1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package asn1 implements parsing of DER-encoded ASN.1 data structures,
6// as defined in ITU-T Rec X.690.
7//
8// See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
9// http://luca.ntop.org/Teaching/Appunti/asn1.html.
10package asn1
11
12// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
13// are different encoding formats for those objects. Here, we'll be dealing
14// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
15// it's fast to parse and, unlike BER, has a unique encoding for every object.
16// When calculating hashes over objects, it's important that the resulting
17// bytes be the same at both ends and DER removes this margin of error.
18//
19// ASN.1 is very complex and this package doesn't attempt to implement
20// everything by any means.
21
22import (
23	"errors"
24	"fmt"
25	"math/big"
26	"reflect"
27	"strconv"
28	"time"
29	"unicode/utf8"
30)
31
32// A StructuralError suggests that the ASN.1 data is valid, but the Go type
33// which is receiving it doesn't match.
34type StructuralError struct {
35	Msg string
36}
37
38func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
39
40// A SyntaxError suggests that the ASN.1 data is invalid.
41type SyntaxError struct {
42	Msg string
43}
44
45func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
46
47// We start by dealing with each of the primitive types in turn.
48
49// BOOLEAN
50
51func parseBool(bytes []byte) (ret bool, err error) {
52	if len(bytes) != 1 {
53		err = SyntaxError{"invalid boolean"}
54		return
55	}
56
57	// DER demands that "If the encoding represents the boolean value TRUE,
58	// its single contents octet shall have all eight bits set to one."
59	// Thus only 0 and 255 are valid encoded values.
60	switch bytes[0] {
61	case 0:
62		ret = false
63	case 0xff:
64		ret = true
65	default:
66		err = SyntaxError{"invalid boolean"}
67	}
68
69	return
70}
71
72// INTEGER
73
74// checkInteger returns nil if the given bytes are a valid DER-encoded
75// INTEGER and an error otherwise.
76func checkInteger(bytes []byte) error {
77	if len(bytes) == 0 {
78		return StructuralError{"empty integer"}
79	}
80	if len(bytes) == 1 {
81		return nil
82	}
83	if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) {
84		return StructuralError{"integer not minimally-encoded"}
85	}
86	return nil
87}
88
89// parseInt64 treats the given bytes as a big-endian, signed integer and
90// returns the result.
91func parseInt64(bytes []byte) (ret int64, err error) {
92	err = checkInteger(bytes)
93	if err != nil {
94		return
95	}
96	if len(bytes) > 8 {
97		// We'll overflow an int64 in this case.
98		err = StructuralError{"integer too large"}
99		return
100	}
101	for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
102		ret <<= 8
103		ret |= int64(bytes[bytesRead])
104	}
105
106	// Shift up and down in order to sign extend the result.
107	ret <<= 64 - uint8(len(bytes))*8
108	ret >>= 64 - uint8(len(bytes))*8
109	return
110}
111
112// parseInt treats the given bytes as a big-endian, signed integer and returns
113// the result.
114func parseInt32(bytes []byte) (int32, error) {
115	if err := checkInteger(bytes); err != nil {
116		return 0, err
117	}
118	ret64, err := parseInt64(bytes)
119	if err != nil {
120		return 0, err
121	}
122	if ret64 != int64(int32(ret64)) {
123		return 0, StructuralError{"integer too large"}
124	}
125	return int32(ret64), nil
126}
127
128var bigOne = big.NewInt(1)
129
130// parseBigInt treats the given bytes as a big-endian, signed integer and returns
131// the result.
132func parseBigInt(bytes []byte) (*big.Int, error) {
133	if err := checkInteger(bytes); err != nil {
134		return nil, err
135	}
136	ret := new(big.Int)
137	if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
138		// This is a negative number.
139		notBytes := make([]byte, len(bytes))
140		for i := range notBytes {
141			notBytes[i] = ^bytes[i]
142		}
143		ret.SetBytes(notBytes)
144		ret.Add(ret, bigOne)
145		ret.Neg(ret)
146		return ret, nil
147	}
148	ret.SetBytes(bytes)
149	return ret, nil
150}
151
152// BIT STRING
153
154// BitString is the structure to use when you want an ASN.1 BIT STRING type. A
155// bit string is padded up to the nearest byte in memory and the number of
156// valid bits is recorded. Padding bits will be zero.
157type BitString struct {
158	Bytes     []byte // bits packed into bytes.
159	BitLength int    // length in bits.
160}
161
162// At returns the bit at the given index. If the index is out of range it
163// returns false.
164func (b BitString) At(i int) int {
165	if i < 0 || i >= b.BitLength {
166		return 0
167	}
168	x := i / 8
169	y := 7 - uint(i%8)
170	return int(b.Bytes[x]>>y) & 1
171}
172
173// RightAlign returns a slice where the padding bits are at the beginning. The
174// slice may share memory with the BitString.
175func (b BitString) RightAlign() []byte {
176	shift := uint(8 - (b.BitLength % 8))
177	if shift == 8 || len(b.Bytes) == 0 {
178		return b.Bytes
179	}
180
181	a := make([]byte, len(b.Bytes))
182	a[0] = b.Bytes[0] >> shift
183	for i := 1; i < len(b.Bytes); i++ {
184		a[i] = b.Bytes[i-1] << (8 - shift)
185		a[i] |= b.Bytes[i] >> shift
186	}
187
188	return a
189}
190
191// parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
192func parseBitString(bytes []byte) (ret BitString, err error) {
193	if len(bytes) == 0 {
194		err = SyntaxError{"zero length BIT STRING"}
195		return
196	}
197	paddingBits := int(bytes[0])
198	if paddingBits > 7 ||
199		len(bytes) == 1 && paddingBits > 0 ||
200		bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
201		err = SyntaxError{"invalid padding bits in BIT STRING"}
202		return
203	}
204	ret.BitLength = (len(bytes)-1)*8 - paddingBits
205	ret.Bytes = bytes[1:]
206	return
207}
208
209// OBJECT IDENTIFIER
210
211// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
212type ObjectIdentifier []int
213
214// Equal reports whether oi and other represent the same identifier.
215func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
216	if len(oi) != len(other) {
217		return false
218	}
219	for i := 0; i < len(oi); i++ {
220		if oi[i] != other[i] {
221			return false
222		}
223	}
224
225	return true
226}
227
228func (oi ObjectIdentifier) String() string {
229	var s string
230
231	for i, v := range oi {
232		if i > 0 {
233			s += "."
234		}
235		s += strconv.Itoa(v)
236	}
237
238	return s
239}
240
241// parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
242// returns it. An object identifier is a sequence of variable length integers
243// that are assigned in a hierarchy.
244func parseObjectIdentifier(bytes []byte) (s []int, err error) {
245	if len(bytes) == 0 {
246		err = SyntaxError{"zero length OBJECT IDENTIFIER"}
247		return
248	}
249
250	// In the worst case, we get two elements from the first byte (which is
251	// encoded differently) and then every varint is a single byte long.
252	s = make([]int, len(bytes)+1)
253
254	// The first varint is 40*value1 + value2:
255	// According to this packing, value1 can take the values 0, 1 and 2 only.
256	// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
257	// then there are no restrictions on value2.
258	v, offset, err := parseBase128Int(bytes, 0)
259	if err != nil {
260		return
261	}
262	if v < 80 {
263		s[0] = v / 40
264		s[1] = v % 40
265	} else {
266		s[0] = 2
267		s[1] = v - 80
268	}
269
270	i := 2
271	for ; offset < len(bytes); i++ {
272		v, offset, err = parseBase128Int(bytes, offset)
273		if err != nil {
274			return
275		}
276		s[i] = v
277	}
278	s = s[0:i]
279	return
280}
281
282// ENUMERATED
283
284// An Enumerated is represented as a plain int.
285type Enumerated int
286
287// FLAG
288
289// A Flag accepts any data and is set to true if present.
290type Flag bool
291
292// parseBase128Int parses a base-128 encoded int from the given offset in the
293// given byte slice. It returns the value and the new offset.
294func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
295	offset = initOffset
296	for shifted := 0; offset < len(bytes); shifted++ {
297		if shifted == 4 {
298			err = StructuralError{"base 128 integer too large"}
299			return
300		}
301		ret <<= 7
302		b := bytes[offset]
303		ret |= int(b & 0x7f)
304		offset++
305		if b&0x80 == 0 {
306			return
307		}
308	}
309	err = SyntaxError{"truncated base 128 integer"}
310	return
311}
312
313// UTCTime
314
315func parseUTCTime(bytes []byte) (ret time.Time, err error) {
316	s := string(bytes)
317
318	formatStr := "0601021504Z0700"
319	ret, err = time.Parse(formatStr, s)
320	if err != nil {
321		formatStr = "060102150405Z0700"
322		ret, err = time.Parse(formatStr, s)
323	}
324	if err != nil {
325		return
326	}
327
328	if serialized := ret.Format(formatStr); serialized != s {
329		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
330		return
331	}
332
333	if ret.Year() >= 2050 {
334		// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
335		ret = ret.AddDate(-100, 0, 0)
336	}
337
338	return
339}
340
341// parseGeneralizedTime parses the GeneralizedTime from the given byte slice
342// and returns the resulting time.
343func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
344	const formatStr = "20060102150405Z0700"
345	s := string(bytes)
346
347	if ret, err = time.Parse(formatStr, s); err != nil {
348		return
349	}
350
351	if serialized := ret.Format(formatStr); serialized != s {
352		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
353	}
354
355	return
356}
357
358// PrintableString
359
360// parsePrintableString parses a ASN.1 PrintableString from the given byte
361// array and returns it.
362func parsePrintableString(bytes []byte) (ret string, err error) {
363	for _, b := range bytes {
364		if !isPrintable(b) {
365			err = SyntaxError{"PrintableString contains invalid character"}
366			return
367		}
368	}
369	ret = string(bytes)
370	return
371}
372
373// isPrintable reports whether the given b is in the ASN.1 PrintableString set.
374func isPrintable(b byte) bool {
375	return 'a' <= b && b <= 'z' ||
376		'A' <= b && b <= 'Z' ||
377		'0' <= b && b <= '9' ||
378		'\'' <= b && b <= ')' ||
379		'+' <= b && b <= '/' ||
380		b == ' ' ||
381		b == ':' ||
382		b == '=' ||
383		b == '?' ||
384		// This is technically not allowed in a PrintableString.
385		// However, x509 certificates with wildcard strings don't
386		// always use the correct string type so we permit it.
387		b == '*'
388}
389
390// IA5String
391
392// parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
393// byte slice and returns it.
394func parseIA5String(bytes []byte) (ret string, err error) {
395	for _, b := range bytes {
396		if b >= utf8.RuneSelf {
397			err = SyntaxError{"IA5String contains invalid character"}
398			return
399		}
400	}
401	ret = string(bytes)
402	return
403}
404
405// T61String
406
407// parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
408// byte slice and returns it.
409func parseT61String(bytes []byte) (ret string, err error) {
410	return string(bytes), nil
411}
412
413// UTF8String
414
415// parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
416// array and returns it.
417func parseUTF8String(bytes []byte) (ret string, err error) {
418	if !utf8.Valid(bytes) {
419		return "", errors.New("asn1: invalid UTF-8 string")
420	}
421	return string(bytes), nil
422}
423
424// A RawValue represents an undecoded ASN.1 object.
425type RawValue struct {
426	Class, Tag int
427	IsCompound bool
428	Bytes      []byte
429	FullBytes  []byte // includes the tag and length
430}
431
432// RawContent is used to signal that the undecoded, DER data needs to be
433// preserved for a struct. To use it, the first field of the struct must have
434// this type. It's an error for any of the other fields to have this type.
435type RawContent []byte
436
437// Tagging
438
439// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
440// into a byte slice. It returns the parsed data and the new offset. SET and
441// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
442// don't distinguish between ordered and unordered objects in this code.
443func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
444	offset = initOffset
445	// parseTagAndLength should not be called without at least a single
446	// byte to read. Thus this check is for robustness:
447	if offset >= len(bytes) {
448		err = errors.New("asn1: internal error in parseTagAndLength")
449		return
450	}
451	b := bytes[offset]
452	offset++
453	ret.class = int(b >> 6)
454	ret.isCompound = b&0x20 == 0x20
455	ret.tag = int(b & 0x1f)
456
457	// If the bottom five bits are set, then the tag number is actually base 128
458	// encoded afterwards
459	if ret.tag == 0x1f {
460		ret.tag, offset, err = parseBase128Int(bytes, offset)
461		if err != nil {
462			return
463		}
464		// Tags should be encoded in minimal form.
465		if ret.tag < 0x1f {
466			err = SyntaxError{"non-minimal tag"}
467			return
468		}
469	}
470	if offset >= len(bytes) {
471		err = SyntaxError{"truncated tag or length"}
472		return
473	}
474	b = bytes[offset]
475	offset++
476	if b&0x80 == 0 {
477		// The length is encoded in the bottom 7 bits.
478		ret.length = int(b & 0x7f)
479	} else {
480		// Bottom 7 bits give the number of length bytes to follow.
481		numBytes := int(b & 0x7f)
482		if numBytes == 0 {
483			err = SyntaxError{"indefinite length found (not DER)"}
484			return
485		}
486		ret.length = 0
487		for i := 0; i < numBytes; i++ {
488			if offset >= len(bytes) {
489				err = SyntaxError{"truncated tag or length"}
490				return
491			}
492			b = bytes[offset]
493			offset++
494			if ret.length >= 1<<23 {
495				// We can't shift ret.length up without
496				// overflowing.
497				err = StructuralError{"length too large"}
498				return
499			}
500			ret.length <<= 8
501			ret.length |= int(b)
502			if ret.length == 0 {
503				// DER requires that lengths be minimal.
504				err = StructuralError{"superfluous leading zeros in length"}
505				return
506			}
507		}
508		// Short lengths must be encoded in short form.
509		if ret.length < 0x80 {
510			err = StructuralError{"non-minimal length"}
511			return
512		}
513	}
514
515	return
516}
517
518// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
519// a number of ASN.1 values from the given byte slice and returns them as a
520// slice of Go values of the given type.
521func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
522	expectedTag, compoundType, ok := getUniversalType(elemType)
523	if !ok {
524		err = StructuralError{"unknown Go type for slice"}
525		return
526	}
527
528	// First we iterate over the input and count the number of elements,
529	// checking that the types are correct in each case.
530	numElements := 0
531	for offset := 0; offset < len(bytes); {
532		var t tagAndLength
533		t, offset, err = parseTagAndLength(bytes, offset)
534		if err != nil {
535			return
536		}
537		switch t.tag {
538		case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
539			// We pretend that various other string types are
540			// PRINTABLE STRINGs so that a sequence of them can be
541			// parsed into a []string.
542			t.tag = TagPrintableString
543		case TagGeneralizedTime, TagUTCTime:
544			// Likewise, both time types are treated the same.
545			t.tag = TagUTCTime
546		}
547
548		if t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag {
549			err = StructuralError{"sequence tag mismatch"}
550			return
551		}
552		if invalidLength(offset, t.length, len(bytes)) {
553			err = SyntaxError{"truncated sequence"}
554			return
555		}
556		offset += t.length
557		numElements++
558	}
559	ret = reflect.MakeSlice(sliceType, numElements, numElements)
560	params := fieldParameters{}
561	offset := 0
562	for i := 0; i < numElements; i++ {
563		offset, err = parseField(ret.Index(i), bytes, offset, params)
564		if err != nil {
565			return
566		}
567	}
568	return
569}
570
571var (
572	bitStringType        = reflect.TypeOf(BitString{})
573	objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
574	enumeratedType       = reflect.TypeOf(Enumerated(0))
575	flagType             = reflect.TypeOf(Flag(false))
576	timeType             = reflect.TypeOf(time.Time{})
577	rawValueType         = reflect.TypeOf(RawValue{})
578	rawContentsType      = reflect.TypeOf(RawContent(nil))
579	bigIntType           = reflect.TypeOf(new(big.Int))
580)
581
582// invalidLength returns true iff offset + length > sliceLength, or if the
583// addition would overflow.
584func invalidLength(offset, length, sliceLength int) bool {
585	return offset+length < offset || offset+length > sliceLength
586}
587
588// parseField is the main parsing function. Given a byte slice and an offset
589// into the array, it will try to parse a suitable ASN.1 value out and store it
590// in the given Value.
591func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
592	offset = initOffset
593	fieldType := v.Type()
594
595	// If we have run out of data, it may be that there are optional elements at the end.
596	if offset == len(bytes) {
597		if !setDefaultValue(v, params) {
598			err = SyntaxError{"sequence truncated"}
599		}
600		return
601	}
602
603	// Deal with raw values.
604	if fieldType == rawValueType {
605		var t tagAndLength
606		t, offset, err = parseTagAndLength(bytes, offset)
607		if err != nil {
608			return
609		}
610		if invalidLength(offset, t.length, len(bytes)) {
611			err = SyntaxError{"data truncated"}
612			return
613		}
614		result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
615		offset += t.length
616		v.Set(reflect.ValueOf(result))
617		return
618	}
619
620	// Deal with the ANY type.
621	if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
622		var t tagAndLength
623		t, offset, err = parseTagAndLength(bytes, offset)
624		if err != nil {
625			return
626		}
627		if invalidLength(offset, t.length, len(bytes)) {
628			err = SyntaxError{"data truncated"}
629			return
630		}
631		var result interface{}
632		if !t.isCompound && t.class == ClassUniversal {
633			innerBytes := bytes[offset : offset+t.length]
634			switch t.tag {
635			case TagPrintableString:
636				result, err = parsePrintableString(innerBytes)
637			case TagIA5String:
638				result, err = parseIA5String(innerBytes)
639			// jtasn1 addition of following case
640			case TagGeneralString:
641				result, err = parseIA5String(innerBytes)
642			case TagT61String:
643				result, err = parseT61String(innerBytes)
644			case TagUTF8String:
645				result, err = parseUTF8String(innerBytes)
646			case TagInteger:
647				result, err = parseInt64(innerBytes)
648			case TagBitString:
649				result, err = parseBitString(innerBytes)
650			case TagOID:
651				result, err = parseObjectIdentifier(innerBytes)
652			case TagUTCTime:
653				result, err = parseUTCTime(innerBytes)
654			case TagGeneralizedTime:
655				result, err = parseGeneralizedTime(innerBytes)
656			case TagOctetString:
657				result = innerBytes
658			default:
659				// If we don't know how to handle the type, we just leave Value as nil.
660			}
661		}
662		offset += t.length
663		if err != nil {
664			return
665		}
666		if result != nil {
667			v.Set(reflect.ValueOf(result))
668		}
669		return
670	}
671	universalTag, compoundType, ok1 := getUniversalType(fieldType)
672	if !ok1 {
673		err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
674		return
675	}
676
677	t, offset, err := parseTagAndLength(bytes, offset)
678	if err != nil {
679		return
680	}
681	if params.explicit {
682		expectedClass := ClassContextSpecific
683		if params.application {
684			expectedClass = ClassApplication
685		}
686		if offset == len(bytes) {
687			err = StructuralError{"explicit tag has no child"}
688			return
689		}
690		if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
691			if t.length > 0 {
692				t, offset, err = parseTagAndLength(bytes, offset)
693				if err != nil {
694					return
695				}
696			} else {
697				if fieldType != flagType {
698					err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
699					return
700				}
701				v.SetBool(true)
702				return
703			}
704		} else {
705			// The tags didn't match, it might be an optional element.
706			ok := setDefaultValue(v, params)
707			if ok {
708				offset = initOffset
709			} else {
710				err = StructuralError{"explicitly tagged member didn't match"}
711			}
712			return
713		}
714	}
715
716	// Special case for strings: all the ASN.1 string types map to the Go
717	// type string. getUniversalType returns the tag for PrintableString
718	// when it sees a string, so if we see a different string type on the
719	// wire, we change the universal type to match.
720	if universalTag == TagPrintableString {
721		if t.class == ClassUniversal {
722			switch t.tag {
723			case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
724				universalTag = t.tag
725			}
726		} else if params.stringType != 0 {
727			universalTag = params.stringType
728		}
729	}
730
731	// Special case for time: UTCTime and GeneralizedTime both map to the
732	// Go type time.Time.
733	if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal {
734		universalTag = TagGeneralizedTime
735	}
736
737	if params.set {
738		universalTag = TagSet
739	}
740
741	expectedClass := ClassUniversal
742	expectedTag := universalTag
743
744	if !params.explicit && params.tag != nil {
745		expectedClass = ClassContextSpecific
746		expectedTag = *params.tag
747	}
748
749	if !params.explicit && params.application && params.tag != nil {
750		expectedClass = ClassApplication
751		expectedTag = *params.tag
752	}
753
754	// We have unwrapped any explicit tagging at this point.
755	if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
756		// Tags don't match. Again, it could be an optional element.
757		ok := setDefaultValue(v, params)
758		if ok {
759			offset = initOffset
760		} else {
761			err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
762		}
763		return
764	}
765	if invalidLength(offset, t.length, len(bytes)) {
766		err = SyntaxError{"data truncated"}
767		return
768	}
769	innerBytes := bytes[offset : offset+t.length]
770	offset += t.length
771
772	// We deal with the structures defined in this package first.
773	switch fieldType {
774	case objectIdentifierType:
775		newSlice, err1 := parseObjectIdentifier(innerBytes)
776		v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
777		if err1 == nil {
778			reflect.Copy(v, reflect.ValueOf(newSlice))
779		}
780		err = err1
781		return
782	case bitStringType:
783		bs, err1 := parseBitString(innerBytes)
784		if err1 == nil {
785			v.Set(reflect.ValueOf(bs))
786		}
787		err = err1
788		return
789	case timeType:
790		var time time.Time
791		var err1 error
792		if universalTag == TagUTCTime {
793			time, err1 = parseUTCTime(innerBytes)
794		} else {
795			time, err1 = parseGeneralizedTime(innerBytes)
796		}
797		if err1 == nil {
798			v.Set(reflect.ValueOf(time))
799		}
800		err = err1
801		return
802	case enumeratedType:
803		parsedInt, err1 := parseInt32(innerBytes)
804		if err1 == nil {
805			v.SetInt(int64(parsedInt))
806		}
807		err = err1
808		return
809	case flagType:
810		v.SetBool(true)
811		return
812	case bigIntType:
813		parsedInt, err1 := parseBigInt(innerBytes)
814		if err1 == nil {
815			v.Set(reflect.ValueOf(parsedInt))
816		}
817		err = err1
818		return
819	}
820	switch val := v; val.Kind() {
821	case reflect.Bool:
822		parsedBool, err1 := parseBool(innerBytes)
823		if err1 == nil {
824			val.SetBool(parsedBool)
825		}
826		err = err1
827		return
828	case reflect.Int, reflect.Int32, reflect.Int64:
829		if val.Type().Size() == 4 {
830			parsedInt, err1 := parseInt32(innerBytes)
831			if err1 == nil {
832				val.SetInt(int64(parsedInt))
833			}
834			err = err1
835		} else {
836			parsedInt, err1 := parseInt64(innerBytes)
837			if err1 == nil {
838				val.SetInt(parsedInt)
839			}
840			err = err1
841		}
842		return
843	// TODO(dfc) Add support for the remaining integer types
844	case reflect.Struct:
845		structType := fieldType
846
847		if structType.NumField() > 0 &&
848			structType.Field(0).Type == rawContentsType {
849			bytes := bytes[initOffset:offset]
850			val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
851		}
852
853		innerOffset := 0
854		for i := 0; i < structType.NumField(); i++ {
855			field := structType.Field(i)
856			if i == 0 && field.Type == rawContentsType {
857				continue
858			}
859			innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
860			if err != nil {
861				return
862			}
863		}
864		// We allow extra bytes at the end of the SEQUENCE because
865		// adding elements to the end has been used in X.509 as the
866		// version numbers have increased.
867		return
868	case reflect.Slice:
869		sliceType := fieldType
870		if sliceType.Elem().Kind() == reflect.Uint8 {
871			val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
872			reflect.Copy(val, reflect.ValueOf(innerBytes))
873			return
874		}
875		newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
876		if err1 == nil {
877			val.Set(newSlice)
878		}
879		err = err1
880		return
881	case reflect.String:
882		var v string
883		switch universalTag {
884		case TagPrintableString:
885			v, err = parsePrintableString(innerBytes)
886		case TagIA5String:
887			v, err = parseIA5String(innerBytes)
888		case TagT61String:
889			v, err = parseT61String(innerBytes)
890		case TagUTF8String:
891			v, err = parseUTF8String(innerBytes)
892		case TagGeneralString:
893			// GeneralString is specified in ISO-2022/ECMA-35,
894			// A brief review suggests that it includes structures
895			// that allow the encoding to change midstring and
896			// such. We give up and pass it as an 8-bit string.
897			v, err = parseT61String(innerBytes)
898		default:
899			err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
900		}
901		if err == nil {
902			val.SetString(v)
903		}
904		return
905	}
906	err = StructuralError{"unsupported: " + v.Type().String()}
907	return
908}
909
910// canHaveDefaultValue reports whether k is a Kind that we will set a default
911// value for. (A signed integer, essentially.)
912func canHaveDefaultValue(k reflect.Kind) bool {
913	switch k {
914	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
915		return true
916	}
917
918	return false
919}
920
921// setDefaultValue is used to install a default value, from a tag string, into
922// a Value. It is successful if the field was optional, even if a default value
923// wasn't provided or it failed to install it into the Value.
924func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
925	if !params.optional {
926		return
927	}
928	ok = true
929	if params.defaultValue == nil {
930		return
931	}
932	if canHaveDefaultValue(v.Kind()) {
933		v.SetInt(*params.defaultValue)
934	}
935	return
936}
937
938// Unmarshal parses the DER-encoded ASN.1 data structure b
939// and uses the reflect package to fill in an arbitrary value pointed at by val.
940// Because Unmarshal uses the reflect package, the structs
941// being written to must use upper case field names.
942//
943// An ASN.1 INTEGER can be written to an int, int32, int64,
944// or *big.Int (from the math/big package).
945// If the encoded value does not fit in the Go type,
946// Unmarshal returns a parse error.
947//
948// An ASN.1 BIT STRING can be written to a BitString.
949//
950// An ASN.1 OCTET STRING can be written to a []byte.
951//
952// An ASN.1 OBJECT IDENTIFIER can be written to an
953// ObjectIdentifier.
954//
955// An ASN.1 ENUMERATED can be written to an Enumerated.
956//
957// An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
958//
959// An ASN.1 PrintableString or IA5String can be written to a string.
960//
961// Any of the above ASN.1 values can be written to an interface{}.
962// The value stored in the interface has the corresponding Go type.
963// For integers, that type is int64.
964//
965// An ASN.1 SEQUENCE OF x or SET OF x can be written
966// to a slice if an x can be written to the slice's element type.
967//
968// An ASN.1 SEQUENCE or SET can be written to a struct
969// if each of the elements in the sequence can be
970// written to the corresponding element in the struct.
971//
972// The following tags on struct fields have special meaning to Unmarshal:
973//
974//	application	specifies that a APPLICATION tag is used
975//	default:x	sets the default value for optional integer fields
976//	explicit	specifies that an additional, explicit tag wraps the implicit one
977//	optional	marks the field as ASN.1 OPTIONAL
978//	set		causes a SET, rather than a SEQUENCE type to be expected
979//	tag:x		specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
980//
981// If the type of the first field of a structure is RawContent then the raw
982// ASN1 contents of the struct will be stored in it.
983//
984// If the type name of a slice element ends with "SET" then it's treated as if
985// the "set" tag was set on it. This can be used with nested slices where a
986// struct tag cannot be given.
987//
988// Other ASN.1 types are not supported; if it encounters them,
989// Unmarshal returns a parse error.
990func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
991	return UnmarshalWithParams(b, val, "")
992}
993
994// UnmarshalWithParams allows field parameters to be specified for the
995// top-level element. The form of the params is the same as the field tags.
996func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
997	v := reflect.ValueOf(val).Elem()
998	offset, err := parseField(v, b, 0, parseFieldParameters(params))
999	if err != nil {
1000		return nil, err
1001	}
1002	return b[offset:], nil
1003}
1004