1 /*! \file
2 Copyright (c) 2003, The Regents of the University of California, through
3 Lawrence Berkeley National Laboratory (subject to receipt of any required
4 approvals from U.S. Dept. of Energy)
5 
6 All rights reserved.
7 
8 The source code is distributed under BSD license, see the file License.txt
9 at the top-level directory.
10 */
11 
12 /*! @file dgsrfs.c
13  * \brief Improves computed solution to a system of inear equations
14  *
15  * <pre>
16  * -- SuperLU routine (version 5.1) --
17  * Univ. of California Berkeley, Xerox Palo Alto Research Center,
18  * and Lawrence Berkeley National Lab.
19  * October 15, 2003
20  *
21  * Modified from lapack routine DGERFS
22  * Last modified: December 3, 2015
23  * </pre>
24  */
25 /*
26  * File name:	dgsrfs.c
27  * History:     Modified from lapack routine DGERFS
28  */
29 #include <math.h>
30 #include "slu_ddefs.h"
31 
32 /*! \brief
33  *
34  * <pre>
35  *   Purpose
36  *   =======
37  *
38  *   DGSRFS improves the computed solution to a system of linear
39  *   equations and provides error bounds and backward error estimates for
40  *   the solution.
41  *
42  *   If equilibration was performed, the system becomes:
43  *           (diag(R)*A_original*diag(C)) * X = diag(R)*B_original.
44  *
45  *   See supermatrix.h for the definition of 'SuperMatrix' structure.
46  *
47  *   Arguments
48  *   =========
49  *
50  * trans   (input) trans_t
51  *          Specifies the form of the system of equations:
52  *          = NOTRANS: A * X = B  (No transpose)
53  *          = TRANS:   A'* X = B  (Transpose)
54  *          = CONJ:    A**H * X = B  (Conjugate transpose)
55  *
56  *   A       (input) SuperMatrix*
57  *           The original matrix A in the system, or the scaled A if
58  *           equilibration was done. The type of A can be:
59  *           Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_GE.
60  *
61  *   L       (input) SuperMatrix*
62  *	     The factor L from the factorization Pr*A*Pc=L*U. Use
63  *           compressed row subscripts storage for supernodes,
64  *           i.e., L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
65  *
66  *   U       (input) SuperMatrix*
67  *           The factor U from the factorization Pr*A*Pc=L*U as computed by
68  *           dgstrf(). Use column-wise storage scheme,
69  *           i.e., U has types: Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.
70  *
71  *   perm_c  (input) int*, dimension (A->ncol)
72  *	     Column permutation vector, which defines the
73  *           permutation matrix Pc; perm_c[i] = j means column i of A is
74  *           in position j in A*Pc.
75  *
76  *   perm_r  (input) int*, dimension (A->nrow)
77  *           Row permutation vector, which defines the permutation matrix Pr;
78  *           perm_r[i] = j means row i of A is in position j in Pr*A.
79  *
80  *   equed   (input) Specifies the form of equilibration that was done.
81  *           = 'N': No equilibration.
82  *           = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
83  *           = 'C': Column equilibration, i.e., A was postmultiplied by
84  *                  diag(C).
85  *           = 'B': Both row and column equilibration, i.e., A was replaced
86  *                  by diag(R)*A*diag(C).
87  *
88  *   R       (input) double*, dimension (A->nrow)
89  *           The row scale factors for A.
90  *           If equed = 'R' or 'B', A is premultiplied by diag(R).
91  *           If equed = 'N' or 'C', R is not accessed.
92  *
93  *   C       (input) double*, dimension (A->ncol)
94  *           The column scale factors for A.
95  *           If equed = 'C' or 'B', A is postmultiplied by diag(C).
96  *           If equed = 'N' or 'R', C is not accessed.
97  *
98  *   B       (input) SuperMatrix*
99  *           B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
100  *           The right hand side matrix B.
101  *           if equed = 'R' or 'B', B is premultiplied by diag(R).
102  *
103  *   X       (input/output) SuperMatrix*
104  *           X has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
105  *           On entry, the solution matrix X, as computed by dgstrs().
106  *           On exit, the improved solution matrix X.
107  *           if *equed = 'C' or 'B', X should be premultiplied by diag(C)
108  *               in order to obtain the solution to the original system.
109  *
110  *   FERR    (output) double*, dimension (B->ncol)
111  *           The estimated forward error bound for each solution vector
112  *           X(j) (the j-th column of the solution matrix X).
113  *           If XTRUE is the true solution corresponding to X(j), FERR(j)
114  *           is an estimated upper bound for the magnitude of the largest
115  *           element in (X(j) - XTRUE) divided by the magnitude of the
116  *           largest element in X(j).  The estimate is as reliable as
117  *           the estimate for RCOND, and is almost always a slight
118  *           overestimate of the true error.
119  *
120  *   BERR    (output) double*, dimension (B->ncol)
121  *           The componentwise relative backward error of each solution
122  *           vector X(j) (i.e., the smallest relative change in
123  *           any element of A or B that makes X(j) an exact solution).
124  *
125  *   stat     (output) SuperLUStat_t*
126  *            Record the statistics on runtime and floating-point operation count.
127  *            See util.h for the definition of 'SuperLUStat_t'.
128  *
129  *   info    (output) int*
130  *           = 0:  successful exit
131  *            < 0:  if INFO = -i, the i-th argument had an illegal value
132  *
133  *    Internal Parameters
134  *    ===================
135  *
136  *    ITMAX is the maximum number of steps of iterative refinement.
137  *
138  * </pre>
139  */
140 void
dgsrfs(trans_t trans,SuperMatrix * A,SuperMatrix * L,SuperMatrix * U,int * perm_c,int * perm_r,char * equed,double * R,double * C,SuperMatrix * B,SuperMatrix * X,double * ferr,double * berr,SuperLUStat_t * stat,int * info)141 dgsrfs(trans_t trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,
142        int *perm_c, int *perm_r, char *equed, double *R, double *C,
143        SuperMatrix *B, SuperMatrix *X, double *ferr, double *berr,
144        SuperLUStat_t *stat, int *info)
145 {
146 
147 
148 #define ITMAX 5
149 
150     /* Table of constant values */
151     int    ione = 1;
152     double ndone = -1.;
153     double done = 1.;
154 
155     /* Local variables */
156     NCformat *Astore;
157     double   *Aval;
158     SuperMatrix Bjcol;
159     DNformat *Bstore, *Xstore, *Bjcol_store;
160     double   *Bmat, *Xmat, *Bptr, *Xptr;
161     int      kase;
162     double   safe1, safe2;
163     int      i, j, k, irow, nz, count, notran, rowequ, colequ;
164     int      ldb, ldx, nrhs;
165     double   s, xk, lstres, eps, safmin;
166     char     transc[1];
167     trans_t  transt;
168     double   *work;
169     double   *rwork;
170     int      *iwork;
171     int      isave[3];
172 
173     extern int dlacon2_(int *, double *, double *, int *, double *, int *, int []);
174 #ifdef _CRAY
175     extern int SCOPY(int *, double *, int *, double *, int *);
176     extern int SSAXPY(int *, double *, double *, int *, double *, int *);
177 #else
178     extern int dcopy_(int *, double *, int *, double *, int *);
179     extern int daxpy_(int *, double *, double *, int *, double *, int *);
180 #endif
181 
182     Astore = A->Store;
183     Aval   = Astore->nzval;
184     Bstore = B->Store;
185     Xstore = X->Store;
186     Bmat   = Bstore->nzval;
187     Xmat   = Xstore->nzval;
188     ldb    = Bstore->lda;
189     ldx    = Xstore->lda;
190     nrhs   = B->ncol;
191 
192     /* Test the input parameters */
193     *info = 0;
194     notran = (trans == NOTRANS);
195     if ( !notran && trans != TRANS && trans != CONJ ) *info = -1;
196     else if ( A->nrow != A->ncol || A->nrow < 0 ||
197 	      A->Stype != SLU_NC || A->Dtype != SLU_D || A->Mtype != SLU_GE )
198 	*info = -2;
199     else if ( L->nrow != L->ncol || L->nrow < 0 ||
200  	      L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU )
201 	*info = -3;
202     else if ( U->nrow != U->ncol || U->nrow < 0 ||
203  	      U->Stype != SLU_NC || U->Dtype != SLU_D || U->Mtype != SLU_TRU )
204 	*info = -4;
205     else if ( ldb < SUPERLU_MAX(0, A->nrow) ||
206  	      B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
207         *info = -10;
208     else if ( ldx < SUPERLU_MAX(0, A->nrow) ||
209  	      X->Stype != SLU_DN || X->Dtype != SLU_D || X->Mtype != SLU_GE )
210 	*info = -11;
211     if (*info != 0) {
212 	i = -(*info);
213 	input_error("dgsrfs", &i);
214 	return;
215     }
216 
217     /* Quick return if possible */
218     if ( A->nrow == 0 || nrhs == 0) {
219 	for (j = 0; j < nrhs; ++j) {
220 	    ferr[j] = 0.;
221 	    berr[j] = 0.;
222 	}
223 	return;
224     }
225 
226     rowequ = strncmp(equed, "R", 1)==0 || strncmp(equed, "B", 1)==0;
227     colequ = strncmp(equed, "C", 1)==0 || strncmp(equed, "B", 1)==0;
228 
229     /* Allocate working space */
230     work = doubleMalloc(2*A->nrow);
231     rwork = (double *) SUPERLU_MALLOC( A->nrow * sizeof(double) );
232     iwork = intMalloc(2*A->nrow);
233     if ( !work || !rwork || !iwork )
234         ABORT("Malloc fails for work/rwork/iwork.");
235 
236     if ( notran ) {
237 	*(unsigned char *)transc = 'N';
238         transt = TRANS;
239     } else if ( trans == TRANS ) {
240 	*(unsigned char *)transc = 'T';
241 	transt = NOTRANS;
242     } else if ( trans == CONJ ) {
243 	*(unsigned char *)transc = 'C';
244 	transt = NOTRANS;
245     }
246 
247     /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
248     nz     = A->ncol + 1;
249     eps    = dmach("Epsilon");
250     safmin = dmach("Safe minimum");
251 
252     /* Set SAFE1 essentially to be the underflow threshold times the
253        number of additions in each row. */
254     safe1  = nz * safmin;
255     safe2  = safe1 / eps;
256 
257     /* Compute the number of nonzeros in each row (or column) of A */
258     for (i = 0; i < A->nrow; ++i) iwork[i] = 0;
259     if ( notran ) {
260 	for (k = 0; k < A->ncol; ++k)
261 	    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
262 		++iwork[Astore->rowind[i]];
263     } else {
264 	for (k = 0; k < A->ncol; ++k)
265 	    iwork[k] = Astore->colptr[k+1] - Astore->colptr[k];
266     }
267 
268     /* Copy one column of RHS B into Bjcol. */
269     Bjcol.Stype = B->Stype;
270     Bjcol.Dtype = B->Dtype;
271     Bjcol.Mtype = B->Mtype;
272     Bjcol.nrow  = B->nrow;
273     Bjcol.ncol  = 1;
274     Bjcol.Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );
275     if ( !Bjcol.Store ) ABORT("SUPERLU_MALLOC fails for Bjcol.Store");
276     Bjcol_store = Bjcol.Store;
277     Bjcol_store->lda = ldb;
278     Bjcol_store->nzval = work; /* address aliasing */
279 
280     /* Do for each right hand side ... */
281     for (j = 0; j < nrhs; ++j) {
282 	count = 0;
283 	lstres = 3.;
284 	Bptr = &Bmat[j*ldb];
285 	Xptr = &Xmat[j*ldx];
286 
287 	while (1) { /* Loop until stopping criterion is satisfied. */
288 
289 	    /* Compute residual R = B - op(A) * X,
290 	       where op(A) = A, A**T, or A**H, depending on TRANS. */
291 
292 #ifdef _CRAY
293 	    SCOPY(&A->nrow, Bptr, &ione, work, &ione);
294 #else
295 	    dcopy_(&A->nrow, Bptr, &ione, work, &ione);
296 #endif
297 	    sp_dgemv(transc, ndone, A, Xptr, ione, done, work, ione);
298 
299 	    /* Compute componentwise relative backward error from formula
300 	       max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
301 	       where abs(Z) is the componentwise absolute value of the matrix
302 	       or vector Z.  If the i-th component of the denominator is less
303 	       than SAFE2, then SAFE1 is added to the i-th component of the
304 	       numerator before dividing. */
305 
306 	    for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
307 
308 	    /* Compute abs(op(A))*abs(X) + abs(B). */
309 	    if ( notran ) {
310 		for (k = 0; k < A->ncol; ++k) {
311 		    xk = fabs( Xptr[k] );
312 		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
313 			rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
314 		}
315 	    } else {  /* trans = TRANS or CONJ */
316 		for (k = 0; k < A->ncol; ++k) {
317 		    s = 0.;
318 		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
319 			irow = Astore->rowind[i];
320 			s += fabs(Aval[i]) * fabs(Xptr[irow]);
321 		    }
322 		    rwork[k] += s;
323 		}
324 	    }
325 	    s = 0.;
326 	    for (i = 0; i < A->nrow; ++i) {
327 		if (rwork[i] > safe2) {
328 		    s = SUPERLU_MAX( s, fabs(work[i]) / rwork[i] );
329 		} else if ( rwork[i] != 0.0 ) {
330                     /* Adding SAFE1 to the numerator guards against
331                        spuriously zero residuals (underflow). */
332 		    s = SUPERLU_MAX( s, (safe1 + fabs(work[i])) / rwork[i] );
333                 }
334                 /* If rwork[i] is exactly 0.0, then we know the true
335                    residual also must be exactly 0.0. */
336 	    }
337 	    berr[j] = s;
338 
339 	    /* Test stopping criterion. Continue iterating if
340 	       1) The residual BERR(J) is larger than machine epsilon, and
341 	       2) BERR(J) decreased by at least a factor of 2 during the
342 	          last iteration, and
343 	       3) At most ITMAX iterations tried. */
344 
345 	    if (berr[j] > eps && berr[j] * 2. <= lstres && count < ITMAX) {
346 		/* Update solution and try again. */
347 		dgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
348 
349 #ifdef _CRAY
350 		SAXPY(&A->nrow, &done, work, &ione,
351 		       &Xmat[j*ldx], &ione);
352 #else
353 		daxpy_(&A->nrow, &done, work, &ione,
354 		       &Xmat[j*ldx], &ione);
355 #endif
356 		lstres = berr[j];
357 		++count;
358 	    } else {
359 		break;
360 	    }
361 
362 	} /* end while */
363 
364 	stat->RefineSteps = count;
365 
366 	/* Bound error from formula:
367 	   norm(X - XTRUE) / norm(X) .le. FERR = norm( abs(inv(op(A)))*
368 	   ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
369           where
370             norm(Z) is the magnitude of the largest component of Z
371             inv(op(A)) is the inverse of op(A)
372             abs(Z) is the componentwise absolute value of the matrix or
373 	       vector Z
374             NZ is the maximum number of nonzeros in any row of A, plus 1
375             EPS is machine epsilon
376 
377           The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
378           is incremented by SAFE1 if the i-th component of
379           abs(op(A))*abs(X) + abs(B) is less than SAFE2.
380 
381           Use DLACON2 to estimate the infinity-norm of the matrix
382              inv(op(A)) * diag(W),
383           where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
384 
385 	for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
386 
387 	/* Compute abs(op(A))*abs(X) + abs(B). */
388 	if ( notran ) {
389 	    for (k = 0; k < A->ncol; ++k) {
390 		xk = fabs( Xptr[k] );
391 		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
392 		    rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
393 	    }
394 	} else {  /* trans == TRANS or CONJ */
395 	    for (k = 0; k < A->ncol; ++k) {
396 		s = 0.;
397 		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
398 		    irow = Astore->rowind[i];
399 		    xk = fabs( Xptr[irow] );
400 		    s += fabs(Aval[i]) * xk;
401 		}
402 		rwork[k] += s;
403 	    }
404 	}
405 
406 	for (i = 0; i < A->nrow; ++i)
407 	    if (rwork[i] > safe2)
408 		rwork[i] = fabs(work[i]) + (iwork[i]+1)*eps*rwork[i];
409 	    else
410 		rwork[i] = fabs(work[i])+(iwork[i]+1)*eps*rwork[i]+safe1;
411 
412 	kase = 0;
413 
414 	do {
415 	    dlacon2_(&A->nrow, &work[A->nrow], work,
416 		    &iwork[A->nrow], &ferr[j], &kase, isave);
417 	    if (kase == 0) break;
418 
419 	    if (kase == 1) {
420 		/* Multiply by diag(W)*inv(op(A)**T)*(diag(C) or diag(R)). */
421 		if ( notran && colequ )
422 		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
423 		else if ( !notran && rowequ )
424 		    for (i = 0; i < A->nrow; ++i) work[i] *= R[i];
425 
426 		dgstrs (transt, L, U, perm_c, perm_r, &Bjcol, stat, info);
427 
428 		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
429 	    } else {
430 		/* Multiply by (diag(C) or diag(R))*inv(op(A))*diag(W). */
431 		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
432 
433 		dgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
434 
435 		if ( notran && colequ )
436 		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
437 		else if ( !notran && rowequ )
438 		    for (i = 0; i < A->ncol; ++i) work[i] *= R[i];
439 	    }
440 
441 	} while ( kase != 0 );
442 
443 
444 	/* Normalize error. */
445 	lstres = 0.;
446  	if ( notran && colequ ) {
447 	    for (i = 0; i < A->nrow; ++i)
448 	    	lstres = SUPERLU_MAX( lstres, C[i] * fabs( Xptr[i]) );
449   	} else if ( !notran && rowequ ) {
450 	    for (i = 0; i < A->nrow; ++i)
451 	    	lstres = SUPERLU_MAX( lstres, R[i] * fabs( Xptr[i]) );
452 	} else {
453 	    for (i = 0; i < A->nrow; ++i)
454 	    	lstres = SUPERLU_MAX( lstres, fabs( Xptr[i]) );
455 	}
456 	if ( lstres != 0. )
457 	    ferr[j] /= lstres;
458 
459     } /* for each RHS j ... */
460 
461     SUPERLU_FREE(work);
462     SUPERLU_FREE(rwork);
463     SUPERLU_FREE(iwork);
464     SUPERLU_FREE(Bjcol.Store);
465 
466     return;
467 
468 } /* dgsrfs */
469