1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3 * Copyright (C) STMicroelectronics 2020
4 */
5
6 #define LOG_CATEGORY UCLASS_NOP
7
8 #include <common.h>
9 #include <clk.h>
10 #include <dm.h>
11 #include <reset.h>
12 #include <dm/device_compat.h>
13 #include <linux/bitfield.h>
14 #include <linux/err.h>
15 #include <linux/iopoll.h>
16 #include <linux/ioport.h>
17
18 /* FMC2 Controller Registers */
19 #define FMC2_BCR1 0x0
20 #define FMC2_BTR1 0x4
21 #define FMC2_BCR(x) ((x) * 0x8 + FMC2_BCR1)
22 #define FMC2_BTR(x) ((x) * 0x8 + FMC2_BTR1)
23 #define FMC2_PCSCNTR 0x20
24 #define FMC2_BWTR1 0x104
25 #define FMC2_BWTR(x) ((x) * 0x8 + FMC2_BWTR1)
26
27 /* Register: FMC2_BCR1 */
28 #define FMC2_BCR1_CCLKEN BIT(20)
29 #define FMC2_BCR1_FMC2EN BIT(31)
30
31 /* Register: FMC2_BCRx */
32 #define FMC2_BCR_MBKEN BIT(0)
33 #define FMC2_BCR_MUXEN BIT(1)
34 #define FMC2_BCR_MTYP GENMASK(3, 2)
35 #define FMC2_BCR_MWID GENMASK(5, 4)
36 #define FMC2_BCR_FACCEN BIT(6)
37 #define FMC2_BCR_BURSTEN BIT(8)
38 #define FMC2_BCR_WAITPOL BIT(9)
39 #define FMC2_BCR_WAITCFG BIT(11)
40 #define FMC2_BCR_WREN BIT(12)
41 #define FMC2_BCR_WAITEN BIT(13)
42 #define FMC2_BCR_EXTMOD BIT(14)
43 #define FMC2_BCR_ASYNCWAIT BIT(15)
44 #define FMC2_BCR_CPSIZE GENMASK(18, 16)
45 #define FMC2_BCR_CBURSTRW BIT(19)
46 #define FMC2_BCR_NBLSET GENMASK(23, 22)
47
48 /* Register: FMC2_BTRx/FMC2_BWTRx */
49 #define FMC2_BXTR_ADDSET GENMASK(3, 0)
50 #define FMC2_BXTR_ADDHLD GENMASK(7, 4)
51 #define FMC2_BXTR_DATAST GENMASK(15, 8)
52 #define FMC2_BXTR_BUSTURN GENMASK(19, 16)
53 #define FMC2_BTR_CLKDIV GENMASK(23, 20)
54 #define FMC2_BTR_DATLAT GENMASK(27, 24)
55 #define FMC2_BXTR_ACCMOD GENMASK(29, 28)
56 #define FMC2_BXTR_DATAHLD GENMASK(31, 30)
57
58 /* Register: FMC2_PCSCNTR */
59 #define FMC2_PCSCNTR_CSCOUNT GENMASK(15, 0)
60 #define FMC2_PCSCNTR_CNTBEN(x) BIT((x) + 16)
61
62 #define FMC2_MAX_EBI_CE 4
63 #define FMC2_MAX_BANKS 5
64
65 #define FMC2_BCR_CPSIZE_0 0x0
66 #define FMC2_BCR_CPSIZE_128 0x1
67 #define FMC2_BCR_CPSIZE_256 0x2
68 #define FMC2_BCR_CPSIZE_512 0x3
69 #define FMC2_BCR_CPSIZE_1024 0x4
70
71 #define FMC2_BCR_MWID_8 0x0
72 #define FMC2_BCR_MWID_16 0x1
73
74 #define FMC2_BCR_MTYP_SRAM 0x0
75 #define FMC2_BCR_MTYP_PSRAM 0x1
76 #define FMC2_BCR_MTYP_NOR 0x2
77
78 #define FMC2_BXTR_EXTMOD_A 0x0
79 #define FMC2_BXTR_EXTMOD_B 0x1
80 #define FMC2_BXTR_EXTMOD_C 0x2
81 #define FMC2_BXTR_EXTMOD_D 0x3
82
83 #define FMC2_BCR_NBLSET_MAX 0x3
84 #define FMC2_BXTR_ADDSET_MAX 0xf
85 #define FMC2_BXTR_ADDHLD_MAX 0xf
86 #define FMC2_BXTR_DATAST_MAX 0xff
87 #define FMC2_BXTR_BUSTURN_MAX 0xf
88 #define FMC2_BXTR_DATAHLD_MAX 0x3
89 #define FMC2_BTR_CLKDIV_MAX 0xf
90 #define FMC2_BTR_DATLAT_MAX 0xf
91 #define FMC2_PCSCNTR_CSCOUNT_MAX 0xff
92
93 #define FMC2_NSEC_PER_SEC 1000000000L
94
95 enum stm32_fmc2_ebi_bank {
96 FMC2_EBI1 = 0,
97 FMC2_EBI2,
98 FMC2_EBI3,
99 FMC2_EBI4,
100 FMC2_NAND
101 };
102
103 enum stm32_fmc2_ebi_register_type {
104 FMC2_REG_BCR = 1,
105 FMC2_REG_BTR,
106 FMC2_REG_BWTR,
107 FMC2_REG_PCSCNTR
108 };
109
110 enum stm32_fmc2_ebi_transaction_type {
111 FMC2_ASYNC_MODE_1_SRAM = 0,
112 FMC2_ASYNC_MODE_1_PSRAM,
113 FMC2_ASYNC_MODE_A_SRAM,
114 FMC2_ASYNC_MODE_A_PSRAM,
115 FMC2_ASYNC_MODE_2_NOR,
116 FMC2_ASYNC_MODE_B_NOR,
117 FMC2_ASYNC_MODE_C_NOR,
118 FMC2_ASYNC_MODE_D_NOR,
119 FMC2_SYNC_READ_SYNC_WRITE_PSRAM,
120 FMC2_SYNC_READ_ASYNC_WRITE_PSRAM,
121 FMC2_SYNC_READ_SYNC_WRITE_NOR,
122 FMC2_SYNC_READ_ASYNC_WRITE_NOR
123 };
124
125 enum stm32_fmc2_ebi_buswidth {
126 FMC2_BUSWIDTH_8 = 8,
127 FMC2_BUSWIDTH_16 = 16
128 };
129
130 enum stm32_fmc2_ebi_cpsize {
131 FMC2_CPSIZE_0 = 0,
132 FMC2_CPSIZE_128 = 128,
133 FMC2_CPSIZE_256 = 256,
134 FMC2_CPSIZE_512 = 512,
135 FMC2_CPSIZE_1024 = 1024
136 };
137
138 struct stm32_fmc2_ebi {
139 struct clk clk;
140 fdt_addr_t io_base;
141 u8 bank_assigned;
142 };
143
144 /*
145 * struct stm32_fmc2_prop - STM32 FMC2 EBI property
146 * @name: the device tree binding name of the property
147 * @bprop: indicate that it is a boolean property
148 * @mprop: indicate that it is a mandatory property
149 * @reg_type: the register that have to be modified
150 * @reg_mask: the bit that have to be modified in the selected register
151 * in case of it is a boolean property
152 * @reset_val: the default value that have to be set in case the property
153 * has not been defined in the device tree
154 * @check: this callback ckecks that the property is compliant with the
155 * transaction type selected
156 * @calculate: this callback is called to calculate for exemple a timing
157 * set in nanoseconds in the device tree in clock cycles or in
158 * clock period
159 * @set: this callback applies the values in the registers
160 */
161 struct stm32_fmc2_prop {
162 const char *name;
163 bool bprop;
164 bool mprop;
165 int reg_type;
166 u32 reg_mask;
167 u32 reset_val;
168 int (*check)(struct stm32_fmc2_ebi *ebi,
169 const struct stm32_fmc2_prop *prop, int cs);
170 u32 (*calculate)(struct stm32_fmc2_ebi *ebi, int cs, u32 setup);
171 int (*set)(struct stm32_fmc2_ebi *ebi,
172 const struct stm32_fmc2_prop *prop,
173 int cs, u32 setup);
174 };
175
stm32_fmc2_ebi_check_mux(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs)176 static int stm32_fmc2_ebi_check_mux(struct stm32_fmc2_ebi *ebi,
177 const struct stm32_fmc2_prop *prop,
178 int cs)
179 {
180 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
181
182 if (bcr & FMC2_BCR_MTYP)
183 return 0;
184
185 return -EINVAL;
186 }
187
stm32_fmc2_ebi_check_waitcfg(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs)188 static int stm32_fmc2_ebi_check_waitcfg(struct stm32_fmc2_ebi *ebi,
189 const struct stm32_fmc2_prop *prop,
190 int cs)
191 {
192 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
193 u32 val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
194
195 if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN)
196 return 0;
197
198 return -EINVAL;
199 }
200
stm32_fmc2_ebi_check_sync_trans(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs)201 static int stm32_fmc2_ebi_check_sync_trans(struct stm32_fmc2_ebi *ebi,
202 const struct stm32_fmc2_prop *prop,
203 int cs)
204 {
205 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
206
207 if (bcr & FMC2_BCR_BURSTEN)
208 return 0;
209
210 return -EINVAL;
211 }
212
stm32_fmc2_ebi_check_async_trans(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs)213 static int stm32_fmc2_ebi_check_async_trans(struct stm32_fmc2_ebi *ebi,
214 const struct stm32_fmc2_prop *prop,
215 int cs)
216 {
217 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
218
219 if (!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW))
220 return 0;
221
222 return -EINVAL;
223 }
224
stm32_fmc2_ebi_check_cpsize(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs)225 static int stm32_fmc2_ebi_check_cpsize(struct stm32_fmc2_ebi *ebi,
226 const struct stm32_fmc2_prop *prop,
227 int cs)
228 {
229 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
230 u32 val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
231
232 if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN)
233 return 0;
234
235 return -EINVAL;
236 }
237
stm32_fmc2_ebi_check_address_hold(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs)238 static int stm32_fmc2_ebi_check_address_hold(struct stm32_fmc2_ebi *ebi,
239 const struct stm32_fmc2_prop *prop,
240 int cs)
241 {
242 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
243 u32 bxtr = prop->reg_type == FMC2_REG_BWTR ?
244 readl(ebi->io_base + FMC2_BWTR(cs)) :
245 readl(ebi->io_base + FMC2_BTR(cs));
246 u32 val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
247
248 if ((!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW)) &&
249 ((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN))
250 return 0;
251
252 return -EINVAL;
253 }
254
stm32_fmc2_ebi_check_clk_period(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs)255 static int stm32_fmc2_ebi_check_clk_period(struct stm32_fmc2_ebi *ebi,
256 const struct stm32_fmc2_prop *prop,
257 int cs)
258 {
259 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
260 u32 bcr1 = cs ? readl(ebi->io_base + FMC2_BCR1) : bcr;
261
262 if (bcr & FMC2_BCR_BURSTEN && (!cs || !(bcr1 & FMC2_BCR1_CCLKEN)))
263 return 0;
264
265 return -EINVAL;
266 }
267
stm32_fmc2_ebi_check_cclk(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs)268 static int stm32_fmc2_ebi_check_cclk(struct stm32_fmc2_ebi *ebi,
269 const struct stm32_fmc2_prop *prop,
270 int cs)
271 {
272 if (cs)
273 return -EINVAL;
274
275 return stm32_fmc2_ebi_check_sync_trans(ebi, prop, cs);
276 }
277
stm32_fmc2_ebi_ns_to_clock_cycles(struct stm32_fmc2_ebi * ebi,int cs,u32 setup)278 static u32 stm32_fmc2_ebi_ns_to_clock_cycles(struct stm32_fmc2_ebi *ebi,
279 int cs, u32 setup)
280 {
281 unsigned long hclk = clk_get_rate(&ebi->clk);
282 unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
283
284 return DIV_ROUND_UP(setup * 1000, hclkp);
285 }
286
stm32_fmc2_ebi_ns_to_clk_period(struct stm32_fmc2_ebi * ebi,int cs,u32 setup)287 static u32 stm32_fmc2_ebi_ns_to_clk_period(struct stm32_fmc2_ebi *ebi,
288 int cs, u32 setup)
289 {
290 u32 nb_clk_cycles = stm32_fmc2_ebi_ns_to_clock_cycles(ebi, cs, setup);
291 u32 bcr = readl(ebi->io_base + FMC2_BCR1);
292 u32 btr = bcr & FMC2_BCR1_CCLKEN || !cs ?
293 readl(ebi->io_base + FMC2_BTR1) :
294 readl(ebi->io_base + FMC2_BTR(cs));
295 u32 clk_period = FIELD_GET(FMC2_BTR_CLKDIV, btr) + 1;
296
297 return DIV_ROUND_UP(nb_clk_cycles, clk_period);
298 }
299
stm32_fmc2_ebi_get_reg(int reg_type,int cs,u32 * reg)300 static int stm32_fmc2_ebi_get_reg(int reg_type, int cs, u32 *reg)
301 {
302 switch (reg_type) {
303 case FMC2_REG_BCR:
304 *reg = FMC2_BCR(cs);
305 break;
306 case FMC2_REG_BTR:
307 *reg = FMC2_BTR(cs);
308 break;
309 case FMC2_REG_BWTR:
310 *reg = FMC2_BWTR(cs);
311 break;
312 case FMC2_REG_PCSCNTR:
313 *reg = FMC2_PCSCNTR;
314 break;
315 default:
316 return -EINVAL;
317 }
318
319 return 0;
320 }
321
stm32_fmc2_ebi_set_bit_field(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)322 static int stm32_fmc2_ebi_set_bit_field(struct stm32_fmc2_ebi *ebi,
323 const struct stm32_fmc2_prop *prop,
324 int cs, u32 setup)
325 {
326 u32 reg;
327 int ret;
328
329 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®);
330 if (ret)
331 return ret;
332
333 clrsetbits_le32(ebi->io_base + reg, prop->reg_mask,
334 setup ? prop->reg_mask : 0);
335
336 return 0;
337 }
338
stm32_fmc2_ebi_set_trans_type(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)339 static int stm32_fmc2_ebi_set_trans_type(struct stm32_fmc2_ebi *ebi,
340 const struct stm32_fmc2_prop *prop,
341 int cs, u32 setup)
342 {
343 u32 bcr_mask, bcr = FMC2_BCR_WREN;
344 u32 btr_mask, btr = 0;
345 u32 bwtr_mask, bwtr = 0;
346
347 bwtr_mask = FMC2_BXTR_ACCMOD;
348 btr_mask = FMC2_BXTR_ACCMOD;
349 bcr_mask = FMC2_BCR_MUXEN | FMC2_BCR_MTYP | FMC2_BCR_FACCEN |
350 FMC2_BCR_WREN | FMC2_BCR_WAITEN | FMC2_BCR_BURSTEN |
351 FMC2_BCR_EXTMOD | FMC2_BCR_CBURSTRW;
352
353 switch (setup) {
354 case FMC2_ASYNC_MODE_1_SRAM:
355 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM);
356 /*
357 * MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
358 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
359 */
360 break;
361 case FMC2_ASYNC_MODE_1_PSRAM:
362 /*
363 * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
364 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
365 */
366 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
367 break;
368 case FMC2_ASYNC_MODE_A_SRAM:
369 /*
370 * MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
371 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0
372 */
373 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM);
374 bcr |= FMC2_BCR_EXTMOD;
375 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
376 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
377 break;
378 case FMC2_ASYNC_MODE_A_PSRAM:
379 /*
380 * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
381 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0
382 */
383 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
384 bcr |= FMC2_BCR_EXTMOD;
385 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
386 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
387 break;
388 case FMC2_ASYNC_MODE_2_NOR:
389 /*
390 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
391 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
392 */
393 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
394 bcr |= FMC2_BCR_FACCEN;
395 break;
396 case FMC2_ASYNC_MODE_B_NOR:
397 /*
398 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
399 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 1
400 */
401 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
402 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
403 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B);
404 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B);
405 break;
406 case FMC2_ASYNC_MODE_C_NOR:
407 /*
408 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
409 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 2
410 */
411 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
412 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
413 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C);
414 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C);
415 break;
416 case FMC2_ASYNC_MODE_D_NOR:
417 /*
418 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
419 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 3
420 */
421 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
422 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
423 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
424 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
425 break;
426 case FMC2_SYNC_READ_SYNC_WRITE_PSRAM:
427 /*
428 * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0,
429 * WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0
430 */
431 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
432 bcr |= FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW;
433 break;
434 case FMC2_SYNC_READ_ASYNC_WRITE_PSRAM:
435 /*
436 * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0,
437 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
438 */
439 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
440 bcr |= FMC2_BCR_BURSTEN;
441 break;
442 case FMC2_SYNC_READ_SYNC_WRITE_NOR:
443 /*
444 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0,
445 * WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0
446 */
447 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
448 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW;
449 break;
450 case FMC2_SYNC_READ_ASYNC_WRITE_NOR:
451 /*
452 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0,
453 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
454 */
455 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
456 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN;
457 break;
458 default:
459 /* Type of transaction not supported */
460 return -EINVAL;
461 }
462
463 if (bcr & FMC2_BCR_EXTMOD)
464 clrsetbits_le32(ebi->io_base + FMC2_BWTR(cs),
465 bwtr_mask, bwtr);
466 clrsetbits_le32(ebi->io_base + FMC2_BTR(cs), btr_mask, btr);
467 clrsetbits_le32(ebi->io_base + FMC2_BCR(cs), bcr_mask, bcr);
468
469 return 0;
470 }
471
stm32_fmc2_ebi_set_buswidth(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)472 static int stm32_fmc2_ebi_set_buswidth(struct stm32_fmc2_ebi *ebi,
473 const struct stm32_fmc2_prop *prop,
474 int cs, u32 setup)
475 {
476 u32 val;
477
478 switch (setup) {
479 case FMC2_BUSWIDTH_8:
480 val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_8);
481 break;
482 case FMC2_BUSWIDTH_16:
483 val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_16);
484 break;
485 default:
486 /* Buswidth not supported */
487 return -EINVAL;
488 }
489
490 clrsetbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_MWID, val);
491
492 return 0;
493 }
494
stm32_fmc2_ebi_set_cpsize(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)495 static int stm32_fmc2_ebi_set_cpsize(struct stm32_fmc2_ebi *ebi,
496 const struct stm32_fmc2_prop *prop,
497 int cs, u32 setup)
498 {
499 u32 val;
500
501 switch (setup) {
502 case FMC2_CPSIZE_0:
503 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_0);
504 break;
505 case FMC2_CPSIZE_128:
506 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_128);
507 break;
508 case FMC2_CPSIZE_256:
509 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_256);
510 break;
511 case FMC2_CPSIZE_512:
512 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_512);
513 break;
514 case FMC2_CPSIZE_1024:
515 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_1024);
516 break;
517 default:
518 /* Cpsize not supported */
519 return -EINVAL;
520 }
521
522 clrsetbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_CPSIZE, val);
523
524 return 0;
525 }
526
stm32_fmc2_ebi_set_bl_setup(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)527 static int stm32_fmc2_ebi_set_bl_setup(struct stm32_fmc2_ebi *ebi,
528 const struct stm32_fmc2_prop *prop,
529 int cs, u32 setup)
530 {
531 u32 val;
532
533 val = min_t(u32, setup, FMC2_BCR_NBLSET_MAX);
534 val = FIELD_PREP(FMC2_BCR_NBLSET, val);
535 clrsetbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_NBLSET, val);
536
537 return 0;
538 }
539
stm32_fmc2_ebi_set_address_setup(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)540 static int stm32_fmc2_ebi_set_address_setup(struct stm32_fmc2_ebi *ebi,
541 const struct stm32_fmc2_prop *prop,
542 int cs, u32 setup)
543 {
544 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
545 u32 bxtr = prop->reg_type == FMC2_REG_BWTR ?
546 readl(ebi->io_base + FMC2_BWTR(cs)) :
547 readl(ebi->io_base + FMC2_BTR(cs));
548 u32 reg, val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
549 int ret;
550
551 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®);
552 if (ret)
553 return ret;
554
555 if ((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN)
556 val = clamp_val(setup, 1, FMC2_BXTR_ADDSET_MAX);
557 else
558 val = min_t(u32, setup, FMC2_BXTR_ADDSET_MAX);
559 val = FIELD_PREP(FMC2_BXTR_ADDSET, val);
560 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_ADDSET, val);
561
562 return 0;
563 }
564
stm32_fmc2_ebi_set_address_hold(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)565 static int stm32_fmc2_ebi_set_address_hold(struct stm32_fmc2_ebi *ebi,
566 const struct stm32_fmc2_prop *prop,
567 int cs, u32 setup)
568 {
569 u32 val, reg;
570 int ret;
571
572 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®);
573 if (ret)
574 return ret;
575
576 val = clamp_val(setup, 1, FMC2_BXTR_ADDHLD_MAX);
577 val = FIELD_PREP(FMC2_BXTR_ADDHLD, val);
578 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_ADDHLD, val);
579
580 return 0;
581 }
582
stm32_fmc2_ebi_set_data_setup(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)583 static int stm32_fmc2_ebi_set_data_setup(struct stm32_fmc2_ebi *ebi,
584 const struct stm32_fmc2_prop *prop,
585 int cs, u32 setup)
586 {
587 u32 val, reg;
588 int ret;
589
590 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®);
591 if (ret)
592 return ret;
593
594 val = clamp_val(setup, 1, FMC2_BXTR_DATAST_MAX);
595 val = FIELD_PREP(FMC2_BXTR_DATAST, val);
596 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_DATAST, val);
597
598 return 0;
599 }
600
stm32_fmc2_ebi_set_bus_turnaround(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)601 static int stm32_fmc2_ebi_set_bus_turnaround(struct stm32_fmc2_ebi *ebi,
602 const struct stm32_fmc2_prop *prop,
603 int cs, u32 setup)
604 {
605 u32 val, reg;
606 int ret;
607
608 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®);
609 if (ret)
610 return ret;
611
612 val = setup ? min_t(u32, setup - 1, FMC2_BXTR_BUSTURN_MAX) : 0;
613 val = FIELD_PREP(FMC2_BXTR_BUSTURN, val);
614 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_BUSTURN, val);
615
616 return 0;
617 }
618
stm32_fmc2_ebi_set_data_hold(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)619 static int stm32_fmc2_ebi_set_data_hold(struct stm32_fmc2_ebi *ebi,
620 const struct stm32_fmc2_prop *prop,
621 int cs, u32 setup)
622 {
623 u32 val, reg;
624 int ret;
625
626 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®);
627 if (ret)
628 return ret;
629
630 if (prop->reg_type == FMC2_REG_BWTR)
631 val = setup ? min_t(u32, setup - 1, FMC2_BXTR_DATAHLD_MAX) : 0;
632 else
633 val = min_t(u32, setup, FMC2_BXTR_DATAHLD_MAX);
634 val = FIELD_PREP(FMC2_BXTR_DATAHLD, val);
635 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_DATAHLD, val);
636
637 return 0;
638 }
639
stm32_fmc2_ebi_set_clk_period(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)640 static int stm32_fmc2_ebi_set_clk_period(struct stm32_fmc2_ebi *ebi,
641 const struct stm32_fmc2_prop *prop,
642 int cs, u32 setup)
643 {
644 u32 val;
645
646 val = setup ? clamp_val(setup - 1, 1, FMC2_BTR_CLKDIV_MAX) : 1;
647 val = FIELD_PREP(FMC2_BTR_CLKDIV, val);
648 clrsetbits_le32(ebi->io_base + FMC2_BTR(cs), FMC2_BTR_CLKDIV, val);
649
650 return 0;
651 }
652
stm32_fmc2_ebi_set_data_latency(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)653 static int stm32_fmc2_ebi_set_data_latency(struct stm32_fmc2_ebi *ebi,
654 const struct stm32_fmc2_prop *prop,
655 int cs, u32 setup)
656 {
657 u32 val;
658
659 val = setup > 1 ? min_t(u32, setup - 2, FMC2_BTR_DATLAT_MAX) : 0;
660 val = FIELD_PREP(FMC2_BTR_DATLAT, val);
661 clrsetbits_le32(ebi->io_base + FMC2_BTR(cs), FMC2_BTR_DATLAT, val);
662
663 return 0;
664 }
665
stm32_fmc2_ebi_set_max_low_pulse(struct stm32_fmc2_ebi * ebi,const struct stm32_fmc2_prop * prop,int cs,u32 setup)666 static int stm32_fmc2_ebi_set_max_low_pulse(struct stm32_fmc2_ebi *ebi,
667 const struct stm32_fmc2_prop *prop,
668 int cs, u32 setup)
669 {
670 u32 old_val, new_val, pcscntr;
671
672 if (setup < 1)
673 return 0;
674
675 pcscntr = readl(ebi->io_base + FMC2_PCSCNTR);
676
677 /* Enable counter for the bank */
678 setbits_le32(ebi->io_base + FMC2_PCSCNTR, FMC2_PCSCNTR_CNTBEN(cs));
679
680 new_val = min_t(u32, setup - 1, FMC2_PCSCNTR_CSCOUNT_MAX);
681 old_val = FIELD_GET(FMC2_PCSCNTR_CSCOUNT, pcscntr);
682 if (old_val && new_val > old_val)
683 /* Keep current counter value */
684 return 0;
685
686 new_val = FIELD_PREP(FMC2_PCSCNTR_CSCOUNT, new_val);
687 clrsetbits_le32(ebi->io_base + FMC2_PCSCNTR,
688 FMC2_PCSCNTR_CSCOUNT, new_val);
689
690 return 0;
691 }
692
693 static const struct stm32_fmc2_prop stm32_fmc2_child_props[] = {
694 /* st,fmc2-ebi-cs-trans-type must be the first property */
695 {
696 .name = "st,fmc2-ebi-cs-transaction-type",
697 .mprop = true,
698 .set = stm32_fmc2_ebi_set_trans_type,
699 },
700 {
701 .name = "st,fmc2-ebi-cs-cclk-enable",
702 .bprop = true,
703 .reg_type = FMC2_REG_BCR,
704 .reg_mask = FMC2_BCR1_CCLKEN,
705 .check = stm32_fmc2_ebi_check_cclk,
706 .set = stm32_fmc2_ebi_set_bit_field,
707 },
708 {
709 .name = "st,fmc2-ebi-cs-mux-enable",
710 .bprop = true,
711 .reg_type = FMC2_REG_BCR,
712 .reg_mask = FMC2_BCR_MUXEN,
713 .check = stm32_fmc2_ebi_check_mux,
714 .set = stm32_fmc2_ebi_set_bit_field,
715 },
716 {
717 .name = "st,fmc2-ebi-cs-buswidth",
718 .reset_val = FMC2_BUSWIDTH_16,
719 .set = stm32_fmc2_ebi_set_buswidth,
720 },
721 {
722 .name = "st,fmc2-ebi-cs-waitpol-high",
723 .bprop = true,
724 .reg_type = FMC2_REG_BCR,
725 .reg_mask = FMC2_BCR_WAITPOL,
726 .set = stm32_fmc2_ebi_set_bit_field,
727 },
728 {
729 .name = "st,fmc2-ebi-cs-waitcfg-enable",
730 .bprop = true,
731 .reg_type = FMC2_REG_BCR,
732 .reg_mask = FMC2_BCR_WAITCFG,
733 .check = stm32_fmc2_ebi_check_waitcfg,
734 .set = stm32_fmc2_ebi_set_bit_field,
735 },
736 {
737 .name = "st,fmc2-ebi-cs-wait-enable",
738 .bprop = true,
739 .reg_type = FMC2_REG_BCR,
740 .reg_mask = FMC2_BCR_WAITEN,
741 .check = stm32_fmc2_ebi_check_sync_trans,
742 .set = stm32_fmc2_ebi_set_bit_field,
743 },
744 {
745 .name = "st,fmc2-ebi-cs-asyncwait-enable",
746 .bprop = true,
747 .reg_type = FMC2_REG_BCR,
748 .reg_mask = FMC2_BCR_ASYNCWAIT,
749 .check = stm32_fmc2_ebi_check_async_trans,
750 .set = stm32_fmc2_ebi_set_bit_field,
751 },
752 {
753 .name = "st,fmc2-ebi-cs-cpsize",
754 .check = stm32_fmc2_ebi_check_cpsize,
755 .set = stm32_fmc2_ebi_set_cpsize,
756 },
757 {
758 .name = "st,fmc2-ebi-cs-byte-lane-setup-ns",
759 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
760 .set = stm32_fmc2_ebi_set_bl_setup,
761 },
762 {
763 .name = "st,fmc2-ebi-cs-address-setup-ns",
764 .reg_type = FMC2_REG_BTR,
765 .reset_val = FMC2_BXTR_ADDSET_MAX,
766 .check = stm32_fmc2_ebi_check_async_trans,
767 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
768 .set = stm32_fmc2_ebi_set_address_setup,
769 },
770 {
771 .name = "st,fmc2-ebi-cs-address-hold-ns",
772 .reg_type = FMC2_REG_BTR,
773 .reset_val = FMC2_BXTR_ADDHLD_MAX,
774 .check = stm32_fmc2_ebi_check_address_hold,
775 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
776 .set = stm32_fmc2_ebi_set_address_hold,
777 },
778 {
779 .name = "st,fmc2-ebi-cs-data-setup-ns",
780 .reg_type = FMC2_REG_BTR,
781 .reset_val = FMC2_BXTR_DATAST_MAX,
782 .check = stm32_fmc2_ebi_check_async_trans,
783 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
784 .set = stm32_fmc2_ebi_set_data_setup,
785 },
786 {
787 .name = "st,fmc2-ebi-cs-bus-turnaround-ns",
788 .reg_type = FMC2_REG_BTR,
789 .reset_val = FMC2_BXTR_BUSTURN_MAX + 1,
790 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
791 .set = stm32_fmc2_ebi_set_bus_turnaround,
792 },
793 {
794 .name = "st,fmc2-ebi-cs-data-hold-ns",
795 .reg_type = FMC2_REG_BTR,
796 .check = stm32_fmc2_ebi_check_async_trans,
797 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
798 .set = stm32_fmc2_ebi_set_data_hold,
799 },
800 {
801 .name = "st,fmc2-ebi-cs-clk-period-ns",
802 .reset_val = FMC2_BTR_CLKDIV_MAX + 1,
803 .check = stm32_fmc2_ebi_check_clk_period,
804 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
805 .set = stm32_fmc2_ebi_set_clk_period,
806 },
807 {
808 .name = "st,fmc2-ebi-cs-data-latency-ns",
809 .check = stm32_fmc2_ebi_check_sync_trans,
810 .calculate = stm32_fmc2_ebi_ns_to_clk_period,
811 .set = stm32_fmc2_ebi_set_data_latency,
812 },
813 {
814 .name = "st,fmc2-ebi-cs-write-address-setup-ns",
815 .reg_type = FMC2_REG_BWTR,
816 .reset_val = FMC2_BXTR_ADDSET_MAX,
817 .check = stm32_fmc2_ebi_check_async_trans,
818 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
819 .set = stm32_fmc2_ebi_set_address_setup,
820 },
821 {
822 .name = "st,fmc2-ebi-cs-write-address-hold-ns",
823 .reg_type = FMC2_REG_BWTR,
824 .reset_val = FMC2_BXTR_ADDHLD_MAX,
825 .check = stm32_fmc2_ebi_check_address_hold,
826 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
827 .set = stm32_fmc2_ebi_set_address_hold,
828 },
829 {
830 .name = "st,fmc2-ebi-cs-write-data-setup-ns",
831 .reg_type = FMC2_REG_BWTR,
832 .reset_val = FMC2_BXTR_DATAST_MAX,
833 .check = stm32_fmc2_ebi_check_async_trans,
834 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
835 .set = stm32_fmc2_ebi_set_data_setup,
836 },
837 {
838 .name = "st,fmc2-ebi-cs-write-bus-turnaround-ns",
839 .reg_type = FMC2_REG_BWTR,
840 .reset_val = FMC2_BXTR_BUSTURN_MAX + 1,
841 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
842 .set = stm32_fmc2_ebi_set_bus_turnaround,
843 },
844 {
845 .name = "st,fmc2-ebi-cs-write-data-hold-ns",
846 .reg_type = FMC2_REG_BWTR,
847 .check = stm32_fmc2_ebi_check_async_trans,
848 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
849 .set = stm32_fmc2_ebi_set_data_hold,
850 },
851 {
852 .name = "st,fmc2-ebi-cs-max-low-pulse-ns",
853 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
854 .set = stm32_fmc2_ebi_set_max_low_pulse,
855 },
856 };
857
stm32_fmc2_ebi_parse_prop(struct stm32_fmc2_ebi * ebi,ofnode node,const struct stm32_fmc2_prop * prop,int cs)858 static int stm32_fmc2_ebi_parse_prop(struct stm32_fmc2_ebi *ebi,
859 ofnode node,
860 const struct stm32_fmc2_prop *prop,
861 int cs)
862 {
863 u32 setup = 0;
864
865 if (!prop->set) {
866 log_err("property %s is not well defined\n", prop->name);
867 return -EINVAL;
868 }
869
870 if (prop->check && prop->check(ebi, prop, cs))
871 /* Skip this property */
872 return 0;
873
874 if (prop->bprop) {
875 bool bprop;
876
877 bprop = ofnode_read_bool(node, prop->name);
878 if (prop->mprop && !bprop) {
879 log_err("mandatory property %s not defined in the device tree\n",
880 prop->name);
881 return -EINVAL;
882 }
883
884 if (bprop)
885 setup = 1;
886 } else {
887 u32 val;
888 int ret;
889
890 ret = ofnode_read_u32(node, prop->name, &val);
891 if (prop->mprop && ret) {
892 log_err("mandatory property %s not defined in the device tree\n",
893 prop->name);
894 return ret;
895 }
896
897 if (ret)
898 setup = prop->reset_val;
899 else if (prop->calculate)
900 setup = prop->calculate(ebi, cs, val);
901 else
902 setup = val;
903 }
904
905 return prop->set(ebi, prop, cs, setup);
906 }
907
stm32_fmc2_ebi_enable_bank(struct stm32_fmc2_ebi * ebi,int cs)908 static void stm32_fmc2_ebi_enable_bank(struct stm32_fmc2_ebi *ebi, int cs)
909 {
910 setbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_MBKEN);
911 }
912
stm32_fmc2_ebi_disable_bank(struct stm32_fmc2_ebi * ebi,int cs)913 static void stm32_fmc2_ebi_disable_bank(struct stm32_fmc2_ebi *ebi, int cs)
914 {
915 clrbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_MBKEN);
916 }
917
918 /* NWAIT signal can not be connected to EBI controller and NAND controller */
stm32_fmc2_ebi_nwait_used_by_ctrls(struct stm32_fmc2_ebi * ebi)919 static bool stm32_fmc2_ebi_nwait_used_by_ctrls(struct stm32_fmc2_ebi *ebi)
920 {
921 unsigned int cs;
922 u32 bcr;
923
924 for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
925 if (!(ebi->bank_assigned & BIT(cs)))
926 continue;
927
928 bcr = readl(ebi->io_base + FMC2_BCR(cs));
929 if ((bcr & FMC2_BCR_WAITEN || bcr & FMC2_BCR_ASYNCWAIT) &&
930 ebi->bank_assigned & BIT(FMC2_NAND))
931 return true;
932 }
933
934 return false;
935 }
936
stm32_fmc2_ebi_enable(struct stm32_fmc2_ebi * ebi)937 static void stm32_fmc2_ebi_enable(struct stm32_fmc2_ebi *ebi)
938 {
939 setbits_le32(ebi->io_base + FMC2_BCR1, FMC2_BCR1_FMC2EN);
940 }
941
stm32_fmc2_ebi_setup_cs(struct stm32_fmc2_ebi * ebi,ofnode node,u32 cs)942 static int stm32_fmc2_ebi_setup_cs(struct stm32_fmc2_ebi *ebi,
943 ofnode node, u32 cs)
944 {
945 unsigned int i;
946 int ret;
947
948 stm32_fmc2_ebi_disable_bank(ebi, cs);
949
950 for (i = 0; i < ARRAY_SIZE(stm32_fmc2_child_props); i++) {
951 const struct stm32_fmc2_prop *p = &stm32_fmc2_child_props[i];
952
953 ret = stm32_fmc2_ebi_parse_prop(ebi, node, p, cs);
954 if (ret) {
955 log_err("property %s could not be set: %d\n",
956 p->name, ret);
957 return ret;
958 }
959 }
960
961 stm32_fmc2_ebi_enable_bank(ebi, cs);
962
963 return 0;
964 }
965
stm32_fmc2_ebi_parse_dt(struct udevice * dev,struct stm32_fmc2_ebi * ebi)966 static int stm32_fmc2_ebi_parse_dt(struct udevice *dev,
967 struct stm32_fmc2_ebi *ebi)
968 {
969 ofnode child;
970 bool child_found = false;
971 u32 bank;
972 int ret;
973
974 dev_for_each_subnode(child, dev) {
975 ret = ofnode_read_u32(child, "reg", &bank);
976 if (ret) {
977 dev_err(dev, "could not retrieve reg property: %d\n", ret);
978 return ret;
979 }
980
981 if (bank >= FMC2_MAX_BANKS) {
982 dev_err(dev, "invalid reg value: %d\n", bank);
983 return -EINVAL;
984 }
985
986 if (ebi->bank_assigned & BIT(bank)) {
987 dev_err(dev, "bank already assigned: %d\n", bank);
988 return -EINVAL;
989 }
990
991 if (bank < FMC2_MAX_EBI_CE) {
992 ret = stm32_fmc2_ebi_setup_cs(ebi, child, bank);
993 if (ret) {
994 dev_err(dev, "setup chip select %d failed: %d\n", bank, ret);
995 return ret;
996 }
997 }
998
999 ebi->bank_assigned |= BIT(bank);
1000 child_found = true;
1001 }
1002
1003 if (!child_found) {
1004 dev_warn(dev, "no subnodes found, disable the driver.\n");
1005 return -ENODEV;
1006 }
1007
1008 if (stm32_fmc2_ebi_nwait_used_by_ctrls(ebi)) {
1009 dev_err(dev, "NWAIT signal connected to EBI and NAND controllers\n");
1010 return -EINVAL;
1011 }
1012
1013 stm32_fmc2_ebi_enable(ebi);
1014
1015 return 0;
1016 }
1017
stm32_fmc2_ebi_probe(struct udevice * dev)1018 static int stm32_fmc2_ebi_probe(struct udevice *dev)
1019 {
1020 struct stm32_fmc2_ebi *ebi = dev_get_priv(dev);
1021 struct reset_ctl reset;
1022 int ret;
1023
1024 ebi->io_base = dev_read_addr(dev);
1025 if (ebi->io_base == FDT_ADDR_T_NONE)
1026 return -EINVAL;
1027
1028 ret = clk_get_by_index(dev, 0, &ebi->clk);
1029 if (ret)
1030 return ret;
1031
1032 ret = clk_enable(&ebi->clk);
1033 if (ret)
1034 return ret;
1035
1036 ret = reset_get_by_index(dev, 0, &reset);
1037 if (!ret) {
1038 reset_assert(&reset);
1039 udelay(2);
1040 reset_deassert(&reset);
1041 }
1042
1043 return stm32_fmc2_ebi_parse_dt(dev, ebi);
1044 }
1045
1046 static const struct udevice_id stm32_fmc2_ebi_match[] = {
1047 {.compatible = "st,stm32mp1-fmc2-ebi"},
1048 { /* Sentinel */ }
1049 };
1050
1051 U_BOOT_DRIVER(stm32_fmc2_ebi) = {
1052 .name = "stm32_fmc2_ebi",
1053 .id = UCLASS_NOP,
1054 .of_match = stm32_fmc2_ebi_match,
1055 .probe = stm32_fmc2_ebi_probe,
1056 .priv_auto = sizeof(struct stm32_fmc2_ebi),
1057 .bind = dm_scan_fdt_dev,
1058 };
1059