1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2010 - 2011
4  * NVIDIA Corporation <www.nvidia.com>
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/clock.h>
10 #include <asm/arch/flow.h>
11 #include <asm/arch/pinmux.h>
12 #include <asm/arch/tegra.h>
13 #include <asm/arch-tegra/ap.h>
14 #include <asm/arch-tegra/apb_misc.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/pmc.h>
17 #include <asm/arch-tegra/warmboot.h>
18 #include "warmboot_avp.h"
19 
20 #define DEBUG_RESET_CORESIGHT
21 
wb_start(void)22 void wb_start(void)
23 {
24 	struct apb_misc_pp_ctlr *apb_misc =
25 				(struct apb_misc_pp_ctlr *)NV_PA_APB_MISC_BASE;
26 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
27 	struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
28 	struct clk_rst_ctlr *clkrst =
29 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
30 	union osc_ctrl_reg osc_ctrl;
31 	union pllx_base_reg pllx_base;
32 	union pllx_misc_reg pllx_misc;
33 	union scratch3_reg scratch3;
34 	u32 reg;
35 
36 	/* enable JTAG & TBE */
37 	writel(CONFIG_CTL_TBE | CONFIG_CTL_JTAG, &apb_misc->cfg_ctl);
38 
39 	/* Are we running where we're supposed to be? */
40 	asm volatile (
41 		"adr	%0, wb_start;"	/* reg: wb_start address */
42 		: "=r"(reg)		/* output */
43 					/* no input, no clobber list */
44 	);
45 
46 	if (reg != NV_WB_RUN_ADDRESS)
47 		goto do_reset;
48 
49 	/* Are we running with AVP? */
50 	if (readl(NV_PA_PG_UP_BASE + PG_UP_TAG_0) != PG_UP_TAG_AVP)
51 		goto do_reset;
52 
53 #ifdef DEBUG_RESET_CORESIGHT
54 	/* Assert CoreSight reset */
55 	reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
56 	reg |= SWR_CSITE_RST;
57 	writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
58 #endif
59 
60 	/* TODO: Set the drive strength - maybe make this a board parameter? */
61 	osc_ctrl.word = readl(&clkrst->crc_osc_ctrl);
62 	osc_ctrl.xofs = 4;
63 	osc_ctrl.xoe = 1;
64 	writel(osc_ctrl.word, &clkrst->crc_osc_ctrl);
65 
66 	/* Power up the CPU complex if necessary */
67 	if (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) {
68 		reg = PWRGATE_TOGGLE_PARTID_CPU | PWRGATE_TOGGLE_START;
69 		writel(reg, &pmc->pmc_pwrgate_toggle);
70 		while (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU))
71 			;
72 	}
73 
74 	/* Remove the I/O clamps from the CPU power partition. */
75 	reg = readl(&pmc->pmc_remove_clamping);
76 	reg |= CPU_CLMP;
77 	writel(reg, &pmc->pmc_remove_clamping);
78 
79 	reg = EVENT_ZERO_VAL_20 | EVENT_MSEC | EVENT_MODE_STOP;
80 	writel(reg, &flow->halt_cop_events);
81 
82 	/* Assert CPU complex reset */
83 	reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
84 	reg |= CPU_RST;
85 	writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
86 
87 	/* Hold both CPUs in reset */
88 	reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_CPURESET1 | CPU_CMPLX_DERESET0 |
89 	      CPU_CMPLX_DERESET1 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DBGRESET1;
90 	writel(reg, &clkrst->crc_cpu_cmplx_set);
91 
92 	/* Halt CPU1 at the flow controller for uni-processor configurations */
93 	writel(EVENT_MODE_STOP, &flow->halt_cpu1_events);
94 
95 	/*
96 	 * Set the CPU reset vector. SCRATCH41 contains the physical
97 	 * address of the CPU-side restoration code.
98 	 */
99 	reg = readl(&pmc->pmc_scratch41);
100 	writel(reg, EXCEP_VECTOR_CPU_RESET_VECTOR);
101 
102 	/* Select CPU complex clock source */
103 	writel(CCLK_PLLP_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
104 
105 	/* Start the CPU0 clock and stop the CPU1 clock */
106 	reg = CPU_CMPLX_CPU_BRIDGE_CLKDIV_4 | CPU_CMPLX_CPU0_CLK_STP_RUN |
107 	      CPU_CMPLX_CPU1_CLK_STP_STOP;
108 	writel(reg, &clkrst->crc_clk_cpu_cmplx);
109 
110 	/* Enable the CPU complex clock */
111 	reg = readl(&clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
112 	reg |= CLK_ENB_CPU;
113 	writel(reg, &clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
114 
115 	/* Make sure the resets were held for at least 2 microseconds */
116 	reg = readl(TIMER_USEC_CNTR);
117 	while (readl(TIMER_USEC_CNTR) <= (reg + 2))
118 		;
119 
120 #ifdef DEBUG_RESET_CORESIGHT
121 	/*
122 	 * De-assert CoreSight reset.
123 	 * NOTE: We're leaving the CoreSight clock on the oscillator for
124 	 *	now. It will be restored to its original clock source
125 	 *	when the CPU-side restoration code runs.
126 	 */
127 	reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
128 	reg &= ~SWR_CSITE_RST;
129 	writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
130 #endif
131 
132 	/* Unlock the CPU CoreSight interfaces */
133 	reg = 0xC5ACCE55;
134 	writel(reg, CSITE_CPU_DBG0_LAR);
135 	writel(reg, CSITE_CPU_DBG1_LAR);
136 
137 	/*
138 	 * Sample the microsecond timestamp again. This is the time we must
139 	 * use when returning from LP0 for PLL stabilization delays.
140 	 */
141 	reg = readl(TIMER_USEC_CNTR);
142 	writel(reg, &pmc->pmc_scratch1);
143 
144 	pllx_base.word = 0;
145 	pllx_misc.word = 0;
146 	scratch3.word = readl(&pmc->pmc_scratch3);
147 
148 	/* Get the OSC. For 19.2 MHz, use 19 to make the calculations easier */
149 	reg = (readl(TIMER_USEC_CFG) & USEC_CFG_DIVISOR_MASK) + 1;
150 
151 	/*
152 	 * According to the TRM, for 19.2MHz OSC, the USEC_DIVISOR is 0x5f, and
153 	 * USEC_DIVIDEND is 0x04. So, if USEC_DIVISOR > 26, OSC is 19.2 MHz.
154 	 *
155 	 * reg is used to calculate the pllx freq, which is used to determine if
156 	 * to set dccon or not.
157 	 */
158 	if (reg > 26)
159 		reg = 19;
160 
161 	/* PLLX_BASE.PLLX_DIVM */
162 	if (scratch3.pllx_base_divm == reg)
163 		reg = 0;
164 	else
165 		reg = 1;
166 
167 	/* PLLX_BASE.PLLX_DIVN */
168 	pllx_base.divn = scratch3.pllx_base_divn;
169 	reg = scratch3.pllx_base_divn << reg;
170 
171 	/* PLLX_BASE.PLLX_DIVP */
172 	pllx_base.divp = scratch3.pllx_base_divp;
173 	reg = reg >> scratch3.pllx_base_divp;
174 
175 	pllx_base.bypass = 1;
176 
177 	/* PLLX_MISC_DCCON must be set for pllx frequency > 600 MHz. */
178 	if (reg > 600)
179 		pllx_misc.dccon = 1;
180 
181 	/* PLLX_MISC_LFCON */
182 	pllx_misc.lfcon = scratch3.pllx_misc_lfcon;
183 
184 	/* PLLX_MISC_CPCON */
185 	pllx_misc.cpcon = scratch3.pllx_misc_cpcon;
186 
187 	writel(pllx_misc.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_misc);
188 	writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
189 
190 	pllx_base.enable = 1;
191 	writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
192 	pllx_base.bypass = 0;
193 	writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
194 
195 	writel(0, flow->halt_cpu_events);
196 
197 	reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DERESET0;
198 	writel(reg, &clkrst->crc_cpu_cmplx_clr);
199 
200 	reg = PLLM_OUT1_RSTN_RESET_DISABLE | PLLM_OUT1_CLKEN_ENABLE |
201 	      PLLM_OUT1_RATIO_VAL_8;
202 	writel(reg, &clkrst->crc_pll[CLOCK_ID_MEMORY].pll_out[0]);
203 
204 	reg = SCLK_SWAKE_FIQ_SRC_PLLM_OUT1 | SCLK_SWAKE_IRQ_SRC_PLLM_OUT1 |
205 	      SCLK_SWAKE_RUN_SRC_PLLM_OUT1 | SCLK_SWAKE_IDLE_SRC_PLLM_OUT1 |
206 	      SCLK_SYS_STATE_IDLE;
207 	writel(reg, &clkrst->crc_sclk_brst_pol);
208 
209 	/* avp_resume: no return after the write */
210 	reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
211 	reg &= ~CPU_RST;
212 	writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
213 
214 	/* avp_halt: */
215 avp_halt:
216 	reg = EVENT_MODE_STOP | EVENT_JTAG;
217 	writel(reg, flow->halt_cop_events);
218 	goto avp_halt;
219 
220 do_reset:
221 	/*
222 	 * Execution comes here if something goes wrong. The chip is reset and
223 	 * a cold boot is performed.
224 	 */
225 	writel(SWR_TRIG_SYS_RST, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
226 	goto do_reset;
227 }
228 
229 /*
230  * wb_end() is a dummy function, and must be directly following wb_start(),
231  * and is used to calculate the size of wb_start().
232  */
wb_end(void)233 void wb_end(void)
234 {
235 }
236