1 /* ========================================================================== **
2  *                              ubi_BinTree.c
3  *
4  *  Copyright (C) 1991-1997 by Christopher R. Hertel
5  *
6  *  Email:  crh@ubiqx.mn.org
7  * -------------------------------------------------------------------------- **
8  *
9  *  This module implements a simple binary tree.
10  *
11  * -------------------------------------------------------------------------- **
12  *
13  *  This library is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU Library General Public
15  *  License as published by the Free Software Foundation; either
16  *  version 2 of the License, or (at your option) any later version.
17  *
18  *  This library is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  *  Library General Public License for more details.
22  *
23  *  You should have received a copy of the GNU Library General Public
24  *  License along with this library; if not, write to the Free
25  *  Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * -------------------------------------------------------------------------- **
28  *
29  * Log: ubi_BinTree.c,v
30  * Revision 2.5  1997/12/23 03:56:29  crh
31  * In this version, all constants & macros defined in the header file have
32  * the ubi_tr prefix.  Also cleaned up anything that gcc complained about
33  * when run with '-pedantic -fsyntax-only -Wall'.
34  *
35  * Revision 2.4  1997/07/26 04:11:10  crh
36  * + Just to be annoying I changed ubi_TRUE and ubi_FALSE to ubi_trTRUE
37  *   and ubi_trFALSE.
38  * + There is now a type ubi_trBool to go with ubi_trTRUE and ubi_trFALSE.
39  * + There used to be something called "ubi_TypeDefs.h".  I got rid of it.
40  * + Added function ubi_btLeafNode().
41  *
42  * Revision 2.3  1997/06/03 05:16:17  crh
43  * Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid conflicts.
44  * Also changed the interface to function InitTree().  See the comments
45  * for this function for more information.
46  *
47  * Revision 2.2  1995/10/03 22:00:07  CRH
48  * Ubisized!
49  *
50  * Revision 2.1  95/03/09  23:37:10  CRH
51  * Added the ModuleID static string and function.  These modules are now
52  * self-identifying.
53  *
54  * Revision 2.0  95/02/27  22:00:17  CRH
55  * Revision 2.0 of this program includes the following changes:
56  *
57  *     1)  A fix to a major typo in the RepaceNode() function.
58  *     2)  The addition of the static function Border().
59  *     3)  The addition of the public functions FirstOf() and LastOf(), which
60  *         use Border(). These functions are used with trees that allow
61  *         duplicate keys.
62  *     4)  A complete rewrite of the Locate() function.  Locate() now accepts
63  *         a "comparison" operator.
64  *     5)  Overall enhancements to both code and comments.
65  *
66  * I decided to give this a new major rev number because the interface has
67  * changed.  In particular, there are two new functions, and changes to the
68  * Locate() function.
69  *
70  * Revision 1.0  93/10/15  22:44:59  CRH
71  * With this revision, I have added a set of #define's that provide a single,
72  * standard API to all existing tree modules.  Until now, each of the three
73  * existing modules had a different function and typedef prefix, as follows:
74  *
75  *       Module        Prefix
76  *     ubi_BinTree     ubi_bt
77  *     ubi_AVLtree     ubi_avl
78  *     ubi_SplayTree   ubi_spt
79  *
80  * To further complicate matters, only those portions of the base module
81  * (ubi_BinTree) that were superceeded in the new module had the new names.
82  * For example, if you were using ubi_AVLtree, the AVL node structure was
83  * named "ubi_avlNode", but the root structure was still "ubi_btRoot".  Using
84  * SplayTree, the locate function was called "ubi_sptLocate", but the next
85  * and previous functions remained "ubi_btNext" and "ubi_btPrev".
86  *
87  * This was not too terrible if you were familiar with the modules and knew
88  * exactly which tree model you wanted to use.  If you wanted to be able to
89  * change modules (for speed comparisons, etc), things could get messy very
90  * quickly.
91  *
92  * So, I have added a set of defined names that get redefined in any of the
93  * descendant modules.  To use this standardized interface in your code,
94  * simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
95  * "ubi_tr".  The "ubi_tr" names will resolve to the correct function or
96  * datatype names for the module that you are using.  Just remember to
97  * include the header for that module in your program file.  Because these
98  * names are handled by the preprocessor, there is no added run-time
99  * overhead.
100  *
101  * Note that the original names do still exist, and can be used if you wish
102  * to write code directly to a specific module.  This should probably only be
103  * done if you are planning to implement a new descendant type, such as
104  * red/black trees.  CRH
105  *
106  *  V0.0 - June, 1991   -  Written by Christopher R. Hertel (CRH).
107  *
108  * ========================================================================== **
109  */
110 
111 #include "ubi_BinTree.h"            /* Header for this module          */
112 #include <stdlib.h>                 /* Standard C definitions.         */
113 
114 /* ========================================================================== **
115  * Static data.
116  */
117 
118 static char ModuleID[] = "ubi_BinTree\n\
119 \tRevision: 2.5\n\
120 \tDate: 1997/12/23 03:56:29\n\
121 \tAuthor: crh\n";
122 
123 /* ========================================================================== **
124  * Internal (private) functions.
125  */
126 
qFind(ubi_btCompFunc cmp,ubi_btItemPtr FindMe,register ubi_btNodePtr p)127 static ubi_btNodePtr qFind( ubi_btCompFunc cmp,
128                             ubi_btItemPtr  FindMe,
129                    register ubi_btNodePtr  p )
130   /* ------------------------------------------------------------------------ **
131    * This function performs a non-recursive search of a tree for a node
132    * matching a specific key.  It is called "qFind()" because it is
133    * faster that TreeFind (below).
134    *
135    *  Input:
136    *     cmp      -  a pointer to the tree's comparison function.
137    *     FindMe   -  a pointer to the key value for which to search.
138    *     p        -  a pointer to the starting point of the search.  <p>
139    *                 is considered to be the root of a subtree, and only
140    *                 the subtree will be searched.
141    *
142    *  Output:
143    *     A pointer to a node with a key that matches the key indicated by
144    *     FindMe, or NULL if no such node was found.
145    *
146    *  Note:   In a tree that allows duplicates, the pointer returned *might
147    *          not* point to the (sequentially) first occurance of the
148    *          desired key.
149    * ------------------------------------------------------------------------ **
150    */
151   {
152   int tmp;
153 
154   while( p && (( tmp = ubi_trAbNormal((*cmp)(FindMe, p)) ) != ubi_trEQUAL) )
155     p = p->Link[tmp];
156 
157   return( p );
158   } /* qFind */
159 
TreeFind(ubi_btItemPtr findme,ubi_btNodePtr p,ubi_btNodePtr * parentp,char * gender,ubi_btCompFunc CmpFunc)160 static ubi_btNodePtr TreeFind( ubi_btItemPtr  findme,
161                                ubi_btNodePtr  p,
162                                ubi_btNodePtr *parentp,
163                                char          *gender,
164                                ubi_btCompFunc CmpFunc )
165   /* ------------------------------------------------------------------------ **
166    * TreeFind() searches a tree for a given value (findme).  It will return a
167    * pointer to the target node, if found, or NULL if the target node was not
168    * found.
169    *
170    * TreeFind() also returns, via parameters, a pointer to the parent of the
171    * target node, and a LEFT or RIGHT value indicating which child of the
172    * parent is the target node.  *If the target is not found*, then these
173    * values indicate the place at which the target *should be found*.  This
174    * is useful when inserting a new node into a tree or searching for nodes
175    * "near" the target node.
176    *
177    * The parameters are:
178    *
179    *  findme   -  is a pointer to the key information to be searched for.
180    *  p        -  points to the root of the tree to be searched.
181    *  parentp  -  will return a pointer to a pointer to the !parent! of the
182    *              target node, which can be especially usefull if the target
183    *              was not found.
184    *  gender   -  returns LEFT or RIGHT to indicate which child of *parentp
185    *              was last searched.
186    *  CmpFunc  -  points to the comparison function.
187    *
188    * This function is called by ubi_btLocate() and ubi_btInsert().
189    * ------------------------------------------------------------------------ **
190    */
191   {
192   register ubi_btNodePtr tmp_p = p;
193   ubi_btNodePtr tmp_pp         = NULL;
194   int tmp_gender               = ubi_trEQUAL;
195   int tmp_cmp;
196 
197   while( tmp_p
198      && (ubi_trEQUAL != (tmp_cmp = ubi_trAbNormal((*CmpFunc)(findme, tmp_p)))) )
199     {
200     tmp_pp     = tmp_p;                 /* Keep track of previous node. */
201     tmp_gender = tmp_cmp;               /* Keep track of sex of child.  */
202     tmp_p      = tmp_p->Link[tmp_cmp];  /* Go to child. */
203     }
204   *parentp = tmp_pp;                /* Return results. */
205   *gender  = tmp_gender;
206   return( tmp_p );
207   } /* TreeFind */
208 
ReplaceNode(ubi_btNodePtr * parent,ubi_btNodePtr oldnode,ubi_btNodePtr newnode)209 static void ReplaceNode( ubi_btNodePtr *parent,
210                          ubi_btNodePtr  oldnode,
211                          ubi_btNodePtr  newnode )
212   /* ------------------------------------------------------------------ *
213    * Remove node oldnode from the tree, replacing it with node newnode.
214    *
215    * Input:
216    *  parent   - A pointer to he parent pointer of the node to be
217    *             replaced.  <parent> may point to the Link[] field of
218    *             a parent node, or it may indicate the root pointer at
219    *             the top of the tree.
220    *  oldnode  - A pointer to the node that is to be replaced.
221    *  newnode  - A pointer to the node that is to be installed in the
222    *             place of <*oldnode>.
223    *
224    * Notes:    Don't forget to free oldnode.
225    *           Also, this function used to have a really nasty typo
226    *           bug.  "oldnode" and "newnode" were swapped in the line
227    *           that now reads:
228    *     ((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
229    *           Bleah!
230    * ------------------------------------------------------------------ *
231    */
232   {
233   register int i;
234   register int btNodeSize = sizeof( ubi_btNode );
235 
236   for( i = 0; i < btNodeSize; i++ ) /* Copy node internals to new node. */
237     ((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
238   (*parent) = newnode;              /* Old node's parent points to new child. */
239   /* Now tell the children about their new step-parent. */
240   if( oldnode->Link[ubi_trLEFT] )
241     (oldnode->Link[ubi_trLEFT])->Link[ubi_trPARENT] = newnode;
242   if( oldnode->Link[ubi_trRIGHT] )
243     (oldnode->Link[ubi_trRIGHT])->Link[ubi_trPARENT] = newnode;
244   } /* ReplaceNode */
245 
SwapNodes(ubi_btRootPtr RootPtr,ubi_btNodePtr Node1,ubi_btNodePtr Node2)246 static void SwapNodes( ubi_btRootPtr RootPtr,
247                        ubi_btNodePtr Node1,
248                        ubi_btNodePtr Node2 )
249   /* ------------------------------------------------------------------------ **
250    * This function swaps two nodes in the tree.  Node1 will take the place of
251    * Node2, and Node2 will fill in the space left vacant by Node 1.
252    *
253    * Input:
254    *  RootPtr  - pointer to the tree header structure for this tree.
255    *  Node1    - \
256    *              > These are the two nodes which are to be swapped.
257    *  Node2    - /
258    *
259    * Notes:
260    *  This function does a three step swap, using a dummy node as a place
261    *  holder.  This function is used by ubi_btRemove().
262    * ------------------------------------------------------------------------ **
263    */
264   {
265   ubi_btNodePtr *Parent;
266   ubi_btNode     dummy;
267   ubi_btNodePtr  dummy_p = &dummy;
268 
269   /* Replace Node 1 with the dummy, thus removing Node1 from the tree. */
270   if( Node1->Link[ubi_trPARENT] )
271     Parent = &((Node1->Link[ubi_trPARENT])->Link[(int)(Node1->gender)]);
272   else
273     Parent = &(RootPtr->root);
274   ReplaceNode( Parent, Node1, dummy_p );
275 
276   /* Swap Node 1 with Node 2, placing Node 1 back into the tree. */
277   if( Node2->Link[ubi_trPARENT] )
278     Parent = &((Node2->Link[ubi_trPARENT])->Link[(int)(Node2->gender)]);
279   else
280     Parent = &(RootPtr->root);
281   ReplaceNode( Parent, Node2, Node1 );
282 
283   /* Swap Node 2 and the dummy, thus placing Node 2 back into the tree. */
284   if( dummy_p->Link[ubi_trPARENT] )
285     Parent = &((dummy_p->Link[ubi_trPARENT])->Link[(int)(dummy_p->gender)]);
286   else
287     Parent = &(RootPtr->root);
288   ReplaceNode( Parent, dummy_p, Node2 );
289   } /* SwapNodes */
290 
291 /* -------------------------------------------------------------------------- **
292  * These routines allow you to walk through the tree, forwards or backwards.
293  */
294 
SubSlide(register ubi_btNodePtr P,register int whichway)295 static ubi_btNodePtr SubSlide( register ubi_btNodePtr P,
296                                register int           whichway )
297   /* ------------------------------------------------------------------------ **
298    * Slide down the side of a subtree.
299    *
300    * Given a starting node, this function returns a pointer to the LEFT-, or
301    * RIGHT-most descendent, *or* (if whichway is PARENT) to the tree root.
302    *
303    *  Input:  P         - a pointer to a starting place.
304    *          whichway  - the direction (LEFT, RIGHT, or PARENT) in which to
305    *                      travel.
306    *  Output: A pointer to a node that is either the root, or has no
307    *          whichway-th child but is within the subtree of P.  Note that
308    *          the return value may be the same as P.  The return value *will
309    *          be* NULL if P is NULL.
310    * ------------------------------------------------------------------------ **
311    */
312   {
313   ubi_btNodePtr Q = NULL;
314 
315   while( P )
316     {
317     Q = P;
318     P = P->Link[ whichway ];
319     }
320   return( Q );
321   } /* SubSlide */
322 
Neighbor(register ubi_btNodePtr P,register int whichway)323 static ubi_btNodePtr Neighbor( register ubi_btNodePtr P,
324                                register int           whichway )
325   /* ------------------------------------------------------------------------ **
326    * Given starting point p, return the (key order) next or preceeding node
327    * in the tree.
328    *
329    *  Input:  P         - Pointer to our starting place node.
330    *          whichway  - the direction in which to travel to find the
331    *                      neighbor, i.e., the RIGHT neighbor or the LEFT
332    *                      neighbor.
333    *
334    *  Output: A pointer to the neighboring node, or NULL if P was NULL.
335    *
336    *  Notes:  If whichway is PARENT, the results are unpredictable.
337    * ------------------------------------------------------------------------ **
338    */
339   {
340   if( P )
341     {
342     if( P->Link[ whichway ] )
343       return( SubSlide( P->Link[ whichway ], (char)ubi_trRevWay(whichway) ) );
344     else
345       while( P->Link[ ubi_trPARENT ] )
346         {
347         if( (P->Link[ ubi_trPARENT ])->Link[ whichway ] == P )
348           P = P->Link[ ubi_trPARENT ];
349         else
350           return( P->Link[ ubi_trPARENT ] );
351         }
352     }
353   return( NULL );
354   } /* Neighbor */
355 
Border(ubi_btRootPtr RootPtr,ubi_btItemPtr FindMe,ubi_btNodePtr p,int whichway)356 static ubi_btNodePtr Border( ubi_btRootPtr RootPtr,
357                              ubi_btItemPtr FindMe,
358                              ubi_btNodePtr p,
359                              int           whichway )
360   /* ------------------------------------------------------------------------ **
361    * Given starting point p, which has a key value equal to *FindMe, locate
362    * the first (index order) node with the same key value.
363    *
364    * This function is useful in trees that have can have duplicate keys.
365    * For example, consider the following tree:
366    *     Tree                                                      Traversal
367    *       2    If <p> points to the root and <whichway> is RIGHT,     3
368    *      / \    then the return value will be a pointer to the       / \
369    *     2   2    RIGHT child of the root node.  The tree on         2   5
370    *    /   / \    the right shows the order of traversal.          /   / \
371    *   1   2   3                                                   1   4   6
372    *
373    *  Input:  RootPtr   - Pointer to the tree root structure.
374    *          FindMe    - Key value for comparisons.
375    *          p         - Pointer to the starting-point node.
376    *          whichway  - the direction in which to travel to find the
377    *                      neighbor, i.e., the RIGHT neighbor or the LEFT
378    *                      neighbor.
379    *
380    *  Output: A pointer to the first (index, or "traversal", order) node with
381    *          a Key value that matches *FindMe.
382    *
383    *  Notes:  If whichway is PARENT, or if the tree does not allow duplicate
384    *          keys, this function will return <p>.
385    * ------------------------------------------------------------------------ **
386    */
387   {
388   register ubi_btNodePtr q;
389 
390   /* Exit if there's nothing that can be done. */
391   if( !ubi_trDups_OK( RootPtr ) || (ubi_trPARENT == whichway) )
392     return( p );
393 
394   /* First, if needed, move up the tree.  We need to get to the root of the
395    * subtree that contains all of the matching nodes.
396    */
397   q = p->Link[ubi_trPARENT];
398   while( q && (ubi_trEQUAL == ubi_trAbNormal( (*(RootPtr->cmp))(FindMe, q) )) )
399     {
400     p = q;
401     q = p->Link[ubi_trPARENT];
402     }
403 
404   /* Next, move back down in the "whichway" direction. */
405   q = p->Link[whichway];
406   while( q )
407     {
408     q = qFind( RootPtr->cmp, FindMe, q );
409     if( q )
410       {
411       p = q;
412       q = p->Link[whichway];
413       }
414     }
415   return( p );
416   } /* Border */
417 
418 
419 /* ========================================================================== **
420  * Exported utilities.
421  */
422 
ubi_btSgn(register long x)423 long ubi_btSgn( register long x )
424   /* ------------------------------------------------------------------------ **
425    * Return the sign of x; {negative,zero,positive} ==> {-1, 0, 1}.
426    *
427    *  Input:  x - a signed long integer value.
428    *
429    *  Output: the "sign" of x, represented as follows:
430    *            -1 == negative
431    *             0 == zero (no sign)
432    *             1 == positive
433    *
434    * Note: This utility is provided in order to facilitate the conversion
435    *       of C comparison function return values into BinTree direction
436    *       values: {LEFT, PARENT, EQUAL}.  It is INCORPORATED into the
437    *       ubi_trAbNormal() conversion macro!
438    *
439    * ------------------------------------------------------------------------ **
440    */
441   {
442   return( (x)?((x>0)?(1):(-1)):(0) );
443   } /* ubi_btSgn */
444 
ubi_btInitNode(ubi_btNodePtr NodePtr)445 ubi_btNodePtr ubi_btInitNode( ubi_btNodePtr NodePtr )
446   /* ------------------------------------------------------------------------ **
447    * Initialize a tree node.
448    *
449    *  Input:  a pointer to a ubi_btNode structure to be initialized.
450    *  Output: a pointer to the initialized ubi_btNode structure (ie. the
451    *          same as the input pointer).
452    * ------------------------------------------------------------------------ **
453    */
454   {
455   NodePtr->Link[ ubi_trLEFT ]   = NULL;
456   NodePtr->Link[ ubi_trPARENT ] = NULL;
457   NodePtr->Link[ ubi_trRIGHT ]  = NULL;
458   NodePtr->gender               = ubi_trEQUAL;
459   return( NodePtr );
460   } /* ubi_btInitNode */
461 
ubi_btInitTree(ubi_btRootPtr RootPtr,ubi_btCompFunc CompFunc,unsigned char Flags)462 ubi_btRootPtr ubi_btInitTree( ubi_btRootPtr   RootPtr,
463                               ubi_btCompFunc  CompFunc,
464                               unsigned char   Flags )
465   /* ------------------------------------------------------------------------ **
466    * Initialize the fields of a Tree Root header structure.
467    *
468    *  Input:   RootPtr   - a pointer to an ubi_btRoot structure to be
469    *                       initialized.
470    *           CompFunc  - a pointer to a comparison function that will be used
471    *                       whenever nodes in the tree must be compared against
472    *                       outside values.
473    *           Flags     - One bytes worth of flags.  Flags include
474    *                       ubi_trOVERWRITE and ubi_trDUPKEY.  See the header
475    *                       file for more info.
476    *
477    *  Output:  a pointer to the initialized ubi_btRoot structure (ie. the
478    *           same value as RootPtr).
479    *
480    *  Note:    The interface to this function has changed from that of
481    *           previous versions.  The <Flags> parameter replaces two
482    *           boolean parameters that had the same basic effect.
483    *
484    * ------------------------------------------------------------------------ **
485    */
486   {
487   if( RootPtr )
488     {
489     RootPtr->root   = NULL;
490     RootPtr->count  = 0L;
491     RootPtr->cmp    = CompFunc;
492     RootPtr->flags  = (Flags & ubi_trDUPKEY) ? ubi_trDUPKEY : Flags;
493     }                 /* There are only two supported flags, and they are
494                        * mutually exclusive.  ubi_trDUPKEY takes precedence
495                        * over ubi_trOVERWRITE.
496                        */
497   return( RootPtr );
498   } /* ubi_btInitTree */
499 
ubi_btInsert(ubi_btRootPtr RootPtr,ubi_btNodePtr NewNode,ubi_btItemPtr ItemPtr,ubi_btNodePtr * OldNode)500 ubi_trBool ubi_btInsert( ubi_btRootPtr  RootPtr,
501                          ubi_btNodePtr  NewNode,
502                          ubi_btItemPtr  ItemPtr,
503                          ubi_btNodePtr *OldNode )
504   /* ------------------------------------------------------------------------ **
505    * This function uses a non-recursive algorithm to add a new element to the
506    * tree.
507    *
508    *  Input:   RootPtr  -  a pointer to the ubi_btRoot structure that indicates
509    *                       the root of the tree to which NewNode is to be added.
510    *           NewNode  -  a pointer to an ubi_btNode structure that is NOT
511    *                       part of any tree.
512    *           ItemPtr  -  A pointer to the sort key that is stored within
513    *                       *NewNode.  ItemPtr MUST point to information stored
514    *                       in *NewNode or an EXACT DUPLICATE.  The key data
515    *                       indicated by ItemPtr is used to place the new node
516    *                       into the tree.
517    *           OldNode  -  a pointer to an ubi_btNodePtr.  When searching
518    *                       the tree, a duplicate node may be found.  If
519    *                       duplicates are allowed, then the new node will
520    *                       be simply placed into the tree.  If duplicates
521    *                       are not allowed, however, then one of two things
522    *                       may happen.
523    *                       1) if overwritting *is not* allowed, this
524    *                          function will return FALSE (indicating that
525    *                          the new node could not be inserted), and
526    *                          *OldNode will point to the duplicate that is
527    *                          still in the tree.
528    *                       2) if overwritting *is* allowed, then this
529    *                          function will swap **OldNode for *NewNode.
530    *                          In this case, *OldNode will point to the node
531    *                          that was removed (thus allowing you to free
532    *                          the node).
533    *                          **  If you are using overwrite mode, ALWAYS  **
534    *                          ** check the return value of this parameter! **
535    *                 Note: You may pass NULL in this parameter, the
536    *                       function knows how to cope.  If you do this,
537    *                       however, there will be no way to return a
538    *                       pointer to an old (ie. replaced) node (which is
539    *                       a problem if you are using overwrite mode).
540    *
541    *  Output:  a boolean value indicating success or failure.  The function
542    *           will return FALSE if the node could not be added to the tree.
543    *           Such failure will only occur if duplicates are not allowed,
544    *           nodes cannot be overwritten, AND a duplicate key was found
545    *           within the tree.
546    * ------------------------------------------------------------------------ **
547    */
548   {
549   ubi_btNodePtr OtherP,
550                 parent = NULL;
551   char          tmp;
552 
553   if( !(OldNode) )       /* If they didn't give us a pointer, supply our own. */
554     OldNode = &OtherP;
555 
556   (void)ubi_btInitNode( NewNode );     /* Init the new node's BinTree fields. */
557 
558   /* Find a place for the new node. */
559   *OldNode = TreeFind(ItemPtr, (RootPtr->root), &parent, &tmp, (RootPtr->cmp));
560 
561   /* Now add the node to the tree... */
562   if (!(*OldNode)) /* The easy one: we have a space for a new node! */
563     {
564     if (!(parent))
565       RootPtr->root = NewNode;
566     else
567       {
568       parent->Link[(int)tmp]      = NewNode;
569       NewNode->Link[ubi_trPARENT] = parent;
570       NewNode->gender             = tmp;
571       }
572     (RootPtr->count)++;
573     return( ubi_trTRUE );
574     }
575 
576   /* If we reach this point, we know that a duplicate node exists.  This
577    * section adds the node to the tree if duplicate keys are allowed.
578    */
579   if( ubi_trDups_OK(RootPtr) )    /* Key exists, add duplicate */
580     {
581     ubi_btNodePtr q;
582 
583     tmp = ubi_trRIGHT;
584     q = (*OldNode);
585     *OldNode = NULL;
586     while( q )
587       {
588       parent = q;
589       if( tmp == ubi_trEQUAL )
590         tmp = ubi_trRIGHT;
591       q = q->Link[(int)tmp];
592       if ( q )
593         tmp = ubi_trAbNormal( (*(RootPtr->cmp))(ItemPtr, q) );
594       }
595     parent->Link[(int)tmp]       = NewNode;
596     NewNode->Link[ubi_trPARENT]  = parent;
597     NewNode->gender              = tmp;
598     (RootPtr->count)++;
599     return( ubi_trTRUE );
600     }
601 
602   /* If we get to *this* point, we know that we are not allowed to have
603    * duplicate nodes, but our node keys match, so... may we replace the
604    * old one?
605    */
606   if( ubi_trOvwt_OK(RootPtr) )    /* Key exists, we replace */
607     {
608     if (!(parent))
609       ReplaceNode( &(RootPtr->root), *OldNode, NewNode );
610     else
611       ReplaceNode( &(parent->Link[(int)((*OldNode)->gender)]),
612                    *OldNode, NewNode );
613     return( ubi_trTRUE );
614     }
615 
616   return( ubi_trFALSE );      /* Failure: could not replace an existing node. */
617   } /* ubi_btInsert */
618 
ubi_btRemove(ubi_btRootPtr RootPtr,ubi_btNodePtr DeadNode)619 ubi_btNodePtr ubi_btRemove( ubi_btRootPtr RootPtr,
620                             ubi_btNodePtr DeadNode )
621   /* ------------------------------------------------------------------------ **
622    * This function removes the indicated node from the tree.
623    *
624    *  Input:   RootPtr  -  A pointer to the header of the tree that contains
625    *                       the node to be removed.
626    *           DeadNode -  A pointer to the node that will be removed.
627    *
628    *  Output:  This function returns a pointer to the node that was removed
629    *           from the tree (ie. the same as DeadNode).
630    *
631    *  Note:    The node MUST be in the tree indicated by RootPtr.  If not,
632    *           strange and evil things will happen to your trees.
633    * ------------------------------------------------------------------------ **
634    */
635   {
636   ubi_btNodePtr p,
637                *parentp;
638   int           tmp;
639 
640   /* if the node has both left and right subtrees, then we have to swap
641    * it with another node.  The other node we choose will be the Prev()ious
642    * node, which is garunteed to have no RIGHT child.
643    */
644   if( (DeadNode->Link[ubi_trLEFT]) && (DeadNode->Link[ubi_trRIGHT]) )
645     SwapNodes( RootPtr, DeadNode, ubi_btPrev( DeadNode ) );
646 
647   /* The parent of the node to be deleted may be another node, or it may be
648    * the root of the tree.  Since we're not sure, it's best just to have
649    * a pointer to the parent pointer, whatever it is.
650    */
651   if (DeadNode->Link[ubi_trPARENT])
652     parentp = &((DeadNode->Link[ubi_trPARENT])->Link[(int)(DeadNode->gender)]);
653   else
654     parentp = &( RootPtr->root );
655 
656   /* Now link the parent to the only grand-child and patch up the gender. */
657   tmp = ((DeadNode->Link[ubi_trLEFT])?ubi_trLEFT:ubi_trRIGHT);
658 
659   p = (DeadNode->Link[tmp]);
660   if( p )
661     {
662     p->Link[ubi_trPARENT] = DeadNode->Link[ubi_trPARENT];
663     p->gender       = DeadNode->gender;
664     }
665   (*parentp) = p;
666 
667   /* Finished, reduce the node count and return. */
668   (RootPtr->count)--;
669   return( DeadNode );
670   } /* ubi_btRemove */
671 
ubi_btLocate(ubi_btRootPtr RootPtr,ubi_btItemPtr FindMe,ubi_trCompOps CompOp)672 ubi_btNodePtr ubi_btLocate( ubi_btRootPtr RootPtr,
673                             ubi_btItemPtr FindMe,
674                             ubi_trCompOps CompOp )
675   /* ------------------------------------------------------------------------ **
676    * The purpose of ubi_btLocate() is to find a node or set of nodes given
677    * a target value and a "comparison operator".  The Locate() function is
678    * more flexible and (in the case of trees that may contain dupicate keys)
679    * more precise than the ubi_btFind() function.  The latter is faster,
680    * but it only searches for exact matches and, if the tree contains
681    * duplicates, Find() may return a pointer to any one of the duplicate-
682    * keyed records.
683    *
684    *  Input:
685    *     RootPtr  -  A pointer to the header of the tree to be searched.
686    *     FindMe   -  An ubi_btItemPtr that indicates the key for which to
687    *                 search.
688    *     CompOp   -  One of the following:
689    *                    CompOp     Return a pointer to the node with
690    *                    ------     ---------------------------------
691    *                   ubi_trLT - the last key value that is less
692    *                              than FindMe.
693    *                   ubi_trLE - the first key matching FindMe, or
694    *                              the last key that is less than
695    *                              FindMe.
696    *                   ubi_trEQ - the first key matching FindMe.
697    *                   ubi_trGE - the first key matching FindMe, or the
698    *                              first key greater than FindMe.
699    *                   ubi_trGT - the first key greater than FindMe.
700    *  Output:
701    *     A pointer to the node matching the criteria listed above under
702    *     CompOp, or NULL if no node matched the criteria.
703    *
704    *  Notes:
705    *     In the case of trees with duplicate keys, Locate() will behave as
706    *     follows:
707    *
708    *     Find:  3                       Find: 3
709    *     Keys:  1 2 2 2 3 3 3 3 3 4 4   Keys: 1 1 2 2 2 4 4 5 5 5 6
710    *                  ^ ^         ^                   ^ ^
711    *                 LT EQ        GT                 LE GE
712    *
713    *     That is, when returning a pointer to a node with a key that is LESS
714    *     THAN the target key (FindMe), Locate() will return a pointer to the
715    *     LAST matching node.
716    *     When returning a pointer to a node with a key that is GREATER
717    *     THAN the target key (FindMe), Locate() will return a pointer to the
718    *     FIRST matching node.
719    *
720    *  See Also: ubi_btFind(), ubi_btFirstOf(), ubi_btLastOf().
721    * ------------------------------------------------------------------------ **
722    */
723   {
724   register ubi_btNodePtr p;
725   ubi_btNodePtr   parent;
726   char            whichkid;
727 
728   /* Start by searching for a matching node. */
729   p = TreeFind( FindMe,
730                 RootPtr->root,
731                 &parent,
732                 &whichkid,
733                 RootPtr->cmp );
734 
735   if( p )   /* If we have found a match, we can resolve as follows: */
736     {
737     switch( CompOp )
738       {
739       case ubi_trLT:            /* It's just a jump to the left...  */
740         p = Border( RootPtr, FindMe, p, ubi_trLEFT );
741         return( Neighbor( p, ubi_trLEFT ) );
742       case ubi_trGT:            /* ...and then a jump to the right. */
743         p = Border( RootPtr, FindMe, p, ubi_trRIGHT );
744         return( Neighbor( p, ubi_trRIGHT ) );
745       default:
746         p = Border( RootPtr, FindMe, p, ubi_trLEFT );
747         return( p );
748       }
749     }
750 
751   /* Else, no match. */
752   if( ubi_trEQ == CompOp )    /* If we were looking for an exact match... */
753     return( NULL );           /* ...forget it.                            */
754 
755   /* We can still return a valid result for GT, GE, LE, and LT.
756    * <parent> points to a node with a value that is either just before or
757    * just after the target value.
758    * Remaining possibilities are LT and GT (including LE & GE).
759    */
760   if( (ubi_trLT == CompOp) || (ubi_trLE == CompOp) )
761     return( (ubi_trLEFT == whichkid) ? Neighbor( parent, whichkid ) : parent );
762   else
763     return( (ubi_trRIGHT == whichkid) ? Neighbor( parent, whichkid ) : parent );
764   } /* ubi_btLocate */
765 
ubi_btFind(ubi_btRootPtr RootPtr,ubi_btItemPtr FindMe)766 ubi_btNodePtr ubi_btFind( ubi_btRootPtr RootPtr,
767                           ubi_btItemPtr FindMe )
768   /* ------------------------------------------------------------------------ **
769    * This function performs a non-recursive search of a tree for any node
770    * matching a specific key.
771    *
772    *  Input:
773    *     RootPtr  -  a pointer to the header of the tree to be searched.
774    *     FindMe   -  a pointer to the key value for which to search.
775    *
776    *  Output:
777    *     A pointer to a node with a key that matches the key indicated by
778    *     FindMe, or NULL if no such node was found.
779    *
780    *  Note:   In a tree that allows duplicates, the pointer returned *might
781    *          not* point to the (sequentially) first occurance of the
782    *          desired key.  In such a tree, it may be more useful to use
783    *          ubi_btLocate().
784    * ------------------------------------------------------------------------ **
785    */
786   {
787   return( qFind( RootPtr->cmp, FindMe, RootPtr->root ) );
788   } /* ubi_btFind */
789 
ubi_btNext(ubi_btNodePtr P)790 ubi_btNodePtr ubi_btNext( ubi_btNodePtr P )
791   /* ------------------------------------------------------------------------ **
792    * Given the node indicated by P, find the (sorted order) Next node in the
793    * tree.
794    *  Input:   P  -  a pointer to a node that exists in a binary tree.
795    *  Output:  A pointer to the "next" node in the tree, or NULL if P pointed
796    *           to the "last" node in the tree or was NULL.
797    * ------------------------------------------------------------------------ **
798    */
799   {
800   return( Neighbor( P, ubi_trRIGHT ) );
801   } /* ubi_btNext */
802 
ubi_btPrev(ubi_btNodePtr P)803 ubi_btNodePtr ubi_btPrev( ubi_btNodePtr P )
804   /* ------------------------------------------------------------------------ **
805    * Given the node indicated by P, find the (sorted order) Previous node in
806    * the tree.
807    *  Input:   P  -  a pointer to a node that exists in a binary tree.
808    *  Output:  A pointer to the "previous" node in the tree, or NULL if P
809    *           pointed to the "first" node in the tree or was NULL.
810    * ------------------------------------------------------------------------ **
811    */
812   {
813   return( Neighbor( P, ubi_trLEFT ) );
814   } /* ubi_btPrev */
815 
ubi_btFirst(ubi_btNodePtr P)816 ubi_btNodePtr ubi_btFirst( ubi_btNodePtr P )
817   /* ------------------------------------------------------------------------ **
818    * Given the node indicated by P, find the (sorted order) First node in the
819    * subtree of which *P is the root.
820    *  Input:   P  -  a pointer to a node that exists in a binary tree.
821    *  Output:  A pointer to the "first" node in a subtree that has *P as its
822    *           root.  This function will return NULL only if P is NULL.
823    *  Note:    In general, you will be passing in the value of the root field
824    *           of an ubi_btRoot structure.
825    * ------------------------------------------------------------------------ **
826    */
827   {
828   return( SubSlide( P, ubi_trLEFT ) );
829   } /* ubi_btFirst */
830 
ubi_btLast(ubi_btNodePtr P)831 ubi_btNodePtr ubi_btLast( ubi_btNodePtr P )
832   /* ------------------------------------------------------------------------ **
833    * Given the node indicated by P, find the (sorted order) Last node in the
834    * subtree of which *P is the root.
835    *  Input:   P  -  a pointer to a node that exists in a binary tree.
836    *  Output:  A pointer to the "last" node in a subtree that has *P as its
837    *           root.  This function will return NULL only if P is NULL.
838    *  Note:    In general, you will be passing in the value of the root field
839    *           of an ubi_btRoot structure.
840    * ------------------------------------------------------------------------ **
841    */
842   {
843   return( SubSlide( P, ubi_trRIGHT ) );
844   } /* ubi_btLast */
845 
ubi_btFirstOf(ubi_btRootPtr RootPtr,ubi_btItemPtr MatchMe,ubi_btNodePtr p)846 ubi_btNodePtr ubi_btFirstOf( ubi_btRootPtr RootPtr,
847                              ubi_btItemPtr MatchMe,
848                              ubi_btNodePtr p )
849   /* ------------------------------------------------------------------------ **
850    * Given a tree that a allows duplicate keys, and a pointer to a node in
851    * the tree, this function will return a pointer to the first (traversal
852    * order) node with the same key value.
853    *
854    *  Input:  RootPtr - A pointer to the root of the tree.
855    *          MatchMe - A pointer to the key value.  This should probably
856    *                    point to the key within node *p.
857    *          p       - A pointer to a node in the tree.
858    *  Output: A pointer to the first node in the set of nodes with keys
859    *          matching <FindMe>.
860    *  Notes:  Node *p MUST be in the set of nodes with keys matching
861    *          <FindMe>.  If not, this function will return NULL.
862    * ------------------------------------------------------------------------ **
863    */
864   {
865   /* If our starting point is invalid, return NULL. */
866   if( !p || ubi_trAbNormal( (*(RootPtr->cmp))( MatchMe, p ) != ubi_trEQUAL ) )
867     return( NULL );
868   return( Border( RootPtr, MatchMe, p, ubi_trLEFT ) );
869   } /* ubi_btFirstOf */
870 
ubi_btLastOf(ubi_btRootPtr RootPtr,ubi_btItemPtr MatchMe,ubi_btNodePtr p)871 ubi_btNodePtr ubi_btLastOf( ubi_btRootPtr RootPtr,
872                             ubi_btItemPtr MatchMe,
873                             ubi_btNodePtr p )
874   /* ------------------------------------------------------------------------ **
875    * Given a tree that a allows duplicate keys, and a pointer to a node in
876    * the tree, this function will return a pointer to the last (traversal
877    * order) node with the same key value.
878    *
879    *  Input:  RootPtr - A pointer to the root of the tree.
880    *          MatchMe - A pointer to the key value.  This should probably
881    *                    point to the key within node *p.
882    *          p       - A pointer to a node in the tree.
883    *  Output: A pointer to the last node in the set of nodes with keys
884    *          matching <FindMe>.
885    *  Notes:  Node *p MUST be in the set of nodes with keys matching
886    *          <FindMe>.  If not, this function will return NULL.
887    * ------------------------------------------------------------------------ **
888    */
889   {
890   /* If our starting point is invalid, return NULL. */
891   if( !p || ubi_trAbNormal( (*(RootPtr->cmp))( MatchMe, p ) != ubi_trEQUAL ) )
892     return( NULL );
893   return( Border( RootPtr, MatchMe, p, ubi_trRIGHT ) );
894   } /* ubi_btLastOf */
895 
ubi_btTraverse(ubi_btRootPtr RootPtr,ubi_btActionRtn EachNode,void * UserData)896 ubi_trBool ubi_btTraverse( ubi_btRootPtr   RootPtr,
897                            ubi_btActionRtn EachNode,
898                            void           *UserData )
899   /* ------------------------------------------------------------------------ **
900    * Traverse a tree in sorted order (non-recursively).  At each node, call
901    * (*EachNode)(), passing a pointer to the current node, and UserData as the
902    * second parameter.
903    *  Input:   RootPtr  -  a pointer to an ubi_btRoot structure that indicates
904    *                       the tree to be traversed.
905    *           EachNode -  a pointer to a function to be called at each node
906    *                       as the node is visited.
907    *           UserData -  a generic pointer that may point to anything that
908    *                       you choose.
909    *  Output:  A boolean value.  FALSE if the tree is empty, otherwise TRUE.
910    * ------------------------------------------------------------------------ **
911    */
912   {
913   ubi_btNodePtr p;
914 
915   if( !(p = ubi_btFirst( RootPtr->root )) ) return( ubi_trFALSE );
916 
917   while( p )
918     {
919     EachNode( p, UserData );
920     p = ubi_btNext( p );
921     }
922   return( ubi_trTRUE );
923   } /* ubi_btTraverse */
924 
ubi_btKillTree(ubi_btRootPtr RootPtr,ubi_btKillNodeRtn FreeNode)925 ubi_trBool ubi_btKillTree( ubi_btRootPtr     RootPtr,
926                            ubi_btKillNodeRtn FreeNode )
927   /* ------------------------------------------------------------------------ **
928    * Delete an entire tree (non-recursively) and reinitialize the ubi_btRoot
929    * structure.  Note that this function will return FALSE if either parameter
930    * is NULL.
931    *
932    *  Input:   RootPtr  -  a pointer to an ubi_btRoot structure that indicates
933    *                       the root of the tree to delete.
934    *           FreeNode -  a function that will be called for each node in the
935    *                       tree to deallocate the memory used by the node.
936    *
937    *  Output:  A boolean value.  FALSE if either input parameter was NULL, else
938    *           TRUE.
939    *
940    * ------------------------------------------------------------------------ **
941    */
942   {
943   ubi_btNodePtr p, q;
944 
945   if( !(RootPtr) || !(FreeNode) )
946     return( ubi_trFALSE );
947 
948   p = ubi_btFirst( RootPtr->root );
949   while( p )
950     {
951     q = p;
952     while( q->Link[ubi_trRIGHT] )
953       q = SubSlide( q->Link[ubi_trRIGHT], ubi_trLEFT );
954     p = q->Link[ubi_trPARENT];
955     if( p )
956       p->Link[ ((p->Link[ubi_trLEFT] == q)?ubi_trLEFT:ubi_trRIGHT) ] = NULL;
957     FreeNode((void *)q);
958     }
959 
960   (void)ubi_btInitTree( RootPtr,
961                         RootPtr->cmp,
962                         RootPtr->flags );
963   return( ubi_trTRUE );
964   } /* ubi_btKillTree */
965 
ubi_btLeafNode(ubi_btNodePtr leader)966 ubi_btNodePtr ubi_btLeafNode( ubi_btNodePtr leader )
967   /* ------------------------------------------------------------------------ **
968    * Returns a pointer to a leaf node.
969    *
970    *  Input:  leader  - Pointer to a node at which to start the descent.
971    *
972    *  Output: A pointer to a leaf node selected in a somewhat arbitrary
973    *          manner.
974    *
975    *  Notes:  I wrote this function because I was using splay trees as a
976    *          database cache.  The cache had a maximum size on it, and I
977    *          needed a way of choosing a node to sacrifice if the cache
978    *          became full.  In a splay tree, less recently accessed nodes
979    *          tend toward the bottom of the tree, meaning that leaf nodes
980    *          are good candidates for removal.  (I really can't think of
981    *          any other reason to use this function.)
982    *        + In a simple binary tree or an AVL tree, the most recently
983    *          added nodes tend to be nearer the bottom, making this a *bad*
984    *          way to choose which node to remove from the cache.
985    *        + Randomizing the traversal order is probably a good idea.  You
986    *          can improve the randomization of leaf node selection by passing
987    *          in pointers to nodes other than the root node each time.  A
988    *          pointer to any node in the tree will do.  Of course, if you
989    *          pass a pointer to a leaf node you'll get the same thing back.
990    *
991    * ------------------------------------------------------------------------ **
992    */
993   {
994   ubi_btNodePtr follower = NULL;
995   int           whichway = ubi_trLEFT;
996 
997   while( NULL != leader )
998     {
999     follower = leader;
1000     leader   = follower->Link[ whichway ];
1001     if( NULL == leader )
1002       {
1003       whichway = ubi_trRevWay( whichway );
1004       leader   = follower->Link[ whichway ];
1005       }
1006     }
1007 
1008   return( follower );
1009   } /* ubi_btLeafNode */
1010 
ubi_btModuleID(int size,char * list[])1011 int ubi_btModuleID( int size, char *list[] )
1012   /* ------------------------------------------------------------------------ **
1013    * Returns a set of strings that identify the module.
1014    *
1015    *  Input:  size  - The number of elements in the array <list>.
1016    *          list  - An array of pointers of type (char *).  This array
1017    *                  should, initially, be empty.  This function will fill
1018    *                  in the array with pointers to strings.
1019    *  Output: The number of elements of <list> that were used.  If this value
1020    *          is less than <size>, the values of the remaining elements are
1021    *          not guaranteed.
1022    *
1023    *  Notes:  Please keep in mind that the pointers returned indicate strings
1024    *          stored in static memory.  Don't free() them, don't write over
1025    *          them, etc.  Just read them.
1026    * ------------------------------------------------------------------------ **
1027    */
1028   {
1029   if( size > 0 )
1030     {
1031     list[0] = ModuleID;
1032     if( size > 1 )
1033       list[1] = NULL;
1034     return( 1 );
1035     }
1036   return( 0 );
1037   } /* ubi_btModuleID */
1038 
1039 
1040 /* ========================================================================== */
1041