1 /*
2 *  xxHash - Fast Hash algorithm
3 *  Copyright (C) 2012-2016, Yann Collet
4 *
5 *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6 *
7 *  Redistribution and use in source and binary forms, with or without
8 *  modification, are permitted provided that the following conditions are
9 *  met:
10 *
11 *  * Redistributions of source code must retain the above copyright
12 *  notice, this list of conditions and the following disclaimer.
13 *  * Redistributions in binary form must reproduce the above
14 *  copyright notice, this list of conditions and the following disclaimer
15 *  in the documentation and/or other materials provided with the
16 *  distribution.
17 *
18 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 *  You can contact the author at :
31 *  - xxHash homepage: http://www.xxhash.com
32 *  - xxHash source repository : https://github.com/Cyan4973/xxHash
33 */
34 
35 
36 /* *************************************
37 *  Tuning parameters
38 ***************************************/
39 /*!XXH_FORCE_MEMORY_ACCESS :
40  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
41  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
42  * The below switch allow to select different access method for improved performance.
43  * Method 0 (default) : use `memcpy()`. Safe and portable.
44  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
45  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
46  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
47  *            It can generate buggy code on targets which do not support unaligned memory accesses.
48  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
49  * See http://stackoverflow.com/a/32095106/646947 for details.
50  * Prefer these methods in priority order (0 > 1 > 2)
51  */
52 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
53 #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \
54                         || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \
55                         || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
56 #    define XXH_FORCE_MEMORY_ACCESS 2
57 #  elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
58   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \
59                     || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \
60                     || defined(__ARM_ARCH_7S__) ))
61 #    define XXH_FORCE_MEMORY_ACCESS 1
62 #  endif
63 #endif
64 
65 /*!XXH_ACCEPT_NULL_INPUT_POINTER :
66  * If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault.
67  * When this macro is enabled, xxHash actively checks input for null pointer.
68  * It it is, result for null input pointers is the same as a null-length input.
69  */
70 #ifndef XXH_ACCEPT_NULL_INPUT_POINTER   /* can be defined externally */
71 #  define XXH_ACCEPT_NULL_INPUT_POINTER 0
72 #endif
73 
74 /*!XXH_FORCE_ALIGN_CHECK :
75  * This is a minor performance trick, only useful with lots of very small keys.
76  * It means : check for aligned/unaligned input.
77  * The check costs one initial branch per hash;
78  * set it to 0 when the input is guaranteed to be aligned,
79  * or when alignment doesn't matter for performance.
80  */
81 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
82 #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
83 #    define XXH_FORCE_ALIGN_CHECK 0
84 #  else
85 #    define XXH_FORCE_ALIGN_CHECK 1
86 #  endif
87 #endif
88 
89 /*!XXH_REROLL:
90  * Whether to reroll XXH32_finalize, and XXH64_finalize,
91  * instead of using an unrolled jump table/if statement loop.
92  *
93  * This is automatically defined on -Os/-Oz on GCC and Clang. */
94 #ifndef XXH_REROLL
95 #  if defined(__OPTIMIZE_SIZE__)
96 #    define XXH_REROLL 1
97 #  else
98 #    define XXH_REROLL 0
99 #  endif
100 #endif
101 
102 /* *************************************
103 *  Includes & Memory related functions
104 ***************************************/
105 /*! Modify the local functions below should you wish to use some other memory routines
106 *   for malloc(), free() */
107 #include <stdlib.h>
XXH_malloc(size_t s)108 static void* XXH_malloc(size_t s) { return malloc(s); }
XXH_free(void * p)109 static void  XXH_free  (void* p)  { free(p); }
110 /*! and for memcpy() */
111 #include <string.h>
XXH_memcpy(void * dest,const void * src,size_t size)112 static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
113 
114 #include <limits.h>   /* ULLONG_MAX */
115 
116 #define XXH_STATIC_LINKING_ONLY
117 #include "xxhash.h"
118 
119 
120 /* *************************************
121 *  Compiler Specific Options
122 ***************************************/
123 #ifdef _MSC_VER    /* Visual Studio */
124 #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
125 #  define XXH_FORCE_INLINE static __forceinline
126 #  define XXH_NO_INLINE static __declspec(noinline)
127 #else
128 #  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
129 #    ifdef __GNUC__
130 #      define XXH_FORCE_INLINE static inline __attribute__((always_inline))
131 #      define XXH_NO_INLINE static __attribute__((noinline))
132 #    else
133 #      define XXH_FORCE_INLINE static inline
134 #      define XXH_NO_INLINE static
135 #    endif
136 #  else
137 #    define XXH_FORCE_INLINE static
138 #    define XXH_NO_INLINE static
139 #  endif /* __STDC_VERSION__ */
140 #endif
141 
142 
143 
144 /* *************************************
145 *  Debug
146 ***************************************/
147 /* DEBUGLEVEL is expected to be defined externally,
148  * typically through compiler command line.
149  * Value must be a number. */
150 #ifndef DEBUGLEVEL
151 #  define DEBUGLEVEL 0
152 #endif
153 
154 #if (DEBUGLEVEL>=1)
155 #  include <assert.h>   /* note : can still be disabled with NDEBUG */
156 #  define XXH_ASSERT(c)   assert(c)
157 #else
158 #  define XXH_ASSERT(c)   ((void)0)
159 #endif
160 
161 /* note : use after variable declarations */
162 #define XXH_STATIC_ASSERT(c)  { enum { XXH_sa = 1/(int)(!!(c)) }; }
163 
164 
165 /* *************************************
166 *  Basic Types
167 ***************************************/
168 #ifndef MEM_MODULE
169 # if !defined (__VMS) \
170   && (defined (__cplusplus) \
171   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
172 #   include <stdint.h>
173     typedef uint8_t  BYTE;
174     typedef uint16_t U16;
175     typedef uint32_t U32;
176 # else
177     typedef unsigned char      BYTE;
178     typedef unsigned short     U16;
179     typedef unsigned int       U32;
180 # endif
181 #endif
182 
183 
184 /* ===   Memory access   === */
185 
186 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
187 
188 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
XXH_read32(const void * memPtr)189 static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
190 
191 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
192 
193 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
194 /* currently only defined for gcc and icc */
195 typedef union { U32 u32; } __attribute__((packed)) unalign;
XXH_read32(const void * ptr)196 static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
197 
198 #else
199 
200 /* portable and safe solution. Generally efficient.
201  * see : http://stackoverflow.com/a/32095106/646947
202  */
XXH_read32(const void * memPtr)203 static U32 XXH_read32(const void* memPtr)
204 {
205     U32 val;
206     memcpy(&val, memPtr, sizeof(val));
207     return val;
208 }
209 
210 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
211 
212 
213 /* ===   Endianess   === */
214 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
215 
216 /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
217 #ifndef XXH_CPU_LITTLE_ENDIAN
XXH_isLittleEndian(void)218 static int XXH_isLittleEndian(void)
219 {
220     const union { U32 u; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */
221     return one.c[0];
222 }
223 #   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
224 #endif
225 
226 
227 
228 
229 /* ****************************************
230 *  Compiler-specific Functions and Macros
231 ******************************************/
232 #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
233 
234 #ifndef __has_builtin
235 #  define __has_builtin(x) 0
236 #endif
237 
238 #if !defined(NO_CLANG_BUILTIN) && __has_builtin(__builtin_rotateleft32) && __has_builtin(__builtin_rotateleft64)
239 #  define XXH_rotl32 __builtin_rotateleft32
240 #  define XXH_rotl64 __builtin_rotateleft64
241 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
242 #elif defined(_MSC_VER)
243 #  define XXH_rotl32(x,r) _rotl(x,r)
244 #  define XXH_rotl64(x,r) _rotl64(x,r)
245 #else
246 #  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
247 #  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
248 #endif
249 
250 #if defined(_MSC_VER)     /* Visual Studio */
251 #  define XXH_swap32 _byteswap_ulong
252 #elif XXH_GCC_VERSION >= 403
253 #  define XXH_swap32 __builtin_bswap32
254 #else
XXH_swap32(U32 x)255 static U32 XXH_swap32 (U32 x)
256 {
257     return  ((x << 24) & 0xff000000 ) |
258             ((x <<  8) & 0x00ff0000 ) |
259             ((x >>  8) & 0x0000ff00 ) |
260             ((x >> 24) & 0x000000ff );
261 }
262 #endif
263 
264 
265 /* ***************************
266 *  Memory reads
267 *****************************/
268 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
269 
XXH_readLE32(const void * ptr)270 XXH_FORCE_INLINE U32 XXH_readLE32(const void* ptr)
271 {
272     return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
273 }
274 
XXH_readBE32(const void * ptr)275 static U32 XXH_readBE32(const void* ptr)
276 {
277     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
278 }
279 
280 XXH_FORCE_INLINE U32
XXH_readLE32_align(const void * ptr,XXH_alignment align)281 XXH_readLE32_align(const void* ptr, XXH_alignment align)
282 {
283     if (align==XXH_unaligned) {
284         return XXH_readLE32(ptr);
285     } else {
286         return XXH_CPU_LITTLE_ENDIAN ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
287     }
288 }
289 
290 
291 /* *************************************
292 *  Misc
293 ***************************************/
XXH_versionNumber(void)294 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
295 
296 
297 /* *******************************************************************
298 *  32-bit hash functions
299 *********************************************************************/
300 static const U32 PRIME32_1 = 0x9E3779B1U;   /* 0b10011110001101110111100110110001 */
301 static const U32 PRIME32_2 = 0x85EBCA77U;   /* 0b10000101111010111100101001110111 */
302 static const U32 PRIME32_3 = 0xC2B2AE3DU;   /* 0b11000010101100101010111000111101 */
303 static const U32 PRIME32_4 = 0x27D4EB2FU;   /* 0b00100111110101001110101100101111 */
304 static const U32 PRIME32_5 = 0x165667B1U;   /* 0b00010110010101100110011110110001 */
305 
XXH32_round(U32 acc,U32 input)306 static U32 XXH32_round(U32 acc, U32 input)
307 {
308     acc += input * PRIME32_2;
309     acc  = XXH_rotl32(acc, 13);
310     acc *= PRIME32_1;
311 #if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
312     /* UGLY HACK:
313      * This inline assembly hack forces acc into a normal register. This is the
314      * only thing that prevents GCC and Clang from autovectorizing the XXH32 loop
315      * (pragmas and attributes don't work for some resason) without globally
316      * disabling SSE4.1.
317      *
318      * The reason we want to avoid vectorization is because despite working on
319      * 4 integers at a time, there are multiple factors slowing XXH32 down on
320      * SSE4:
321      * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on newer chips!)
322      *   making it slightly slower to multiply four integers at once compared to four
323      *   integers independently. Even when pmulld was fastest, Sandy/Ivy Bridge, it is
324      *   still not worth it to go into SSE just to multiply unless doing a long operation.
325      *
326      * - Four instructions are required to rotate,
327      *      movqda tmp,  v // not required with VEX encoding
328      *      pslld  tmp, 13 // tmp <<= 13
329      *      psrld  v,   19 // x >>= 19
330      *      por    v,  tmp // x |= tmp
331      *   compared to one for scalar:
332      *      roll   v, 13    // reliably fast across the board
333      *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
334      *
335      * - Instruction level parallelism is actually more beneficial here because the
336      *   SIMD actually serializes this operation: While v1 is rotating, v2 can load data,
337      *   while v3 can multiply. SSE forces them to operate together.
338      *
339      * How this hack works:
340      * __asm__(""       // Declare an assembly block but don't declare any instructions
341      *          :       // However, as an Input/Output Operand,
342      *          "+r"    // constrain a read/write operand (+) as a general purpose register (r).
343      *          (acc)   // and set acc as the operand
344      * );
345      *
346      * Because of the 'r', the compiler has promised that seed will be in a
347      * general purpose register and the '+' says that it will be 'read/write',
348      * so it has to assume it has changed. It is like volatile without all the
349      * loads and stores.
350      *
351      * Since the argument has to be in a normal register (not an SSE register),
352      * each time XXH32_round is called, it is impossible to vectorize. */
353     __asm__("" : "+r" (acc));
354 #endif
355     return acc;
356 }
357 
358 /* mix all bits */
XXH32_avalanche(U32 h32)359 static U32 XXH32_avalanche(U32 h32)
360 {
361     h32 ^= h32 >> 15;
362     h32 *= PRIME32_2;
363     h32 ^= h32 >> 13;
364     h32 *= PRIME32_3;
365     h32 ^= h32 >> 16;
366     return(h32);
367 }
368 
369 #define XXH_get32bits(p) XXH_readLE32_align(p, align)
370 
371 static U32
XXH32_finalize(U32 h32,const void * ptr,size_t len,XXH_alignment align)372 XXH32_finalize(U32 h32, const void* ptr, size_t len, XXH_alignment align)
373 {
374     const BYTE* p = (const BYTE*)ptr;
375 
376 #define PROCESS1               \
377     h32 += (*p++) * PRIME32_5; \
378     h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
379 
380 #define PROCESS4                         \
381     h32 += XXH_get32bits(p) * PRIME32_3; \
382     p+=4;                                \
383     h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
384 
385     /* Compact rerolled version */
386     if (XXH_REROLL) {
387         len &= 15;
388         while (len >= 4) {
389             PROCESS4;
390             len -= 4;
391         }
392         while (len > 0) {
393             PROCESS1;
394             --len;
395         }
396         return XXH32_avalanche(h32);
397     } else {
398          switch(len&15) /* or switch(bEnd - p) */ {
399            case 12:      PROCESS4;
400                          /* fallthrough */
401            case 8:       PROCESS4;
402                          /* fallthrough */
403            case 4:       PROCESS4;
404                          return XXH32_avalanche(h32);
405 
406            case 13:      PROCESS4;
407                          /* fallthrough */
408            case 9:       PROCESS4;
409                          /* fallthrough */
410            case 5:       PROCESS4;
411                          PROCESS1;
412                          return XXH32_avalanche(h32);
413 
414            case 14:      PROCESS4;
415                          /* fallthrough */
416            case 10:      PROCESS4;
417                          /* fallthrough */
418            case 6:       PROCESS4;
419                          PROCESS1;
420                          PROCESS1;
421                          return XXH32_avalanche(h32);
422 
423            case 15:      PROCESS4;
424                          /* fallthrough */
425            case 11:      PROCESS4;
426                          /* fallthrough */
427            case 7:       PROCESS4;
428                          /* fallthrough */
429            case 3:       PROCESS1;
430                          /* fallthrough */
431            case 2:       PROCESS1;
432                          /* fallthrough */
433            case 1:       PROCESS1;
434                          /* fallthrough */
435            case 0:       return XXH32_avalanche(h32);
436         }
437         XXH_ASSERT(0);
438         return h32;   /* reaching this point is deemed impossible */
439     }
440 }
441 
442 XXH_FORCE_INLINE U32
XXH32_endian_align(const void * input,size_t len,U32 seed,XXH_alignment align)443 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_alignment align)
444 {
445     const BYTE* p = (const BYTE*)input;
446     const BYTE* bEnd = p + len;
447     U32 h32;
448 
449 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
450     if (p==NULL) {
451         len=0;
452         bEnd=p=(const BYTE*)(size_t)16;
453     }
454 #endif
455 
456     if (len>=16) {
457         const BYTE* const limit = bEnd - 15;
458         U32 v1 = seed + PRIME32_1 + PRIME32_2;
459         U32 v2 = seed + PRIME32_2;
460         U32 v3 = seed + 0;
461         U32 v4 = seed - PRIME32_1;
462 
463         do {
464             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
465             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
466             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
467             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
468         } while (p < limit);
469 
470         h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
471             + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
472     } else {
473         h32  = seed + PRIME32_5;
474     }
475 
476     h32 += (U32)len;
477 
478     return XXH32_finalize(h32, p, len&15, align);
479 }
480 
481 
XXH32(const void * input,size_t len,unsigned int seed)482 XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
483 {
484 #if 0
485     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
486     XXH32_state_t state;
487     XXH32_reset(&state, seed);
488     XXH32_update(&state, input, len);
489     return XXH32_digest(&state);
490 
491 #else
492 
493     if (XXH_FORCE_ALIGN_CHECK) {
494         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
495             return XXH32_endian_align(input, len, seed, XXH_aligned);
496     }   }
497 
498     return XXH32_endian_align(input, len, seed, XXH_unaligned);
499 #endif
500 }
501 
502 
503 
504 /*======   Hash streaming   ======*/
505 
XXH32_createState(void)506 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
507 {
508     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
509 }
XXH32_freeState(XXH32_state_t * statePtr)510 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
511 {
512     XXH_free(statePtr);
513     return XXH_OK;
514 }
515 
XXH32_copyState(XXH32_state_t * dstState,const XXH32_state_t * srcState)516 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
517 {
518     memcpy(dstState, srcState, sizeof(*dstState));
519 }
520 
XXH32_reset(XXH32_state_t * statePtr,unsigned int seed)521 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
522 {
523     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
524     memset(&state, 0, sizeof(state));
525     state.v1 = seed + PRIME32_1 + PRIME32_2;
526     state.v2 = seed + PRIME32_2;
527     state.v3 = seed + 0;
528     state.v4 = seed - PRIME32_1;
529     /* do not write into reserved, planned to be removed in a future version */
530     memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
531     return XXH_OK;
532 }
533 
534 
535 XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t * state,const void * input,size_t len)536 XXH32_update(XXH32_state_t* state, const void* input, size_t len)
537 {
538     if (input==NULL)
539 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
540         return XXH_OK;
541 #else
542         return XXH_ERROR;
543 #endif
544 
545     {   const BYTE* p = (const BYTE*)input;
546         const BYTE* const bEnd = p + len;
547 
548         state->total_len_32 += (XXH32_hash_t)len;
549         state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
550 
551         if (state->memsize + len < 16)  {   /* fill in tmp buffer */
552             XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
553             state->memsize += (XXH32_hash_t)len;
554             return XXH_OK;
555         }
556 
557         if (state->memsize) {   /* some data left from previous update */
558             XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
559             {   const U32* p32 = state->mem32;
560                 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
561                 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
562                 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
563                 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
564             }
565             p += 16-state->memsize;
566             state->memsize = 0;
567         }
568 
569         if (p <= bEnd-16) {
570             const BYTE* const limit = bEnd - 16;
571             U32 v1 = state->v1;
572             U32 v2 = state->v2;
573             U32 v3 = state->v3;
574             U32 v4 = state->v4;
575 
576             do {
577                 v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
578                 v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
579                 v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
580                 v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
581             } while (p<=limit);
582 
583             state->v1 = v1;
584             state->v2 = v2;
585             state->v3 = v3;
586             state->v4 = v4;
587         }
588 
589         if (p < bEnd) {
590             XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
591             state->memsize = (unsigned)(bEnd-p);
592         }
593     }
594 
595     return XXH_OK;
596 }
597 
598 
XXH32_digest(const XXH32_state_t * state)599 XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state)
600 {
601     U32 h32;
602 
603     if (state->large_len) {
604         h32 = XXH_rotl32(state->v1, 1)
605             + XXH_rotl32(state->v2, 7)
606             + XXH_rotl32(state->v3, 12)
607             + XXH_rotl32(state->v4, 18);
608     } else {
609         h32 = state->v3 /* == seed */ + PRIME32_5;
610     }
611 
612     h32 += state->total_len_32;
613 
614     return XXH32_finalize(h32, state->mem32, state->memsize, XXH_aligned);
615 }
616 
617 
618 /*======   Canonical representation   ======*/
619 
620 /*! Default XXH result types are basic unsigned 32 and 64 bits.
621 *   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
622 *   These functions allow transformation of hash result into and from its canonical format.
623 *   This way, hash values can be written into a file or buffer, remaining comparable across different systems.
624 */
625 
XXH32_canonicalFromHash(XXH32_canonical_t * dst,XXH32_hash_t hash)626 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
627 {
628     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
629     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
630     memcpy(dst, &hash, sizeof(*dst));
631 }
632 
XXH32_hashFromCanonical(const XXH32_canonical_t * src)633 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
634 {
635     return XXH_readBE32(src);
636 }
637 
638 
639 #ifndef XXH_NO_LONG_LONG
640 
641 /* *******************************************************************
642 *  64-bit hash functions
643 *********************************************************************/
644 
645 /*======   Memory access   ======*/
646 
647 #ifndef MEM_MODULE
648 # define MEM_MODULE
649 # if !defined (__VMS) \
650   && (defined (__cplusplus) \
651   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
652 #   include <stdint.h>
653     typedef uint64_t U64;
654 # else
655     /* if compiler doesn't support unsigned long long, replace by another 64-bit type */
656     typedef unsigned long long U64;
657 # endif
658 #endif
659 
660 /*! XXH_REROLL_XXH64:
661  * Whether to reroll the XXH64_finalize() loop.
662  *
663  * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a performance gain
664  * on 64-bit hosts, as only one jump is required.
665  *
666  * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit registers,
667  * and 64-bit arithmetic needs to be simulated, it isn't beneficial to unroll. The code becomes
668  * ridiculously large (the largest function in the binary on i386!), and rerolling it saves
669  * anywhere from 3kB to 20kB. It is also slightly faster because it fits into cache better
670  * and is more likely to be inlined by the compiler.
671  *
672  * If XXH_REROLL is defined, this is ignored and the loop is always rerolled. */
673 #ifndef XXH_REROLL_XXH64
674 #  if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
675    || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
676      || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
677      || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
678      || defined(__mips64__) || defined(__mips64)) /* mips64 */ \
679    || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
680 #    define XXH_REROLL_XXH64 1
681 #  else
682 #    define XXH_REROLL_XXH64 0
683 #  endif
684 #endif /* !defined(XXH_REROLL_XXH64) */
685 
686 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
687 
688 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
XXH_read64(const void * memPtr)689 static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
690 
691 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
692 
693 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
694 /* currently only defined for gcc and icc */
695 typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64;
XXH_read64(const void * ptr)696 static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
697 
698 #else
699 
700 /* portable and safe solution. Generally efficient.
701  * see : http://stackoverflow.com/a/32095106/646947
702  */
703 
XXH_read64(const void * memPtr)704 static U64 XXH_read64(const void* memPtr)
705 {
706     U64 val;
707     memcpy(&val, memPtr, sizeof(val));
708     return val;
709 }
710 
711 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
712 
713 #if defined(_MSC_VER)     /* Visual Studio */
714 #  define XXH_swap64 _byteswap_uint64
715 #elif XXH_GCC_VERSION >= 403
716 #  define XXH_swap64 __builtin_bswap64
717 #else
XXH_swap64(U64 x)718 static U64 XXH_swap64 (U64 x)
719 {
720     return  ((x << 56) & 0xff00000000000000ULL) |
721             ((x << 40) & 0x00ff000000000000ULL) |
722             ((x << 24) & 0x0000ff0000000000ULL) |
723             ((x << 8)  & 0x000000ff00000000ULL) |
724             ((x >> 8)  & 0x00000000ff000000ULL) |
725             ((x >> 24) & 0x0000000000ff0000ULL) |
726             ((x >> 40) & 0x000000000000ff00ULL) |
727             ((x >> 56) & 0x00000000000000ffULL);
728 }
729 #endif
730 
XXH_readLE64(const void * ptr)731 XXH_FORCE_INLINE U64 XXH_readLE64(const void* ptr)
732 {
733     return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
734 }
735 
XXH_readBE64(const void * ptr)736 static U64 XXH_readBE64(const void* ptr)
737 {
738     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
739 }
740 
741 XXH_FORCE_INLINE U64
XXH_readLE64_align(const void * ptr,XXH_alignment align)742 XXH_readLE64_align(const void* ptr, XXH_alignment align)
743 {
744     if (align==XXH_unaligned)
745         return XXH_readLE64(ptr);
746     else
747         return XXH_CPU_LITTLE_ENDIAN ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
748 }
749 
750 
751 /*======   xxh64   ======*/
752 
753 static const U64 PRIME64_1 = 0x9E3779B185EBCA87ULL;   /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
754 static const U64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL;   /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
755 static const U64 PRIME64_3 = 0x165667B19E3779F9ULL;   /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
756 static const U64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL;   /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
757 static const U64 PRIME64_5 = 0x27D4EB2F165667C5ULL;   /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
758 
XXH64_round(U64 acc,U64 input)759 static U64 XXH64_round(U64 acc, U64 input)
760 {
761     acc += input * PRIME64_2;
762     acc  = XXH_rotl64(acc, 31);
763     acc *= PRIME64_1;
764     return acc;
765 }
766 
XXH64_mergeRound(U64 acc,U64 val)767 static U64 XXH64_mergeRound(U64 acc, U64 val)
768 {
769     val  = XXH64_round(0, val);
770     acc ^= val;
771     acc  = acc * PRIME64_1 + PRIME64_4;
772     return acc;
773 }
774 
XXH64_avalanche(U64 h64)775 static U64 XXH64_avalanche(U64 h64)
776 {
777     h64 ^= h64 >> 33;
778     h64 *= PRIME64_2;
779     h64 ^= h64 >> 29;
780     h64 *= PRIME64_3;
781     h64 ^= h64 >> 32;
782     return h64;
783 }
784 
785 
786 #define XXH_get64bits(p) XXH_readLE64_align(p, align)
787 
788 static U64
XXH64_finalize(U64 h64,const void * ptr,size_t len,XXH_alignment align)789 XXH64_finalize(U64 h64, const void* ptr, size_t len, XXH_alignment align)
790 {
791     const BYTE* p = (const BYTE*)ptr;
792 
793 #define PROCESS1_64            \
794     h64 ^= (*p++) * PRIME64_5; \
795     h64 = XXH_rotl64(h64, 11) * PRIME64_1;
796 
797 #define PROCESS4_64          \
798     h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \
799     p+=4;                    \
800     h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
801 
802 #define PROCESS8_64 {        \
803     U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \
804     p+=8;                    \
805     h64 ^= k1;               \
806     h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \
807 }
808 
809     /* Rerolled version for 32-bit targets is faster and much smaller. */
810     if (XXH_REROLL || XXH_REROLL_XXH64) {
811         len &= 31;
812         while (len >= 8) {
813             PROCESS8_64;
814             len -= 8;
815         }
816         if (len >= 4) {
817             PROCESS4_64;
818             len -= 4;
819         }
820         while (len > 0) {
821             PROCESS1_64;
822             --len;
823         }
824          return  XXH64_avalanche(h64);
825     } else {
826         switch(len & 31) {
827            case 24: PROCESS8_64;
828                          /* fallthrough */
829            case 16: PROCESS8_64;
830                          /* fallthrough */
831            case  8: PROCESS8_64;
832                     return XXH64_avalanche(h64);
833 
834            case 28: PROCESS8_64;
835                          /* fallthrough */
836            case 20: PROCESS8_64;
837                          /* fallthrough */
838            case 12: PROCESS8_64;
839                          /* fallthrough */
840            case  4: PROCESS4_64;
841                     return XXH64_avalanche(h64);
842 
843            case 25: PROCESS8_64;
844                          /* fallthrough */
845            case 17: PROCESS8_64;
846                          /* fallthrough */
847            case  9: PROCESS8_64;
848                     PROCESS1_64;
849                     return XXH64_avalanche(h64);
850 
851            case 29: PROCESS8_64;
852                          /* fallthrough */
853            case 21: PROCESS8_64;
854                          /* fallthrough */
855            case 13: PROCESS8_64;
856                          /* fallthrough */
857            case  5: PROCESS4_64;
858                     PROCESS1_64;
859                     return XXH64_avalanche(h64);
860 
861            case 26: PROCESS8_64;
862                          /* fallthrough */
863            case 18: PROCESS8_64;
864                          /* fallthrough */
865            case 10: PROCESS8_64;
866                     PROCESS1_64;
867                     PROCESS1_64;
868                     return XXH64_avalanche(h64);
869 
870            case 30: PROCESS8_64;
871                          /* fallthrough */
872            case 22: PROCESS8_64;
873                          /* fallthrough */
874            case 14: PROCESS8_64;
875                          /* fallthrough */
876            case  6: PROCESS4_64;
877                     PROCESS1_64;
878                     PROCESS1_64;
879                     return XXH64_avalanche(h64);
880 
881            case 27: PROCESS8_64;
882                          /* fallthrough */
883            case 19: PROCESS8_64;
884                          /* fallthrough */
885            case 11: PROCESS8_64;
886                     PROCESS1_64;
887                     PROCESS1_64;
888                     PROCESS1_64;
889                     return XXH64_avalanche(h64);
890 
891            case 31: PROCESS8_64;
892                          /* fallthrough */
893            case 23: PROCESS8_64;
894                          /* fallthrough */
895            case 15: PROCESS8_64;
896                          /* fallthrough */
897            case  7: PROCESS4_64;
898                          /* fallthrough */
899            case  3: PROCESS1_64;
900                          /* fallthrough */
901            case  2: PROCESS1_64;
902                          /* fallthrough */
903            case  1: PROCESS1_64;
904                          /* fallthrough */
905            case  0: return XXH64_avalanche(h64);
906         }
907     }
908     /* impossible to reach */
909     XXH_ASSERT(0);
910     return 0;  /* unreachable, but some compilers complain without it */
911 }
912 
913 XXH_FORCE_INLINE U64
XXH64_endian_align(const void * input,size_t len,U64 seed,XXH_alignment align)914 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_alignment align)
915 {
916     const BYTE* p = (const BYTE*)input;
917     const BYTE* bEnd = p + len;
918     U64 h64;
919 
920 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
921     if (p==NULL) {
922         len=0;
923         bEnd=p=(const BYTE*)(size_t)32;
924     }
925 #endif
926 
927     if (len>=32) {
928         const BYTE* const limit = bEnd - 32;
929         U64 v1 = seed + PRIME64_1 + PRIME64_2;
930         U64 v2 = seed + PRIME64_2;
931         U64 v3 = seed + 0;
932         U64 v4 = seed - PRIME64_1;
933 
934         do {
935             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
936             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
937             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
938             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
939         } while (p<=limit);
940 
941         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
942         h64 = XXH64_mergeRound(h64, v1);
943         h64 = XXH64_mergeRound(h64, v2);
944         h64 = XXH64_mergeRound(h64, v3);
945         h64 = XXH64_mergeRound(h64, v4);
946 
947     } else {
948         h64  = seed + PRIME64_5;
949     }
950 
951     h64 += (U64) len;
952 
953     return XXH64_finalize(h64, p, len, align);
954 }
955 
956 
XXH64(const void * input,size_t len,unsigned long long seed)957 XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, unsigned long long seed)
958 {
959 #if 0
960     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
961     XXH64_state_t state;
962     XXH64_reset(&state, seed);
963     XXH64_update(&state, input, len);
964     return XXH64_digest(&state);
965 
966 #else
967 
968     if (XXH_FORCE_ALIGN_CHECK) {
969         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
970             return XXH64_endian_align(input, len, seed, XXH_aligned);
971     }   }
972 
973     return XXH64_endian_align(input, len, seed, XXH_unaligned);
974 
975 #endif
976 }
977 
978 /*======   Hash Streaming   ======*/
979 
XXH64_createState(void)980 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
981 {
982     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
983 }
XXH64_freeState(XXH64_state_t * statePtr)984 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
985 {
986     XXH_free(statePtr);
987     return XXH_OK;
988 }
989 
XXH64_copyState(XXH64_state_t * dstState,const XXH64_state_t * srcState)990 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
991 {
992     memcpy(dstState, srcState, sizeof(*dstState));
993 }
994 
XXH64_reset(XXH64_state_t * statePtr,unsigned long long seed)995 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
996 {
997     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
998     memset(&state, 0, sizeof(state));
999     state.v1 = seed + PRIME64_1 + PRIME64_2;
1000     state.v2 = seed + PRIME64_2;
1001     state.v3 = seed + 0;
1002     state.v4 = seed - PRIME64_1;
1003      /* do not write into reserved, might be removed in a future version */
1004     memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
1005     return XXH_OK;
1006 }
1007 
1008 XXH_PUBLIC_API XXH_errorcode
XXH64_update(XXH64_state_t * state,const void * input,size_t len)1009 XXH64_update (XXH64_state_t* state, const void* input, size_t len)
1010 {
1011     if (input==NULL)
1012 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1013         return XXH_OK;
1014 #else
1015         return XXH_ERROR;
1016 #endif
1017 
1018     {   const BYTE* p = (const BYTE*)input;
1019         const BYTE* const bEnd = p + len;
1020 
1021         state->total_len += len;
1022 
1023         if (state->memsize + len < 32) {  /* fill in tmp buffer */
1024             XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
1025             state->memsize += (U32)len;
1026             return XXH_OK;
1027         }
1028 
1029         if (state->memsize) {   /* tmp buffer is full */
1030             XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
1031             state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
1032             state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
1033             state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
1034             state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
1035             p += 32-state->memsize;
1036             state->memsize = 0;
1037         }
1038 
1039         if (p+32 <= bEnd) {
1040             const BYTE* const limit = bEnd - 32;
1041             U64 v1 = state->v1;
1042             U64 v2 = state->v2;
1043             U64 v3 = state->v3;
1044             U64 v4 = state->v4;
1045 
1046             do {
1047                 v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
1048                 v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
1049                 v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
1050                 v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
1051             } while (p<=limit);
1052 
1053             state->v1 = v1;
1054             state->v2 = v2;
1055             state->v3 = v3;
1056             state->v4 = v4;
1057         }
1058 
1059         if (p < bEnd) {
1060             XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
1061             state->memsize = (unsigned)(bEnd-p);
1062         }
1063     }
1064 
1065     return XXH_OK;
1066 }
1067 
1068 
XXH64_digest(const XXH64_state_t * state)1069 XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state)
1070 {
1071     U64 h64;
1072 
1073     if (state->total_len >= 32) {
1074         U64 const v1 = state->v1;
1075         U64 const v2 = state->v2;
1076         U64 const v3 = state->v3;
1077         U64 const v4 = state->v4;
1078 
1079         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
1080         h64 = XXH64_mergeRound(h64, v1);
1081         h64 = XXH64_mergeRound(h64, v2);
1082         h64 = XXH64_mergeRound(h64, v3);
1083         h64 = XXH64_mergeRound(h64, v4);
1084     } else {
1085         h64  = state->v3 /*seed*/ + PRIME64_5;
1086     }
1087 
1088     h64 += (U64) state->total_len;
1089 
1090     return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, XXH_aligned);
1091 }
1092 
1093 
1094 /*====== Canonical representation   ======*/
1095 
XXH64_canonicalFromHash(XXH64_canonical_t * dst,XXH64_hash_t hash)1096 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
1097 {
1098     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
1099     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
1100     memcpy(dst, &hash, sizeof(*dst));
1101 }
1102 
XXH64_hashFromCanonical(const XXH64_canonical_t * src)1103 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
1104 {
1105     return XXH_readBE64(src);
1106 }
1107 
1108 
1109 
1110 /* *********************************************************************
1111 *  XXH3
1112 *  New generation hash designed for speed on small keys and vectorization
1113 ************************************************************************ */
1114 
1115 #include "arrow/vendored/xxhash/xxh3.h"
1116 
1117 
1118 #endif  /* XXH_NO_LONG_LONG */
1119