1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/twed.h>
26 #include <lib/utils.h>
27 
28 
29 /*******************************************************************************
30  * Context management library initialisation routine. This library is used by
31  * runtime services to share pointers to 'cpu_context' structures for the secure
32  * and non-secure states. Management of the structures and their associated
33  * memory is not done by the context management library e.g. the PSCI service
34  * manages the cpu context used for entry from and exit to the non-secure state.
35  * The Secure payload dispatcher service manages the context(s) corresponding to
36  * the secure state. It also uses this library to get access to the non-secure
37  * state cpu context pointers.
38  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
39  * which will used for programming an entry into a lower EL. The same context
40  * will used to save state upon exception entry from that EL.
41  ******************************************************************************/
cm_init(void)42 void __init cm_init(void)
43 {
44 	/*
45 	 * The context management library has only global data to intialize, but
46 	 * that will be done when the BSS is zeroed out
47 	 */
48 }
49 
50 /*******************************************************************************
51  * The following function initializes the cpu_context 'ctx' for
52  * first use, and sets the initial entrypoint state as specified by the
53  * entry_point_info structure.
54  *
55  * The security state to initialize is determined by the SECURE attribute
56  * of the entry_point_info.
57  *
58  * The EE and ST attributes are used to configure the endianness and secure
59  * timer availability for the new execution context.
60  *
61  * To prepare the register state for entry call cm_prepare_el3_exit() and
62  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
63  * cm_e1_sysreg_context_restore().
64  ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66 {
67 	unsigned int security_state;
68 	u_register_t scr_el3;
69 	el3_state_t *state;
70 	gp_regs_t *gp_regs;
71 	u_register_t sctlr_elx, actlr_elx;
72 
73 	assert(ctx != NULL);
74 
75 	security_state = GET_SECURITY_STATE(ep->h.attr);
76 
77 	/* Clear any residual register values from the context */
78 	zeromem(ctx, sizeof(*ctx));
79 
80 	/*
81 	 * SCR_EL3 was initialised during reset sequence in macro
82 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
83 	 * affect the next EL.
84 	 *
85 	 * The following fields are initially set to zero and then updated to
86 	 * the required value depending on the state of the SPSR_EL3 and the
87 	 * Security state and entrypoint attributes of the next EL.
88 	 */
89 	scr_el3 = read_scr();
90 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
91 			SCR_ST_BIT | SCR_HCE_BIT);
92 	/*
93 	 * SCR_NS: Set the security state of the next EL.
94 	 */
95 	if (security_state != SECURE)
96 		scr_el3 |= SCR_NS_BIT;
97 	/*
98 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
99 	 *  Exception level as specified by SPSR.
100 	 */
101 	if (GET_RW(ep->spsr) == MODE_RW_64)
102 		scr_el3 |= SCR_RW_BIT;
103 	/*
104 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
105 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
106 	 *  by the entrypoint attributes.
107 	 */
108 	if (EP_GET_ST(ep->h.attr) != 0U)
109 		scr_el3 |= SCR_ST_BIT;
110 
111 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
112 	/*
113 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
114 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
115 	 */
116 	scr_el3 |= SCR_TERR_BIT;
117 #endif
118 
119 #if !HANDLE_EA_EL3_FIRST
120 	/*
121 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
122 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
123 	 *  Aborts are taken to EL3.
124 	 */
125 	scr_el3 &= ~SCR_EA_BIT;
126 #endif
127 
128 #if FAULT_INJECTION_SUPPORT
129 	/* Enable fault injection from lower ELs */
130 	scr_el3 |= SCR_FIEN_BIT;
131 #endif
132 
133 #if !CTX_INCLUDE_PAUTH_REGS
134 	/*
135 	 * If the pointer authentication registers aren't saved during world
136 	 * switches the value of the registers can be leaked from the Secure to
137 	 * the Non-secure world. To prevent this, rather than enabling pointer
138 	 * authentication everywhere, we only enable it in the Non-secure world.
139 	 *
140 	 * If the Secure world wants to use pointer authentication,
141 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
142 	 */
143 	if (security_state == NON_SECURE)
144 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
145 #endif /* !CTX_INCLUDE_PAUTH_REGS */
146 
147 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
148 	/* Get Memory Tagging Extension support level */
149 	unsigned int mte = get_armv8_5_mte_support();
150 #endif
151 	/*
152 	 * Enable MTE support. Support is enabled unilaterally for the normal
153 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
154 	 * set.
155 	 */
156 #if CTX_INCLUDE_MTE_REGS
157 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
158 	scr_el3 |= SCR_ATA_BIT;
159 #else
160 	/*
161 	 * When MTE is only implemented at EL0, it can be enabled
162 	 * across both worlds as no MTE registers are used.
163 	 */
164 	if ((mte == MTE_IMPLEMENTED_EL0) ||
165 	/*
166 	 * When MTE is implemented at all ELs, it can be only enabled
167 	 * in Non-Secure world without register saving.
168 	 */
169 	  (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
170 	    (security_state == NON_SECURE))) {
171 		scr_el3 |= SCR_ATA_BIT;
172 	}
173 #endif	/* CTX_INCLUDE_MTE_REGS */
174 
175 #ifdef IMAGE_BL31
176 	/*
177 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
178 	 *  indicated by the interrupt routing model for BL31.
179 	 */
180 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
181 #endif
182 
183 	/*
184 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
185 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
186 	 * next mode is Hyp.
187 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
188 	 * same conditions as HVC instructions and when the processor supports
189 	 * ARMv8.6-FGT.
190 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
191 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
192 	 * and when the processor supports ECV.
193 	 */
194 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
195 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
196 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
197 		scr_el3 |= SCR_HCE_BIT;
198 
199 		if (is_armv8_6_fgt_present()) {
200 			scr_el3 |= SCR_FGTEN_BIT;
201 		}
202 
203 		if (get_armv8_6_ecv_support()
204 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
205 			scr_el3 |= SCR_ECVEN_BIT;
206 		}
207 	}
208 
209 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
210 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
211 		if (GET_RW(ep->spsr) != MODE_RW_64) {
212 			ERROR("S-EL2 can not be used in AArch32.");
213 			panic();
214 		}
215 
216 		scr_el3 |= SCR_EEL2_BIT;
217 	}
218 
219 	/*
220 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
221 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
222 	 * to 1 when EL2 is present.
223 	 */
224 	if (is_armv8_6_feat_amuv1p1_present() &&
225 		(el_implemented(2) != EL_IMPL_NONE)) {
226 		scr_el3 |= SCR_AMVOFFEN_BIT;
227 	}
228 
229 	/*
230 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
231 	 * execution state setting all fields rather than relying of the hw.
232 	 * Some fields have architecturally UNKNOWN reset values and these are
233 	 * set to zero.
234 	 *
235 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
236 	 *
237 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
238 	 *  required by PSCI specification)
239 	 */
240 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
241 	if (GET_RW(ep->spsr) == MODE_RW_64)
242 		sctlr_elx |= SCTLR_EL1_RES1;
243 	else {
244 		/*
245 		 * If the target execution state is AArch32 then the following
246 		 * fields need to be set.
247 		 *
248 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
249 		 *  instructions are not trapped to EL1.
250 		 *
251 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
252 		 *  instructions are not trapped to EL1.
253 		 *
254 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
255 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
256 		 */
257 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
258 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
259 	}
260 
261 #if ERRATA_A75_764081
262 	/*
263 	 * If workaround of errata 764081 for Cortex-A75 is used then set
264 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
265 	 */
266 	sctlr_elx |= SCTLR_IESB_BIT;
267 #endif
268 
269 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
270 	if (is_armv8_6_twed_present()) {
271 		uint32_t delay = plat_arm_set_twedel_scr_el3();
272 
273 		if (delay != TWED_DISABLED) {
274 			/* Make sure delay value fits */
275 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
276 
277 			/* Set delay in SCR_EL3 */
278 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
279 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
280 					<< SCR_TWEDEL_SHIFT);
281 
282 			/* Enable WFE delay */
283 			scr_el3 |= SCR_TWEDEn_BIT;
284 		}
285 	}
286 
287 	/*
288 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
289 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
290 	 * are not part of the stored cpu_context.
291 	 */
292 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
293 
294 	/*
295 	 * Base the context ACTLR_EL1 on the current value, as it is
296 	 * implementation defined. The context restore process will write
297 	 * the value from the context to the actual register and can cause
298 	 * problems for processor cores that don't expect certain bits to
299 	 * be zero.
300 	 */
301 	actlr_elx = read_actlr_el1();
302 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
303 
304 	/*
305 	 * Populate EL3 state so that we've the right context
306 	 * before doing ERET
307 	 */
308 	state = get_el3state_ctx(ctx);
309 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
310 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
311 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
312 
313 	/*
314 	 * Store the X0-X7 value from the entrypoint into the context
315 	 * Use memcpy as we are in control of the layout of the structures
316 	 */
317 	gp_regs = get_gpregs_ctx(ctx);
318 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
319 }
320 
321 /*******************************************************************************
322  * Enable architecture extensions on first entry to Non-secure world.
323  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
324  * it is zero.
325  ******************************************************************************/
enable_extensions_nonsecure(bool el2_unused)326 static void enable_extensions_nonsecure(bool el2_unused)
327 {
328 #if IMAGE_BL31
329 #if ENABLE_SPE_FOR_LOWER_ELS
330 	spe_enable(el2_unused);
331 #endif
332 
333 #if ENABLE_AMU
334 	amu_enable(el2_unused);
335 #endif
336 
337 #if ENABLE_SVE_FOR_NS
338 	sve_enable(el2_unused);
339 #endif
340 
341 #if ENABLE_MPAM_FOR_LOWER_ELS
342 	mpam_enable(el2_unused);
343 #endif
344 #endif
345 }
346 
347 /*******************************************************************************
348  * The following function initializes the cpu_context for a CPU specified by
349  * its `cpu_idx` for first use, and sets the initial entrypoint state as
350  * specified by the entry_point_info structure.
351  ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)352 void cm_init_context_by_index(unsigned int cpu_idx,
353 			      const entry_point_info_t *ep)
354 {
355 	cpu_context_t *ctx;
356 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
357 	cm_setup_context(ctx, ep);
358 }
359 
360 /*******************************************************************************
361  * The following function initializes the cpu_context for the current CPU
362  * for first use, and sets the initial entrypoint state as specified by the
363  * entry_point_info structure.
364  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)365 void cm_init_my_context(const entry_point_info_t *ep)
366 {
367 	cpu_context_t *ctx;
368 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
369 	cm_setup_context(ctx, ep);
370 }
371 
372 /*******************************************************************************
373  * Prepare the CPU system registers for first entry into secure or normal world
374  *
375  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
376  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
377  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
378  * For all entries, the EL1 registers are initialized from the cpu_context
379  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)380 void cm_prepare_el3_exit(uint32_t security_state)
381 {
382 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
383 	cpu_context_t *ctx = cm_get_context(security_state);
384 	bool el2_unused = false;
385 	uint64_t hcr_el2 = 0U;
386 
387 	assert(ctx != NULL);
388 
389 	if (security_state == NON_SECURE) {
390 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
391 						 CTX_SCR_EL3);
392 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
393 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
394 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
395 							   CTX_SCTLR_EL1);
396 			sctlr_elx &= SCTLR_EE_BIT;
397 			sctlr_elx |= SCTLR_EL2_RES1;
398 #if ERRATA_A75_764081
399 			/*
400 			 * If workaround of errata 764081 for Cortex-A75 is used
401 			 * then set SCTLR_EL2.IESB to enable Implicit Error
402 			 * Synchronization Barrier.
403 			 */
404 			sctlr_elx |= SCTLR_IESB_BIT;
405 #endif
406 			write_sctlr_el2(sctlr_elx);
407 		} else if (el_implemented(2) != EL_IMPL_NONE) {
408 			el2_unused = true;
409 
410 			/*
411 			 * EL2 present but unused, need to disable safely.
412 			 * SCTLR_EL2 can be ignored in this case.
413 			 *
414 			 * Set EL2 register width appropriately: Set HCR_EL2
415 			 * field to match SCR_EL3.RW.
416 			 */
417 			if ((scr_el3 & SCR_RW_BIT) != 0U)
418 				hcr_el2 |= HCR_RW_BIT;
419 
420 			/*
421 			 * For Armv8.3 pointer authentication feature, disable
422 			 * traps to EL2 when accessing key registers or using
423 			 * pointer authentication instructions from lower ELs.
424 			 */
425 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
426 
427 			write_hcr_el2(hcr_el2);
428 
429 			/*
430 			 * Initialise CPTR_EL2 setting all fields rather than
431 			 * relying on the hw. All fields have architecturally
432 			 * UNKNOWN reset values.
433 			 *
434 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
435 			 *  accesses to the CPACR_EL1 or CPACR from both
436 			 *  Execution states do not trap to EL2.
437 			 *
438 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
439 			 *  register accesses to the trace registers from both
440 			 *  Execution states do not trap to EL2.
441 			 *
442 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
443 			 *  to SIMD and floating-point functionality from both
444 			 *  Execution states do not trap to EL2.
445 			 */
446 			write_cptr_el2(CPTR_EL2_RESET_VAL &
447 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
448 					| CPTR_EL2_TFP_BIT));
449 
450 			/*
451 			 * Initialise CNTHCTL_EL2. All fields are
452 			 * architecturally UNKNOWN on reset and are set to zero
453 			 * except for field(s) listed below.
454 			 *
455 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
456 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
457 			 *  physical timer registers.
458 			 *
459 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
460 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
461 			 *  physical counter registers.
462 			 */
463 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
464 						EL1PCEN_BIT | EL1PCTEN_BIT);
465 
466 			/*
467 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
468 			 * architecturally UNKNOWN value.
469 			 */
470 			write_cntvoff_el2(0);
471 
472 			/*
473 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
474 			 * MPIDR_EL1 respectively.
475 			 */
476 			write_vpidr_el2(read_midr_el1());
477 			write_vmpidr_el2(read_mpidr_el1());
478 
479 			/*
480 			 * Initialise VTTBR_EL2. All fields are architecturally
481 			 * UNKNOWN on reset.
482 			 *
483 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
484 			 *  2 address translation is disabled, cache maintenance
485 			 *  operations depend on the VMID.
486 			 *
487 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
488 			 *  translation is disabled.
489 			 */
490 			write_vttbr_el2(VTTBR_RESET_VAL &
491 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
492 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
493 
494 			/*
495 			 * Initialise MDCR_EL2, setting all fields rather than
496 			 * relying on hw. Some fields are architecturally
497 			 * UNKNOWN on reset.
498 			 *
499 			 * MDCR_EL2.HLP: Set to one so that event counter
500 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
501 			 *  occurs on the increment that changes
502 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
503 			 *  implemented. This bit is RES0 in versions of the
504 			 *  architecture earlier than ARMv8.5, setting it to 1
505 			 *  doesn't have any effect on them.
506 			 *
507 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
508 			 *  Filter Control register TRFCR_EL1 at EL1 is not
509 			 *  trapped to EL2. This bit is RES0 in versions of
510 			 *  the architecture earlier than ARMv8.4.
511 			 *
512 			 * MDCR_EL2.HPMD: Set to one so that event counting is
513 			 *  prohibited at EL2. This bit is RES0 in versions of
514 			 *  the architecture earlier than ARMv8.1, setting it
515 			 *  to 1 doesn't have any effect on them.
516 			 *
517 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
518 			 *  Statistical Profiling control registers from EL1
519 			 *  do not trap to EL2. This bit is RES0 when SPE is
520 			 *  not implemented.
521 			 *
522 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
523 			 *  EL1 System register accesses to the Debug ROM
524 			 *  registers are not trapped to EL2.
525 			 *
526 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
527 			 *  System register accesses to the powerdown debug
528 			 *  registers are not trapped to EL2.
529 			 *
530 			 * MDCR_EL2.TDA: Set to zero so that System register
531 			 *  accesses to the debug registers do not trap to EL2.
532 			 *
533 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
534 			 *  are not routed to EL2.
535 			 *
536 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
537 			 *  Monitors.
538 			 *
539 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
540 			 *  EL1 accesses to all Performance Monitors registers
541 			 *  are not trapped to EL2.
542 			 *
543 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
544 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
545 			 *  trapped to EL2.
546 			 *
547 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
548 			 *  architecturally-defined reset value.
549 			 */
550 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
551 				     MDCR_EL2_HPMD) |
552 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
553 				   >> PMCR_EL0_N_SHIFT)) &
554 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
555 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
556 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
557 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
558 				     MDCR_EL2_TPMCR_BIT);
559 
560 			write_mdcr_el2(mdcr_el2);
561 
562 			/*
563 			 * Initialise HSTR_EL2. All fields are architecturally
564 			 * UNKNOWN on reset.
565 			 *
566 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
567 			 *  Non-secure EL0 or EL1 accesses to System registers
568 			 *  do not trap to EL2.
569 			 */
570 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
571 			/*
572 			 * Initialise CNTHP_CTL_EL2. All fields are
573 			 * architecturally UNKNOWN on reset.
574 			 *
575 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
576 			 *  physical timer and prevent timer interrupts.
577 			 */
578 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
579 						~(CNTHP_CTL_ENABLE_BIT));
580 		}
581 		enable_extensions_nonsecure(el2_unused);
582 	}
583 
584 	cm_el1_sysregs_context_restore(security_state);
585 	cm_set_next_eret_context(security_state);
586 }
587 
588 #if CTX_INCLUDE_EL2_REGS
589 /*******************************************************************************
590  * Save EL2 sysreg context
591  ******************************************************************************/
cm_el2_sysregs_context_save(uint32_t security_state)592 void cm_el2_sysregs_context_save(uint32_t security_state)
593 {
594 	u_register_t scr_el3 = read_scr();
595 
596 	/*
597 	 * Always save the non-secure EL2 context, only save the
598 	 * S-EL2 context if S-EL2 is enabled.
599 	 */
600 	if ((security_state == NON_SECURE) ||
601 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
602 		cpu_context_t *ctx;
603 
604 		ctx = cm_get_context(security_state);
605 		assert(ctx != NULL);
606 
607 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
608 	}
609 }
610 
611 /*******************************************************************************
612  * Restore EL2 sysreg context
613  ******************************************************************************/
cm_el2_sysregs_context_restore(uint32_t security_state)614 void cm_el2_sysregs_context_restore(uint32_t security_state)
615 {
616 	u_register_t scr_el3 = read_scr();
617 
618 	/*
619 	 * Always restore the non-secure EL2 context, only restore the
620 	 * S-EL2 context if S-EL2 is enabled.
621 	 */
622 	if ((security_state == NON_SECURE) ||
623 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
624 		cpu_context_t *ctx;
625 
626 		ctx = cm_get_context(security_state);
627 		assert(ctx != NULL);
628 
629 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
630 	}
631 }
632 #endif /* CTX_INCLUDE_EL2_REGS */
633 
634 /*******************************************************************************
635  * The next four functions are used by runtime services to save and restore
636  * EL1 context on the 'cpu_context' structure for the specified security
637  * state.
638  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)639 void cm_el1_sysregs_context_save(uint32_t security_state)
640 {
641 	cpu_context_t *ctx;
642 
643 	ctx = cm_get_context(security_state);
644 	assert(ctx != NULL);
645 
646 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
647 
648 #if IMAGE_BL31
649 	if (security_state == SECURE)
650 		PUBLISH_EVENT(cm_exited_secure_world);
651 	else
652 		PUBLISH_EVENT(cm_exited_normal_world);
653 #endif
654 }
655 
cm_el1_sysregs_context_restore(uint32_t security_state)656 void cm_el1_sysregs_context_restore(uint32_t security_state)
657 {
658 	cpu_context_t *ctx;
659 
660 	ctx = cm_get_context(security_state);
661 	assert(ctx != NULL);
662 
663 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
664 
665 #if IMAGE_BL31
666 	if (security_state == SECURE)
667 		PUBLISH_EVENT(cm_entering_secure_world);
668 	else
669 		PUBLISH_EVENT(cm_entering_normal_world);
670 #endif
671 }
672 
673 /*******************************************************************************
674  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
675  * given security state with the given entrypoint
676  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)677 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
678 {
679 	cpu_context_t *ctx;
680 	el3_state_t *state;
681 
682 	ctx = cm_get_context(security_state);
683 	assert(ctx != NULL);
684 
685 	/* Populate EL3 state so that ERET jumps to the correct entry */
686 	state = get_el3state_ctx(ctx);
687 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
688 }
689 
690 /*******************************************************************************
691  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
692  * pertaining to the given security state
693  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)694 void cm_set_elr_spsr_el3(uint32_t security_state,
695 			uintptr_t entrypoint, uint32_t spsr)
696 {
697 	cpu_context_t *ctx;
698 	el3_state_t *state;
699 
700 	ctx = cm_get_context(security_state);
701 	assert(ctx != NULL);
702 
703 	/* Populate EL3 state so that ERET jumps to the correct entry */
704 	state = get_el3state_ctx(ctx);
705 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
706 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
707 }
708 
709 /*******************************************************************************
710  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
711  * pertaining to the given security state using the value and bit position
712  * specified in the parameters. It preserves all other bits.
713  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)714 void cm_write_scr_el3_bit(uint32_t security_state,
715 			  uint32_t bit_pos,
716 			  uint32_t value)
717 {
718 	cpu_context_t *ctx;
719 	el3_state_t *state;
720 	u_register_t scr_el3;
721 
722 	ctx = cm_get_context(security_state);
723 	assert(ctx != NULL);
724 
725 	/* Ensure that the bit position is a valid one */
726 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
727 
728 	/* Ensure that the 'value' is only a bit wide */
729 	assert(value <= 1U);
730 
731 	/*
732 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
733 	 * and set it to its new value.
734 	 */
735 	state = get_el3state_ctx(ctx);
736 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
737 	scr_el3 &= ~(1UL << bit_pos);
738 	scr_el3 |= (u_register_t)value << bit_pos;
739 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
740 }
741 
742 /*******************************************************************************
743  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
744  * given security state.
745  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)746 u_register_t cm_get_scr_el3(uint32_t security_state)
747 {
748 	cpu_context_t *ctx;
749 	el3_state_t *state;
750 
751 	ctx = cm_get_context(security_state);
752 	assert(ctx != NULL);
753 
754 	/* Populate EL3 state so that ERET jumps to the correct entry */
755 	state = get_el3state_ctx(ctx);
756 	return read_ctx_reg(state, CTX_SCR_EL3);
757 }
758 
759 /*******************************************************************************
760  * This function is used to program the context that's used for exception
761  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
762  * the required security state
763  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)764 void cm_set_next_eret_context(uint32_t security_state)
765 {
766 	cpu_context_t *ctx;
767 
768 	ctx = cm_get_context(security_state);
769 	assert(ctx != NULL);
770 
771 	cm_set_next_context(ctx);
772 }
773