1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * K2G EVM : Board initialization
4  *
5  * (C) Copyright 2015
6  *     Texas Instruments Incorporated, <www.ti.com>
7  */
8 #include <common.h>
9 #include <eeprom.h>
10 #include <env.h>
11 #include <hang.h>
12 #include <image.h>
13 #include <init.h>
14 #include <asm/arch/clock.h>
15 #include <asm/ti-common/keystone_net.h>
16 #include <asm/arch/psc_defs.h>
17 #include <asm/arch/mmc_host_def.h>
18 #include <fdtdec.h>
19 #include <i2c.h>
20 #include <remoteproc.h>
21 #include <linux/bitops.h>
22 #include <linux/delay.h>
23 #include "mux-k2g.h"
24 #include "../common/board_detect.h"
25 
26 #define K2G_GP_AUDIO_CODEC_ADDRESS	0x1B
27 
28 const unsigned int sysclk_array[MAX_SYSCLK] = {
29 	19200000,
30 	24000000,
31 	25000000,
32 	26000000,
33 };
34 
get_external_clk(u32 clk)35 unsigned int get_external_clk(u32 clk)
36 {
37 	unsigned int clk_freq;
38 	u8 sysclk_index = get_sysclk_index();
39 
40 	switch (clk) {
41 	case sys_clk:
42 		clk_freq = sysclk_array[sysclk_index];
43 		break;
44 	case pa_clk:
45 		clk_freq = sysclk_array[sysclk_index];
46 		break;
47 	case tetris_clk:
48 		clk_freq = sysclk_array[sysclk_index];
49 		break;
50 	case ddr3a_clk:
51 		clk_freq = sysclk_array[sysclk_index];
52 		break;
53 	case uart_clk:
54 		clk_freq = sysclk_array[sysclk_index];
55 		break;
56 	default:
57 		clk_freq = 0;
58 		break;
59 	}
60 
61 	return clk_freq;
62 }
63 
64 int speeds[DEVSPEED_NUMSPDS] = {
65 	SPD400,
66 	SPD600,
67 	SPD800,
68 	SPD900,
69 	SPD1000,
70 	SPD900,
71 	SPD800,
72 	SPD600,
73 	SPD400,
74 	SPD200,
75 };
76 
77 static int dev_speeds[DEVSPEED_NUMSPDS] = {
78 	SPD600,
79 	SPD800,
80 	SPD900,
81 	SPD1000,
82 	SPD900,
83 	SPD800,
84 	SPD600,
85 	SPD400,
86 };
87 
88 static struct pll_init_data main_pll_config[MAX_SYSCLK][NUM_SPDS] = {
89 	[SYSCLK_19MHz] = {
90 		[SPD400]	= {MAIN_PLL, 125, 3, 2},
91 		[SPD600]	= {MAIN_PLL, 125, 2, 2},
92 		[SPD800]	= {MAIN_PLL, 250, 3, 2},
93 		[SPD900]	= {MAIN_PLL, 187, 2, 2},
94 		[SPD1000]	= {MAIN_PLL, 104, 1, 2},
95 	},
96 	[SYSCLK_24MHz] = {
97 		[SPD400]	= {MAIN_PLL, 100, 3, 2},
98 		[SPD600]	= {MAIN_PLL, 300, 6, 2},
99 		[SPD800]	= {MAIN_PLL, 200, 3, 2},
100 		[SPD900]	= {MAIN_PLL, 75, 1, 2},
101 		[SPD1000]	= {MAIN_PLL, 250, 3, 2},
102 	},
103 	[SYSCLK_25MHz] = {
104 		[SPD400]	= {MAIN_PLL, 32, 1, 2},
105 		[SPD600]	= {MAIN_PLL, 48, 1, 2},
106 		[SPD800]	= {MAIN_PLL, 64, 1, 2},
107 		[SPD900]	= {MAIN_PLL, 72, 1, 2},
108 		[SPD1000]	= {MAIN_PLL, 80, 1, 2},
109 	},
110 	[SYSCLK_26MHz] = {
111 		[SPD400]	= {MAIN_PLL, 400, 13, 2},
112 		[SPD600]	= {MAIN_PLL, 230, 5, 2},
113 		[SPD800]	= {MAIN_PLL, 123, 2, 2},
114 		[SPD900]	= {MAIN_PLL, 69, 1, 2},
115 		[SPD1000]	= {MAIN_PLL, 384, 5, 2},
116 	},
117 };
118 
119 static struct pll_init_data tetris_pll_config[MAX_SYSCLK][NUM_SPDS] = {
120 	[SYSCLK_19MHz] = {
121 		[SPD200]	= {TETRIS_PLL, 625, 6, 10},
122 		[SPD400]	= {TETRIS_PLL, 125, 1, 6},
123 		[SPD600]	= {TETRIS_PLL, 125, 1, 4},
124 		[SPD800]	= {TETRIS_PLL, 333, 2, 4},
125 		[SPD900]	= {TETRIS_PLL, 187, 2, 2},
126 		[SPD1000]	= {TETRIS_PLL, 104, 1, 2},
127 	},
128 	[SYSCLK_24MHz] = {
129 		[SPD200]	= {TETRIS_PLL, 250, 3, 10},
130 		[SPD400]	= {TETRIS_PLL, 100, 1, 6},
131 		[SPD600]	= {TETRIS_PLL, 100, 1, 4},
132 		[SPD800]	= {TETRIS_PLL, 400, 3, 4},
133 		[SPD900]	= {TETRIS_PLL, 75, 1, 2},
134 		[SPD1000]	= {TETRIS_PLL, 250, 3, 2},
135 	},
136 	[SYSCLK_25MHz] = {
137 		[SPD200]	= {TETRIS_PLL, 80, 1, 10},
138 		[SPD400]	= {TETRIS_PLL, 96, 1, 6},
139 		[SPD600]	= {TETRIS_PLL, 96, 1, 4},
140 		[SPD800]	= {TETRIS_PLL, 128, 1, 4},
141 		[SPD900]	= {TETRIS_PLL, 72, 1, 2},
142 		[SPD1000]	= {TETRIS_PLL, 80, 1, 2},
143 	},
144 	[SYSCLK_26MHz] = {
145 		[SPD200]	= {TETRIS_PLL, 307, 4, 10},
146 		[SPD400]	= {TETRIS_PLL, 369, 4, 6},
147 		[SPD600]	= {TETRIS_PLL, 369, 4, 4},
148 		[SPD800]	= {TETRIS_PLL, 123, 1, 4},
149 		[SPD900]	= {TETRIS_PLL, 69, 1, 2},
150 		[SPD1000]	= {TETRIS_PLL, 384, 5, 2},
151 	},
152 };
153 
154 static struct pll_init_data uart_pll_config[MAX_SYSCLK] = {
155 	[SYSCLK_19MHz] = {UART_PLL, 160, 1, 8},
156 	[SYSCLK_24MHz] = {UART_PLL, 128, 1, 8},
157 	[SYSCLK_25MHz] = {UART_PLL, 768, 5, 10},
158 	[SYSCLK_26MHz] = {UART_PLL, 384, 13, 2},
159 };
160 
161 static struct pll_init_data nss_pll_config[MAX_SYSCLK] = {
162 	[SYSCLK_19MHz] = {NSS_PLL, 625, 6, 2},
163 	[SYSCLK_24MHz] = {NSS_PLL, 250, 3, 2},
164 	[SYSCLK_25MHz] = {NSS_PLL, 80, 1, 2},
165 	[SYSCLK_26MHz] = {NSS_PLL, 1000, 13, 2},
166 };
167 
168 static struct pll_init_data ddr3_pll_config_800[MAX_SYSCLK] = {
169 	[SYSCLK_19MHz] = {DDR3A_PLL, 167, 1, 16},
170 	[SYSCLK_24MHz] = {DDR3A_PLL, 133, 1, 16},
171 	[SYSCLK_25MHz] = {DDR3A_PLL, 128, 1, 16},
172 	[SYSCLK_26MHz] = {DDR3A_PLL, 123, 1, 16},
173 };
174 
175 static struct pll_init_data ddr3_pll_config_1066[MAX_SYSCLK] = {
176 	[SYSCLK_19MHz] = {DDR3A_PLL, 194, 1, 14},
177 	[SYSCLK_24MHz] = {DDR3A_PLL, 156, 1, 14},
178 	[SYSCLK_25MHz] = {DDR3A_PLL, 149, 1, 14},
179 	[SYSCLK_26MHz] = {DDR3A_PLL, 144, 1, 14},
180 };
181 
get_pll_init_data(int pll)182 struct pll_init_data *get_pll_init_data(int pll)
183 {
184 	int speed;
185 	struct pll_init_data *data = NULL;
186 	u8 sysclk_index = get_sysclk_index();
187 
188 	switch (pll) {
189 	case MAIN_PLL:
190 		speed = get_max_dev_speed(dev_speeds);
191 		data = &main_pll_config[sysclk_index][speed];
192 		break;
193 	case TETRIS_PLL:
194 		speed = get_max_arm_speed(speeds);
195 		data = &tetris_pll_config[sysclk_index][speed];
196 		break;
197 	case NSS_PLL:
198 		data = &nss_pll_config[sysclk_index];
199 		break;
200 	case UART_PLL:
201 		data = &uart_pll_config[sysclk_index];
202 		break;
203 	case DDR3_PLL:
204 		if (cpu_revision() & CPU_66AK2G1x) {
205 			speed = get_max_arm_speed(speeds);
206 			if (speed == SPD1000)
207 				data = &ddr3_pll_config_1066[sysclk_index];
208 			else
209 				data = &ddr3_pll_config_800[sysclk_index];
210 		} else {
211 			data = &ddr3_pll_config_800[sysclk_index];
212 		}
213 		break;
214 	default:
215 		data = NULL;
216 	}
217 
218 	return data;
219 }
220 
221 s16 divn_val[16] = {
222 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
223 };
224 
225 #if defined(CONFIG_MMC)
board_mmc_init(struct bd_info * bis)226 int board_mmc_init(struct bd_info *bis)
227 {
228 	if (psc_enable_module(KS2_LPSC_MMC)) {
229 		printf("%s module enabled failed\n", __func__);
230 		return -1;
231 	}
232 
233 	if (board_is_k2g_gp() || board_is_k2g_g1())
234 		omap_mmc_init(0, 0, 0, -1, -1);
235 
236 	omap_mmc_init(1, 0, 0, -1, -1);
237 	return 0;
238 }
239 #endif
240 
241 #if defined(CONFIG_MULTI_DTB_FIT)
board_fit_config_name_match(const char * name)242 int board_fit_config_name_match(const char *name)
243 {
244 	bool eeprom_read = board_ti_was_eeprom_read();
245 
246 	if (!strcmp(name, "keystone-k2g-generic") && !eeprom_read)
247 		return 0;
248 	else if (!strcmp(name, "keystone-k2g-evm") &&
249 		(board_ti_is("66AK2GGP") || board_ti_is("66AK2GG1")))
250 		return 0;
251 	else if (!strcmp(name, "keystone-k2g-ice") &&
252 		 (board_ti_is("66AK2GIC") || board_is_k2g_i1()))
253 		return 0;
254 	else
255 		return -1;
256 }
257 #endif
258 
259 #if defined(CONFIG_DTB_RESELECT)
k2g_alt_board_detect(void)260 static int k2g_alt_board_detect(void)
261 {
262 #if !CONFIG_IS_ENABLED(DM_I2C)
263 	int rc;
264 
265 	rc = i2c_set_bus_num(1);
266 	if (rc)
267 		return rc;
268 
269 	rc = i2c_probe(K2G_GP_AUDIO_CODEC_ADDRESS);
270 	if (rc)
271 		return rc;
272 #else
273 	struct udevice *bus, *dev;
274 	int rc;
275 
276 	rc = uclass_get_device_by_seq(UCLASS_I2C, 1, &bus);
277 	if (rc)
278 		return rc;
279 	rc = dm_i2c_probe(bus, K2G_GP_AUDIO_CODEC_ADDRESS, 0, &dev);
280 	if (rc)
281 		return rc;
282 #endif
283 	ti_i2c_eeprom_am_set("66AK2GGP", "1.0X");
284 
285 	return 0;
286 }
287 
k2g_reset_mux_config(void)288 static void k2g_reset_mux_config(void)
289 {
290 	/* Unlock the reset mux register */
291 	clrbits_le32(KS2_RSTMUX8, RSTMUX_LOCK8_MASK);
292 
293 	/* Configure BOOTCFG_RSTMUX8 for WDT event to cause a device reset */
294 	clrsetbits_le32(KS2_RSTMUX8, RSTMUX_OMODE8_MASK,
295 			RSTMUX_OMODE8_DEV_RESET << RSTMUX_OMODE8_SHIFT);
296 
297 	/* lock the reset mux register to prevent any spurious writes. */
298 	setbits_le32(KS2_RSTMUX8, RSTMUX_LOCK8_MASK);
299 }
300 
embedded_dtb_select(void)301 int embedded_dtb_select(void)
302 {
303 	int rc;
304 	rc = ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
305 			CONFIG_EEPROM_CHIP_ADDRESS);
306 	if (rc) {
307 		rc = k2g_alt_board_detect();
308 		if (rc) {
309 			printf("Unable to do board detection\n");
310 			return -1;
311 		}
312 	}
313 
314 	fdtdec_setup();
315 
316 	k2g_mux_config();
317 
318 	k2g_reset_mux_config();
319 
320 	if (board_is_k2g_gp() || board_is_k2g_g1()) {
321 		/* deassert FLASH_HOLD */
322 		clrbits_le32(K2G_GPIO1_BANK2_BASE + K2G_GPIO_DIR_OFFSET,
323 			     BIT(9));
324 		setbits_le32(K2G_GPIO1_BANK2_BASE + K2G_GPIO_SETDATA_OFFSET,
325 			     BIT(9));
326 	} else if (board_is_k2g_ice() || board_is_k2g_i1()) {
327 		/* GBE Phy workaround. For Phy to latch the input
328 		 * configuration, a GPIO reset is asserted at the
329 		 * Phy reset pin to latch configuration correctly after SoC
330 		 * reset. GPIO0 Pin 10 (Ball AA20) is used for this on ICE
331 		 * board. Just do a low to high transition.
332 		 */
333 		clrbits_le32(K2G_GPIO0_BANK0_BASE + K2G_GPIO_DIR_OFFSET,
334 			     BIT(10));
335 		setbits_le32(K2G_GPIO0_BANK0_BASE + K2G_GPIO_CLRDATA_OFFSET,
336 			     BIT(10));
337 		/* Delay just to get a transition to high */
338 		udelay(100);
339 		setbits_le32(K2G_GPIO0_BANK0_BASE + K2G_GPIO_SETDATA_OFFSET,
340 			     BIT(10));
341 	}
342 
343 	return 0;
344 }
345 #endif
346 
347 #ifdef CONFIG_BOARD_LATE_INIT
board_late_init(void)348 int board_late_init(void)
349 {
350 #if !defined(CONFIG_SPL_BUILD) && defined(CONFIG_TI_I2C_BOARD_DETECT)
351 	int rc;
352 
353 	rc = ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
354 			CONFIG_EEPROM_CHIP_ADDRESS);
355 	if (rc)
356 		printf("ti_i2c_eeprom_init failed %d\n", rc);
357 
358 	board_ti_set_ethaddr(1);
359 #endif
360 
361 #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
362 	if (board_is_k2g_gp())
363 		env_set("board_name", "66AK2GGP\0");
364 	else if (board_is_k2g_g1())
365 		env_set("board_name", "66AK2GG1\0");
366 	else if (board_is_k2g_ice())
367 		env_set("board_name", "66AK2GIC\0");
368 	else if (board_is_k2g_i1())
369 		env_set("board_name", "66AK2GI1\0");
370 #endif
371 	return 0;
372 }
373 #endif
374 
375 #ifdef CONFIG_BOARD_EARLY_INIT_F
board_early_init_f(void)376 int board_early_init_f(void)
377 {
378 	init_plls();
379 
380 	k2g_mux_config();
381 
382 	return 0;
383 }
384 #endif
385 
386 #ifdef CONFIG_SPL_BUILD
spl_init_keystone_plls(void)387 void spl_init_keystone_plls(void)
388 {
389 	init_plls();
390 }
391 #endif
392 
393 #ifdef CONFIG_TI_SECURE_DEVICE
board_pmmc_image_process(ulong pmmc_image,size_t pmmc_size)394 void board_pmmc_image_process(ulong pmmc_image, size_t pmmc_size)
395 {
396 	int id = env_get_ulong("dev_pmmc", 10, 0);
397 	int ret;
398 
399 	if (!rproc_is_initialized())
400 		rproc_init();
401 
402 	ret = rproc_load(id, pmmc_image, pmmc_size);
403 	printf("Load Remote Processor %d with data@addr=0x%08lx %u bytes:%s\n",
404 	       id, pmmc_image, pmmc_size, ret ? " Failed!" : " Success!");
405 
406 	if (!ret)
407 		rproc_start(id);
408 }
409 
410 U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_PMMC, board_pmmc_image_process);
411 #endif
412