin last step */
2318     {
2319         EnergyOutput::printHeader(fplog, step, step);
2320     }
2321     if (!do_ene || !do_log) /* Write final energy file entries */
2322     {
2323         energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), !do_ene, FALSE, FALSE,
2324                                            !do_log ? fplog : nullptr, step, step, fr->fcdata.get(),
2325                                            nullptr);
2326     }
2327 
2328     /* Print some stuff... */
2329     if (MASTER(cr))
2330     {
2331         fprintf(stderr, "\nwriting lowest energy coordinates.\n");
2332     }
2333 
2334     /* IMPORTANT!
2335      * For accurate normal mode calculation it is imperative that we
2336      * store the last conformation into the full precision binary trajectory.
2337      *
2338      * However, we should only do it if we did NOT already write this step
2339      * above (which we did if do_x or do_f was true).
2340      */
2341     do_x = !do_per_step(step, inputrec->nstxout);
2342     do_f = !do_per_step(step, inputrec->nstfout);
2343     write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm), top_global, inputrec,
2344                   step, &ems, state_global, observablesHistory);
2345 
2346     if (MASTER(cr))
2347     {
2348         double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
2349         print_converged(stderr, LBFGS, inputrec->em_tol, step, converged, number_steps, &ems, sqrtNumAtoms);
2350         print_converged(fplog, LBFGS, inputrec->em_tol, step, converged, number_steps, &ems, sqrtNumAtoms);
2351 
2352         fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
2353     }
2354 
2355     finish_em(cr, outf, walltime_accounting, wcycle);
2356 
2357     /* To print the actual number of steps we needed somewhere */
2358     walltime_accounting_set_nsteps_done(walltime_accounting, step);
2359 }
2360 
do_steep()2361 void LegacySimulator::do_steep()
2362 {
2363     const char*       SD = "Steepest Descents";
2364     gmx_localtop_t    top(top_global->ffparams);
2365     gmx_global_stat_t gstat;
2366     real              stepsize;
2367     real              ustep;
2368     gmx_bool          bDone, bAbort, do_x, do_f;
2369     tensor            vir, pres;
2370     rvec              mu_tot = { 0 };
2371     int               nsteps;
2372     int               count          = 0;
2373     int               steps_accepted = 0;
2374     auto              mdatoms        = mdAtoms->mdatoms();
2375 
2376     GMX_LOG(mdlog.info)
2377             .asParagraph()
2378             .appendText(
2379                     "Note that activating steepest-descent energy minimization via the "
2380                     "integrator .mdp option and the command gmx mdrun may "
2381                     "be available in a different form in a future version of GROMACS, "
2382                     "e.g. gmx minimize and an .mdp option.");
2383 
2384     /* Create 2 states on the stack and extract pointers that we will swap */
2385     em_state_t  s0{}, s1{};
2386     em_state_t* s_min = &s0;
2387     em_state_t* s_try = &s1;
2388 
2389     /* Init em and store the local state in s_try */
2390     init_em(fplog, mdlog, SD, cr, inputrec, imdSession, pull_work, state_global, top_global, s_try,
2391             &top, nrnb, fr, mdAtoms, &gstat, vsite, constr, nullptr);
2392     const bool        simulationsShareState = false;
2393     gmx_mdoutf*       outf = init_mdoutf(fplog, nfile, fnm, mdrunOptions, cr, outputProvider,
2394                                    mdModulesNotifier, inputrec, top_global, nullptr, wcycle,
2395                                    StartingBehavior::NewSimulation, simulationsShareState, ms);
2396     gmx::EnergyOutput energyOutput(mdoutf_get_fp_ene(outf), top_global, inputrec, pull_work,
2397                                    nullptr, false, StartingBehavior::NewSimulation,
2398                                    simulationsShareState, mdModulesNotifier);
2399 
2400     /* Print to log file  */
2401     print_em_start(fplog, cr, walltime_accounting, wcycle, SD);
2402 
2403     /* Set variables for stepsize (in nm). This is the largest
2404      * step that we are going to make in any direction.
2405      */
2406     ustep    = inputrec->em_stepsize;
2407     stepsize = 0;
2408 
2409     /* Max number of steps  */
2410     nsteps = inputrec->nsteps;
2411 
2412     if (MASTER(cr))
2413     {
2414         /* Print to the screen  */
2415         sp_header(stderr, SD, inputrec->em_tol, nsteps);
2416     }
2417     if (fplog)
2418     {
2419         sp_header(fplog, SD, inputrec->em_tol, nsteps);
2420     }
2421     EnergyEvaluator energyEvaluator{ fplog,    mdlog,      cr,        ms,   top_global,      &top,
2422                                      inputrec, imdSession, pull_work, nrnb, wcycle,          gstat,
2423                                      vsite,    constr,     mdAtoms,   fr,   runScheduleWork, enerd };
2424 
2425     /**** HERE STARTS THE LOOP ****
2426      * count is the counter for the number of steps
2427      * bDone will be TRUE when the minimization has converged
2428      * bAbort will be TRUE when nsteps steps have been performed or when
2429      * the stepsize becomes smaller than is reasonable for machine precision
2430      */
2431     count  = 0;
2432     bDone  = FALSE;
2433     bAbort = FALSE;
2434     while (!bDone && !bAbort)
2435     {
2436         bAbort = (nsteps >= 0) && (count == nsteps);
2437 
2438         /* set new coordinates, except for first step */
2439         bool validStep = true;
2440         if (count > 0)
2441         {
2442             validStep = do_em_step(cr, inputrec, mdatoms, s_min, stepsize,
2443                                    s_min->f.view().forceWithPadding(), s_try, constr, count);
2444         }
2445 
2446         if (validStep)
2447         {
2448             energyEvaluator.run(s_try, mu_tot, vir, pres, count, count == 0);
2449         }
2450         else
2451         {
2452             // Signal constraint error during stepping with energy=inf
2453             s_try->epot = std::numeric_limits<real>::infinity();
2454         }
2455 
2456         if (MASTER(cr))
2457         {
2458             EnergyOutput::printHeader(fplog, count, count);
2459         }
2460 
2461         if (count == 0)
2462         {
2463             s_min->epot = s_try->epot;
2464         }
2465 
2466         /* Print it if necessary  */
2467         if (MASTER(cr))
2468         {
2469             if (mdrunOptions.verbose)
2470             {
2471                 fprintf(stderr, "Step=%5d, Dmax= %6.1e nm, Epot= %12.5e Fmax= %11.5e, atom= %d%c",
2472                         count, ustep, s_try->epot, s_try->fmax, s_try->a_fmax + 1,
2473                         ((count == 0) || (s_try->epot < s_min->epot)) ? '\n' : '\r');
2474                 fflush(stderr);
2475             }
2476 
2477             if ((count == 0) || (s_try->epot < s_min->epot))
2478             {
2479                 /* Store the new (lower) energies  */
2480                 matrix nullBox = {};
2481                 energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(count),
2482                                                  mdatoms->tmass, enerd, nullptr, nullptr, nullBox,
2483                                                  PTCouplingArrays(), 0, nullptr, nullptr, vir, pres,
2484                                                  nullptr, mu_tot, constr);
2485 
2486                 imdSession->fillEnergyRecord(count, TRUE);
2487 
2488                 const bool do_dr = do_per_step(steps_accepted, inputrec->nstdisreout);
2489                 const bool do_or = do_per_step(steps_accepted, inputrec->nstorireout);
2490                 energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), TRUE, do_dr, do_or,
2491                                                    fplog, count, count, fr->fcdata.get(), nullptr);
2492                 fflush(fplog);
2493             }
2494         }
2495 
2496         /* Now if the new energy is smaller than the previous...
2497          * or if this is the first step!
2498          * or if we did random steps!
2499          */
2500 
2501         if ((count == 0) || (s_try->epot < s_min->epot))
2502         {
2503             steps_accepted++;
2504 
2505             /* Test whether the convergence criterion is met...  */
2506             bDone = (s_try->fmax < inputrec->em_tol);
2507 
2508             /* Copy the arrays for force, positions and energy  */
2509             /* The 'Min' array always holds the coords and forces of the minimal
2510                sampled energy  */
2511             swap_em_state(&s_min, &s_try);
2512             if (count > 0)
2513             {
2514                 ustep *= 1.2;
2515             }
2516 
2517             /* Write to trn, if necessary */
2518             do_x = do_per_step(steps_accepted, inputrec->nstxout);
2519             do_f = do_per_step(steps_accepted, inputrec->nstfout);
2520             write_em_traj(fplog, cr, outf, do_x, do_f, nullptr, top_global, inputrec, count, s_min,
2521                           state_global, observablesHistory);
2522         }
2523         else
2524         {
2525             /* If energy is not smaller make the step smaller...  */
2526             ustep *= 0.5;
2527 
2528             if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
2529             {
2530                 /* Reload the old state */
2531                 em_dd_partition_system(fplog, mdlog, count, cr, top_global, inputrec, imdSession,
2532                                        pull_work, s_min, &top, mdAtoms, fr, vsite, constr, nrnb, wcycle);
2533             }
2534         }
2535 
2536         // If the force is very small after finishing minimization,
2537         // we risk dividing by zero when calculating the step size.
2538         // So we check first if the minimization has stopped before
2539         // trying to obtain a new step size.
2540         if (!bDone)
2541         {
2542             /* Determine new step  */
2543             stepsize = ustep / s_min->fmax;
2544         }
2545 
2546         /* Check if stepsize is too small, with 1 nm as a characteristic length */
2547 #if GMX_DOUBLE
2548         if (count == nsteps || ustep < 1e-12)
2549 #else
2550         if (count == nsteps || ustep < 1e-6)
2551 #endif
2552         {
2553             if (MASTER(cr))
2554             {
2555                 warn_step(fplog, inputrec->em_tol, s_min->fmax, count == nsteps, constr != nullptr);
2556             }
2557             bAbort = TRUE;
2558         }
2559 
2560         /* Send IMD energies and positions, if bIMD is TRUE. */
2561         if (imdSession->run(count, TRUE, MASTER(cr) ? state_global->box : nullptr,
2562                             MASTER(cr) ? state_global->x.rvec_array() : nullptr, 0)
2563             && MASTER(cr))
2564         {
2565             imdSession->sendPositionsAndEnergies();
2566         }
2567 
2568         count++;
2569     } /* End of the loop  */
2570 
2571     /* Print some data...  */
2572     if (MASTER(cr))
2573     {
2574         fprintf(stderr, "\nwriting lowest energy coordinates.\n");
2575     }
2576     write_em_traj(fplog, cr, outf, TRUE, inputrec->nstfout != 0, ftp2fn(efSTO, nfile, fnm),
2577                   top_global, inputrec, count, s_min, state_global, observablesHistory);
2578 
2579     if (MASTER(cr))
2580     {
2581         double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
2582 
2583         print_converged(stderr, SD, inputrec->em_tol, count, bDone, nsteps, s_min, sqrtNumAtoms);
2584         print_converged(fplog, SD, inputrec->em_tol, count, bDone, nsteps, s_min, sqrtNumAtoms);
2585     }
2586 
2587     finish_em(cr, outf, walltime_accounting, wcycle);
2588 
2589     /* To print the actual number of steps we needed somewhere */
2590     inputrec->nsteps = count;
2591 
2592     walltime_accounting_set_nsteps_done(walltime_accounting, count);
2593 }
2594 
do_nm()2595 void LegacySimulator::do_nm()
2596 {
2597     const char*         NM = "Normal Mode Analysis";
2598     int                 nnodes;
2599     gmx_localtop_t      top(top_global->ffparams);
2600     gmx_global_stat_t   gstat;
2601     tensor              vir, pres;
2602     rvec                mu_tot = { 0 };
2603     rvec*               dfdx;
2604     gmx_bool            bSparse; /* use sparse matrix storage format */
2605     size_t              sz;
2606     gmx_sparsematrix_t* sparse_matrix = nullptr;
2607     real*               full_matrix   = nullptr;
2608 
2609     /* added with respect to mdrun */
2610     int  row, col;
2611     real der_range = 10.0 * std::sqrt(GMX_REAL_EPS);
2612     real x_min;
2613     bool bIsMaster = MASTER(cr);
2614     auto mdatoms   = mdAtoms->mdatoms();
2615 
2616     GMX_LOG(mdlog.info)
2617             .asParagraph()
2618             .appendText(
2619                     "Note that activating normal-mode analysis via the integrator "
2620                     ".mdp option and the command gmx mdrun may "
2621                     "be available in a different form in a future version of GROMACS, "
2622                     "e.g. gmx normal-modes.");
2623 
2624     if (constr != nullptr)
2625     {
2626         gmx_fatal(
2627                 FARGS,
2628                 "Constraints present with Normal Mode Analysis, this combination is not supported");
2629     }
2630 
2631     gmx_shellfc_t* shellfc;
2632 
2633     em_state_t state_work{};
2634 
2635     /* Init em and store the local state in state_minimum */
2636     init_em(fplog, mdlog, NM, cr, inputrec, imdSession, pull_work, state_global, top_global,
2637             &state_work, &top, nrnb, fr, mdAtoms, &gstat, vsite, constr, &shellfc);
2638     const bool  simulationsShareState = false;
2639     gmx_mdoutf* outf = init_mdoutf(fplog, nfile, fnm, mdrunOptions, cr, outputProvider,
2640                                    mdModulesNotifier, inputrec, top_global, nullptr, wcycle,
2641                                    StartingBehavior::NewSimulation, simulationsShareState, ms);
2642 
2643     std::vector<int>       atom_index = get_atom_index(top_global);
2644     std::vector<gmx::RVec> fneg(atom_index.size(), { 0, 0, 0 });
2645     snew(dfdx, atom_index.size());
2646 
2647 #if !GMX_DOUBLE
2648     if (bIsMaster)
2649     {
2650         fprintf(stderr,
2651                 "NOTE: This version of GROMACS has been compiled in single precision,\n"
2652                 "      which MIGHT not be accurate enough for normal mode analysis.\n"
2653                 "      GROMACS now uses sparse matrix storage, so the memory requirements\n"
2654                 "      are fairly modest even if you recompile in double precision.\n\n");
2655     }
2656 #endif
2657 
2658     /* Check if we can/should use sparse storage format.
2659      *
2660      * Sparse format is only useful when the Hessian itself is sparse, which it
2661      * will be when we use a cutoff.
2662      * For small systems (n<1000) it is easier to always use full matrix format, though.
2663      */
2664     if (EEL_FULL(fr->ic->eeltype) || fr->rlist == 0.0)
2665     {
2666         GMX_LOG(mdlog.warning)
2667                 .appendText("Non-cutoff electrostatics used, forcing full Hessian format.");
2668         bSparse = FALSE;
2669     }
2670     else if (atom_index.size() < 1000)
2671     {
2672         GMX_LOG(mdlog.warning)
2673                 .appendTextFormatted("Small system size (N=%zu), using full Hessian format.",
2674                                      atom_index.size());
2675         bSparse = FALSE;
2676     }
2677     else
2678     {
2679         GMX_LOG(mdlog.warning).appendText("Using compressed symmetric sparse Hessian format.");
2680         bSparse = TRUE;
2681     }
2682 
2683     /* Number of dimensions, based on real atoms, that is not vsites or shell */
2684     sz = DIM * atom_index.size();
2685 
2686     fprintf(stderr, "Allocating Hessian memory...\n\n");
2687 
2688     if (bSparse)
2689     {
2690         sparse_matrix                       = gmx_sparsematrix_init(sz);
2691         sparse_matrix->compressed_symmetric = TRUE;
2692     }
2693     else
2694     {
2695         snew(full_matrix, sz * sz);
2696     }
2697 
2698     /* Write start time and temperature */
2699     print_em_start(fplog, cr, walltime_accounting, wcycle, NM);
2700 
2701     /* fudge nr of steps to nr of atoms */
2702     inputrec->nsteps = atom_index.size() * 2;
2703 
2704     if (bIsMaster)
2705     {
2706         fprintf(stderr, "starting normal mode calculation '%s'\n%" PRId64 " steps.\n\n",
2707                 *(top_global->name), inputrec->nsteps);
2708     }
2709 
2710     nnodes = cr->nnodes;
2711 
2712     /* Make evaluate_energy do a single node force calculation */
2713     cr->nnodes = 1;
2714     EnergyEvaluator energyEvaluator{ fplog,    mdlog,      cr,        ms,   top_global,      &top,
2715                                      inputrec, imdSession, pull_work, nrnb, wcycle,          gstat,
2716                                      vsite,    constr,     mdAtoms,   fr,   runScheduleWork, enerd };
2717     energyEvaluator.run(&state_work, mu_tot, vir, pres, -1, TRUE);
2718     cr->nnodes = nnodes;
2719 
2720     /* if forces are not small, warn user */
2721     get_state_f_norm_max(cr, &(inputrec->opts), mdatoms, &state_work);
2722 
2723     GMX_LOG(mdlog.warning).appendTextFormatted("Maximum force:%12.5e", state_work.fmax);
2724     if (state_work.fmax > 1.0e-3)
2725     {
2726         GMX_LOG(mdlog.warning)
2727                 .appendText(
2728                         "The force is probably not small enough to "
2729                         "ensure that you are at a minimum.\n"
2730                         "Be aware that negative eigenvalues may occur\n"
2731                         "when the resulting matrix is diagonalized.");
2732     }
2733 
2734     /***********************************************************
2735      *
2736      *      Loop over all pairs in matrix
2737      *
2738      *      do_force called twice. Once with positive and
2739      *      once with negative displacement
2740      *
2741      ************************************************************/
2742 
2743     /* Steps are divided one by one over the nodes */
2744     bool bNS          = true;
2745     auto state_work_x = makeArrayRef(state_work.s.x);
2746     auto state_work_f = state_work.f.view().force();
2747     for (index aid = cr->nodeid; aid < ssize(atom_index); aid += nnodes)
2748     {
2749         size_t atom = atom_index[aid];
2750         for (size_t d = 0; d < DIM; d++)
2751         {
2752             int64_t step        = 0;
2753             int     force_flags = GMX_FORCE_STATECHANGED | GMX_FORCE_ALLFORCES;
2754             double  t           = 0;
2755 
2756             x_min = state_work_x[atom][d];
2757 
2758             for (unsigned int dx = 0; (dx < 2); dx++)
2759             {
2760                 if (dx == 0)
2761                 {
2762                     state_work_x[atom][d] = x_min - der_range;
2763                 }
2764                 else
2765                 {
2766                     state_work_x[atom][d] = x_min + der_range;
2767                 }
2768 
2769                 /* Make evaluate_energy do a single node force calculation */
2770                 cr->nnodes = 1;
2771                 if (shellfc)
2772                 {
2773                     /* Now is the time to relax the shells */
2774                     relax_shell_flexcon(fplog, cr, ms, mdrunOptions.verbose, nullptr, step, inputrec,
2775                                         imdSession, pull_work, bNS, force_flags, &top, constr, enerd,
2776                                         state_work.s.natoms, state_work.s.x.arrayRefWithPadding(),
2777                                         state_work.s.v.arrayRefWithPadding(), state_work.s.box,
2778                                         state_work.s.lambda, &state_work.s.hist, &state_work.f.view(),
2779                                         vir, mdatoms, nrnb, wcycle, shellfc, fr, runScheduleWork, t,
2780                                         mu_tot, vsite, DDBalanceRegionHandler(nullptr));
2781                     bNS = false;
2782                     step++;
2783                 }
2784                 else
2785                 {
2786                     energyEvaluator.run(&state_work, mu_tot, vir, pres, aid * 2 + dx, FALSE);
2787                 }
2788 
2789                 cr->nnodes = nnodes;
2790 
2791                 if (dx == 0)
2792                 {
2793                     std::copy(state_work_f.begin(), state_work_f.begin() + atom_index.size(),
2794                               fneg.begin());
2795                 }
2796             }
2797 
2798             /* x is restored to original */
2799             state_work_x[atom][d] = x_min;
2800 
2801             for (size_t j = 0; j < atom_index.size(); j++)
2802             {
2803                 for (size_t k = 0; (k < DIM); k++)
2804                 {
2805                     dfdx[j][k] = -(state_work_f[atom_index[j]][k] - fneg[j][k]) / (2 * der_range);
2806                 }
2807             }
2808 
2809             if (!bIsMaster)
2810             {
2811 #if GMX_MPI
2812 #    define mpi_type GMX_MPI_REAL
2813                 MPI_Send(dfdx[0], atom_index.size() * DIM, mpi_type, MASTER(cr), cr->nodeid,
2814                          cr->mpi_comm_mygroup);
2815 #endif
2816             }
2817             else
2818             {
2819                 for (index node = 0; (node < nnodes && aid + node < ssize(atom_index)); node++)
2820                 {
2821                     if (node > 0)
2822                     {
2823 #if GMX_MPI
2824                         MPI_Status stat;
2825                         MPI_Recv(dfdx[0], atom_index.size() * DIM, mpi_type, node, node,
2826                                  cr->mpi_comm_mygroup, &stat);
2827 #    undef mpi_type
2828 #endif
2829                     }
2830 
2831                     row = (aid + node) * DIM + d;
2832 
2833                     for (size_t j = 0; j < atom_index.size(); j++)
2834                     {
2835                         for (size_t k = 0; k < DIM; k++)
2836                         {
2837                             col = j * DIM + k;
2838 
2839                             if (bSparse)
2840                             {
2841                                 if (col >= row && dfdx[j][k] != 0.0)
2842                                 {
2843                                     gmx_sparsematrix_increment_value(sparse_matrix, row, col, dfdx[j][k]);
2844                                 }
2845                             }
2846                             else
2847                             {
2848                                 full_matrix[row * sz + col] = dfdx[j][k];
2849                             }
2850                         }
2851                     }
2852                 }
2853             }
2854 
2855             if (mdrunOptions.verbose && fplog)
2856             {
2857                 fflush(fplog);
2858             }
2859         }
2860         /* write progress */
2861         if (bIsMaster && mdrunOptions.verbose)
2862         {
2863             fprintf(stderr, "\rFinished step %d out of %td",
2864                     std::min<int>(atom + nnodes, atom_index.size()), ssize(atom_index));
2865             fflush(stderr);
2866         }
2867     }
2868 
2869     if (bIsMaster)
2870     {
2871         fprintf(stderr, "\n\nWriting Hessian...\n");
2872         gmx_mtxio_write(ftp2fn(efMTX, nfile, fnm), sz, sz, full_matrix, sparse_matrix);
2873     }
2874 
2875     finish_em(cr, outf, walltime_accounting, wcycle);
2876 
2877     walltime_accounting_set_nsteps_done(walltime_accounting, atom_index.size() * 2);
2878 }
2879 
2880 } // namespace gmx
2881