1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *
4  * Clock initialization for OMAP4
5  *
6  * (C) Copyright 2010
7  * Texas Instruments, <www.ti.com>
8  *
9  * Aneesh V <aneesh@ti.com>
10  *
11  * Based on previous work by:
12  *	Santosh Shilimkar <santosh.shilimkar@ti.com>
13  *	Rajendra Nayak <rnayak@ti.com>
14  */
15 #include <common.h>
16 #include <hang.h>
17 #include <i2c.h>
18 #include <init.h>
19 #include <log.h>
20 #include <asm/omap_common.h>
21 #include <asm/gpio.h>
22 #include <asm/arch/clock.h>
23 #include <asm/arch/sys_proto.h>
24 #include <asm/utils.h>
25 #include <asm/omap_gpio.h>
26 #include <asm/emif.h>
27 
28 #ifndef CONFIG_SPL_BUILD
29 /*
30  * printing to console doesn't work unless
31  * this code is executed from SPL
32  */
33 #define printf(fmt, args...)
34 #define puts(s)
35 #endif
36 
37 const u32 sys_clk_array[8] = {
38 	12000000,	       /* 12 MHz */
39 	20000000,		/* 20 MHz */
40 	16800000,	       /* 16.8 MHz */
41 	19200000,	       /* 19.2 MHz */
42 	26000000,	       /* 26 MHz */
43 	27000000,	       /* 27 MHz */
44 	38400000,	       /* 38.4 MHz */
45 };
46 
__get_sys_clk_index(void)47 static inline u32 __get_sys_clk_index(void)
48 {
49 	s8 ind;
50 	/*
51 	 * For ES1 the ROM code calibration of sys clock is not reliable
52 	 * due to hw issue. So, use hard-coded value. If this value is not
53 	 * correct for any board over-ride this function in board file
54 	 * From ES2.0 onwards you will get this information from
55 	 * CM_SYS_CLKSEL
56 	 */
57 	if (omap_revision() == OMAP4430_ES1_0)
58 		ind = OMAP_SYS_CLK_IND_38_4_MHZ;
59 	else {
60 		/* SYS_CLKSEL - 1 to match the dpll param array indices */
61 		ind = (readl((*prcm)->cm_sys_clksel) &
62 			CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1;
63 	}
64 	return ind;
65 }
66 
67 u32 get_sys_clk_index(void)
68 	__attribute__ ((weak, alias("__get_sys_clk_index")));
69 
get_sys_clk_freq(void)70 u32 get_sys_clk_freq(void)
71 {
72 	u8 index = get_sys_clk_index();
73 	return sys_clk_array[index];
74 }
75 
setup_post_dividers(u32 const base,const struct dpll_params * params)76 void setup_post_dividers(u32 const base, const struct dpll_params *params)
77 {
78 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
79 
80 	/* Setup post-dividers */
81 	if (params->m2 >= 0)
82 		writel(params->m2, &dpll_regs->cm_div_m2_dpll);
83 	if (params->m3 >= 0)
84 		writel(params->m3, &dpll_regs->cm_div_m3_dpll);
85 	if (params->m4_h11 >= 0)
86 		writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll);
87 	if (params->m5_h12 >= 0)
88 		writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll);
89 	if (params->m6_h13 >= 0)
90 		writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll);
91 	if (params->m7_h14 >= 0)
92 		writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll);
93 	if (params->h21 >= 0)
94 		writel(params->h21, &dpll_regs->cm_div_h21_dpll);
95 	if (params->h22 >= 0)
96 		writel(params->h22, &dpll_regs->cm_div_h22_dpll);
97 	if (params->h23 >= 0)
98 		writel(params->h23, &dpll_regs->cm_div_h23_dpll);
99 	if (params->h24 >= 0)
100 		writel(params->h24, &dpll_regs->cm_div_h24_dpll);
101 }
102 
do_bypass_dpll(u32 const base)103 static inline void do_bypass_dpll(u32 const base)
104 {
105 	struct dpll_regs *dpll_regs = (struct dpll_regs *)base;
106 
107 	clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
108 			CM_CLKMODE_DPLL_DPLL_EN_MASK,
109 			DPLL_EN_FAST_RELOCK_BYPASS <<
110 			CM_CLKMODE_DPLL_EN_SHIFT);
111 }
112 
wait_for_bypass(u32 const base)113 static inline void wait_for_bypass(u32 const base)
114 {
115 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
116 
117 	if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll,
118 				LDELAY)) {
119 		printf("Bypassing DPLL failed %x\n", base);
120 	}
121 }
122 
do_lock_dpll(u32 const base)123 static inline void do_lock_dpll(u32 const base)
124 {
125 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
126 
127 	clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
128 		      CM_CLKMODE_DPLL_DPLL_EN_MASK,
129 		      DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
130 }
131 
wait_for_lock(u32 const base)132 static inline void wait_for_lock(u32 const base)
133 {
134 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
135 
136 	if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
137 		&dpll_regs->cm_idlest_dpll, LDELAY)) {
138 		printf("DPLL locking failed for %x\n", base);
139 		hang();
140 	}
141 }
142 
check_for_lock(u32 const base)143 inline u32 check_for_lock(u32 const base)
144 {
145 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
146 	u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK;
147 
148 	return lock;
149 }
150 
get_mpu_dpll_params(struct dplls const * dpll_data)151 const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data)
152 {
153 	u32 sysclk_ind = get_sys_clk_index();
154 	return &dpll_data->mpu[sysclk_ind];
155 }
156 
get_core_dpll_params(struct dplls const * dpll_data)157 const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data)
158 {
159 	u32 sysclk_ind = get_sys_clk_index();
160 	return &dpll_data->core[sysclk_ind];
161 }
162 
get_per_dpll_params(struct dplls const * dpll_data)163 const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data)
164 {
165 	u32 sysclk_ind = get_sys_clk_index();
166 	return &dpll_data->per[sysclk_ind];
167 }
168 
get_iva_dpll_params(struct dplls const * dpll_data)169 const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data)
170 {
171 	u32 sysclk_ind = get_sys_clk_index();
172 	return &dpll_data->iva[sysclk_ind];
173 }
174 
get_usb_dpll_params(struct dplls const * dpll_data)175 const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data)
176 {
177 	u32 sysclk_ind = get_sys_clk_index();
178 	return &dpll_data->usb[sysclk_ind];
179 }
180 
get_abe_dpll_params(struct dplls const * dpll_data)181 const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data)
182 {
183 #ifdef CONFIG_SYS_OMAP_ABE_SYSCK
184 	u32 sysclk_ind = get_sys_clk_index();
185 	return &dpll_data->abe[sysclk_ind];
186 #else
187 	return dpll_data->abe;
188 #endif
189 }
190 
get_ddr_dpll_params(struct dplls const * dpll_data)191 static const struct dpll_params *get_ddr_dpll_params
192 			(struct dplls const *dpll_data)
193 {
194 	u32 sysclk_ind = get_sys_clk_index();
195 
196 	if (!dpll_data->ddr)
197 		return NULL;
198 	return &dpll_data->ddr[sysclk_ind];
199 }
200 
201 #ifdef CONFIG_DRIVER_TI_CPSW
get_gmac_dpll_params(struct dplls const * dpll_data)202 static const struct dpll_params *get_gmac_dpll_params
203 			(struct dplls const *dpll_data)
204 {
205 	u32 sysclk_ind = get_sys_clk_index();
206 
207 	if (!dpll_data->gmac)
208 		return NULL;
209 	return &dpll_data->gmac[sysclk_ind];
210 }
211 #endif
212 
do_setup_dpll(u32 const base,const struct dpll_params * params,u8 lock,char * dpll)213 static void do_setup_dpll(u32 const base, const struct dpll_params *params,
214 				u8 lock, char *dpll)
215 {
216 	u32 temp, M, N;
217 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
218 
219 	if (!params)
220 		return;
221 
222 	temp = readl(&dpll_regs->cm_clksel_dpll);
223 
224 	if (check_for_lock(base)) {
225 		/*
226 		 * The Dpll has already been locked by rom code using CH.
227 		 * Check if M,N are matching with Ideal nominal opp values.
228 		 * If matches, skip the rest otherwise relock.
229 		 */
230 		M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT;
231 		N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT;
232 		if ((M != (params->m)) || (N != (params->n))) {
233 			debug("\n %s Dpll locked, but not for ideal M = %d,"
234 				"N = %d values, current values are M = %d,"
235 				"N= %d" , dpll, params->m, params->n,
236 				M, N);
237 		} else {
238 			/* Dpll locked with ideal values for nominal opps. */
239 			debug("\n %s Dpll already locked with ideal"
240 						"nominal opp values", dpll);
241 
242 			bypass_dpll(base);
243 			goto setup_post_dividers;
244 		}
245 	}
246 
247 	bypass_dpll(base);
248 
249 	/* Set M & N */
250 	temp &= ~CM_CLKSEL_DPLL_M_MASK;
251 	temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;
252 
253 	temp &= ~CM_CLKSEL_DPLL_N_MASK;
254 	temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;
255 
256 	writel(temp, &dpll_regs->cm_clksel_dpll);
257 
258 setup_post_dividers:
259 	setup_post_dividers(base, params);
260 
261 	/* Lock */
262 	if (lock)
263 		do_lock_dpll(base);
264 
265 	/* Wait till the DPLL locks */
266 	if (lock)
267 		wait_for_lock(base);
268 }
269 
omap_ddr_clk(void)270 u32 omap_ddr_clk(void)
271 {
272 	u32 ddr_clk, sys_clk_khz, omap_rev, divider;
273 	const struct dpll_params *core_dpll_params;
274 
275 	omap_rev = omap_revision();
276 	sys_clk_khz = get_sys_clk_freq() / 1000;
277 
278 	core_dpll_params = get_core_dpll_params(*dplls_data);
279 
280 	debug("sys_clk %d\n ", sys_clk_khz * 1000);
281 
282 	/* Find Core DPLL locked frequency first */
283 	ddr_clk = sys_clk_khz * 2 * core_dpll_params->m /
284 			(core_dpll_params->n + 1);
285 
286 	if (omap_rev < OMAP5430_ES1_0) {
287 		/*
288 		 * DDR frequency is PHY_ROOT_CLK/2
289 		 * PHY_ROOT_CLK = Fdpll/2/M2
290 		 */
291 		divider = 4;
292 	} else {
293 		/*
294 		 * DDR frequency is PHY_ROOT_CLK
295 		 * PHY_ROOT_CLK = Fdpll/2/M2
296 		 */
297 		divider = 2;
298 	}
299 
300 	ddr_clk = ddr_clk / divider / core_dpll_params->m2;
301 	ddr_clk *= 1000;	/* convert to Hz */
302 	debug("ddr_clk %d\n ", ddr_clk);
303 
304 	return ddr_clk;
305 }
306 
307 /*
308  * Lock MPU dpll
309  *
310  * Resulting MPU frequencies:
311  * 4430 ES1.0	: 600 MHz
312  * 4430 ES2.x	: 792 MHz (OPP Turbo)
313  * 4460		: 920 MHz (OPP Turbo) - DCC disabled
314  */
configure_mpu_dpll(void)315 void configure_mpu_dpll(void)
316 {
317 	const struct dpll_params *params;
318 	struct dpll_regs *mpu_dpll_regs;
319 	u32 omap_rev;
320 	omap_rev = omap_revision();
321 
322 	/*
323 	 * DCC and clock divider settings for 4460.
324 	 * DCC is required, if more than a certain frequency is required.
325 	 * For, 4460 > 1GHZ.
326 	 *     5430 > 1.4GHZ.
327 	 */
328 	if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) {
329 		mpu_dpll_regs =
330 			(struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu);
331 		bypass_dpll((*prcm)->cm_clkmode_dpll_mpu);
332 		clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
333 			MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
334 		setbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
335 			MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
336 		clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll,
337 			CM_CLKSEL_DCC_EN_MASK);
338 	}
339 
340 	params = get_mpu_dpll_params(*dplls_data);
341 
342 	do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu");
343 	debug("MPU DPLL locked\n");
344 }
345 
346 #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
347 	defined(CONFIG_USB_MUSB_OMAP2PLUS)
setup_usb_dpll(void)348 static void setup_usb_dpll(void)
349 {
350 	const struct dpll_params *params;
351 	u32 sys_clk_khz, sd_div, num, den;
352 
353 	sys_clk_khz = get_sys_clk_freq() / 1000;
354 	/*
355 	 * USB:
356 	 * USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction
357 	 * DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250)
358 	 *      - where CLKINP is sys_clk in MHz
359 	 * Use CLKINP in KHz and adjust the denominator accordingly so
360 	 * that we have enough accuracy and at the same time no overflow
361 	 */
362 	params = get_usb_dpll_params(*dplls_data);
363 	num = params->m * sys_clk_khz;
364 	den = (params->n + 1) * 250 * 1000;
365 	num += den - 1;
366 	sd_div = num / den;
367 	clrsetbits_le32((*prcm)->cm_clksel_dpll_usb,
368 			CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK,
369 			sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT);
370 
371 	/* Now setup the dpll with the regular function */
372 	do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb");
373 }
374 #endif
375 
setup_dplls(void)376 static void setup_dplls(void)
377 {
378 	u32 temp;
379 	const struct dpll_params *params;
380 	struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
381 
382 	debug("setup_dplls\n");
383 
384 	/* CORE dpll */
385 	params = get_core_dpll_params(*dplls_data);	/* default - safest */
386 	/*
387 	 * Do not lock the core DPLL now. Just set it up.
388 	 * Core DPLL will be locked after setting up EMIF
389 	 * using the FREQ_UPDATE method(freq_update_core())
390 	 */
391 	if (emif_sdram_type(readl(&emif->emif_sdram_config)) ==
392 	    EMIF_SDRAM_TYPE_LPDDR2)
393 		do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
394 							DPLL_NO_LOCK, "core");
395 	else
396 		do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
397 							DPLL_LOCK, "core");
398 	/* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */
399 	temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) |
400 	    (CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) |
401 	    (CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT);
402 	writel(temp, (*prcm)->cm_clksel_core);
403 	debug("Core DPLL configured\n");
404 
405 	/* lock PER dpll */
406 	params = get_per_dpll_params(*dplls_data);
407 	do_setup_dpll((*prcm)->cm_clkmode_dpll_per,
408 			params, DPLL_LOCK, "per");
409 	debug("PER DPLL locked\n");
410 
411 	/* MPU dpll */
412 	configure_mpu_dpll();
413 
414 #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
415 	defined(CONFIG_USB_MUSB_OMAP2PLUS)
416 	setup_usb_dpll();
417 #endif
418 	params = get_ddr_dpll_params(*dplls_data);
419 	do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy,
420 		      params, DPLL_LOCK, "ddr");
421 
422 #ifdef CONFIG_DRIVER_TI_CPSW
423 	params = get_gmac_dpll_params(*dplls_data);
424 	do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params,
425 		      DPLL_LOCK, "gmac");
426 #endif
427 }
428 
get_offset_code(u32 volt_offset,struct pmic_data * pmic)429 u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic)
430 {
431 	u32 offset_code;
432 
433 	volt_offset -= pmic->base_offset;
434 
435 	offset_code = (volt_offset + pmic->step - 1) / pmic->step;
436 
437 	/*
438 	 * Offset codes 1-6 all give the base voltage in Palmas
439 	 * Offset code 0 switches OFF the SMPS
440 	 */
441 	return offset_code + pmic->start_code;
442 }
443 
do_scale_vcore(u32 vcore_reg,u32 volt_mv,struct pmic_data * pmic)444 void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic)
445 {
446 	u32 offset_code;
447 	u32 offset = volt_mv;
448 	int ret = 0;
449 
450 	if (!volt_mv)
451 		return;
452 
453 	pmic->pmic_bus_init();
454 	/* See if we can first get the GPIO if needed */
455 	if (pmic->gpio_en)
456 		ret = gpio_request(pmic->gpio, "PMIC_GPIO");
457 
458 	if (ret < 0) {
459 		printf("%s: gpio %d request failed %d\n", __func__,
460 							pmic->gpio, ret);
461 		return;
462 	}
463 
464 	/* Pull the GPIO low to select SET0 register, while we program SET1 */
465 	if (pmic->gpio_en)
466 		gpio_direction_output(pmic->gpio, 0);
467 
468 	/* convert to uV for better accuracy in the calculations */
469 	offset *= 1000;
470 
471 	offset_code = get_offset_code(offset, pmic);
472 
473 	debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv,
474 		offset_code);
475 
476 	if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code))
477 		printf("Scaling voltage failed for 0x%x\n", vcore_reg);
478 	if (pmic->gpio_en)
479 		gpio_direction_output(pmic->gpio, 1);
480 }
481 
get_voltrail_opp(int rail_offset)482 int __weak get_voltrail_opp(int rail_offset)
483 {
484 	/*
485 	 * By default return OPP_NOM for all voltage rails.
486 	 */
487 	return OPP_NOM;
488 }
489 
optimize_vcore_voltage(struct volts const * v,int opp)490 static u32 optimize_vcore_voltage(struct volts const *v, int opp)
491 {
492 	u32 val;
493 
494 	if (!v->value[opp])
495 		return 0;
496 	if (!v->efuse.reg[opp])
497 		return v->value[opp];
498 
499 	switch (v->efuse.reg_bits) {
500 	case 16:
501 		val = readw(v->efuse.reg[opp]);
502 		break;
503 	case 32:
504 		val = readl(v->efuse.reg[opp]);
505 		break;
506 	default:
507 		printf("Error: efuse 0x%08x bits=%d unknown\n",
508 		       v->efuse.reg[opp], v->efuse.reg_bits);
509 		return v->value[opp];
510 	}
511 
512 	if (!val) {
513 		printf("Error: efuse 0x%08x bits=%d val=0, using %d\n",
514 		       v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp]);
515 		return v->value[opp];
516 	}
517 
518 	debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n",
519 	      __func__, v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp],
520 	      val);
521 	return val;
522 }
523 
524 #ifdef CONFIG_IODELAY_RECALIBRATION
recalibrate_iodelay(void)525 void __weak recalibrate_iodelay(void)
526 {
527 }
528 #endif
529 
530 /*
531  * Setup the voltages for the main SoC core power domains.
532  * We start with the maximum voltages allowed here, as set in the corresponding
533  * vcores_data struct, and then scale (usually down) to the fused values that
534  * are retrieved from the SoC. The scaling happens only if the efuse.reg fields
535  * are initialised.
536  * Rail grouping is supported for the DRA7xx SoCs only, therefore the code is
537  * compiled conditionally. Note that the new code writes the scaled (or zeroed)
538  * values back to the vcores_data struct for eventual reuse. Zero values mean
539  * that the corresponding rails are not controlled separately, and are not sent
540  * to the PMIC.
541  */
scale_vcores(struct vcores_data const * vcores)542 void scale_vcores(struct vcores_data const *vcores)
543 {
544 	int i, opp, j, ol;
545 	struct volts *pv = (struct volts *)vcores;
546 	struct volts *px;
547 
548 	for (i=0; i<(sizeof(struct vcores_data)/sizeof(struct volts)); i++) {
549 		opp = get_voltrail_opp(i);
550 		debug("%d -> ", pv->value[opp]);
551 
552 		if (pv->value[opp]) {
553 			/* Handle non-empty members only */
554 			pv->value[opp] = optimize_vcore_voltage(pv, opp);
555      			px = (struct volts *)vcores;
556 			j = 0;
557 			while (px < pv) {
558 				/*
559 				 * Scan already handled non-empty members to see
560 				 * if we have a group and find the max voltage,
561 				 * which is set to the first occurance of the
562 				 * particular SMPS; the other group voltages are
563 				 * zeroed.
564 				 */
565 				ol = get_voltrail_opp(j);
566 				if (px->value[ol] &&
567 				    (pv->pmic->i2c_slave_addr ==
568 				     px->pmic->i2c_slave_addr) &&
569 				    (pv->addr == px->addr)) {
570 					/* Same PMIC, same SMPS */
571 					if (pv->value[opp] > px->value[ol])
572 						px->value[ol] = pv->value[opp];
573 
574 					pv->value[opp] = 0;
575 				}
576 				px++;
577 				j++;
578 			}
579 		}
580 		debug("%d\n", pv->value[opp]);
581 		pv++;
582 	}
583 
584 	opp = get_voltrail_opp(VOLT_CORE);
585 	debug("cor: %d\n", vcores->core.value[opp]);
586 	do_scale_vcore(vcores->core.addr, vcores->core.value[opp],
587 		       vcores->core.pmic);
588 	/*
589 	 * IO delay recalibration should be done immediately after
590 	 * adjusting AVS voltages for VDD_CORE_L.
591 	 * Respective boards should call __recalibrate_iodelay()
592 	 * with proper mux, virtual and manual mode configurations.
593 	 */
594 #ifdef CONFIG_IODELAY_RECALIBRATION
595 	recalibrate_iodelay();
596 #endif
597 
598 	opp = get_voltrail_opp(VOLT_MPU);
599 	debug("mpu: %d\n", vcores->mpu.value[opp]);
600 	do_scale_vcore(vcores->mpu.addr, vcores->mpu.value[opp],
601 		       vcores->mpu.pmic);
602 	/* Configure MPU ABB LDO after scale */
603 	abb_setup(vcores->mpu.efuse.reg[opp],
604 		  (*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl,
605 		  (*prcm)->prm_abbldo_mpu_setup,
606 		  (*prcm)->prm_abbldo_mpu_ctrl,
607 		  (*prcm)->prm_irqstatus_mpu_2,
608 		  vcores->mpu.abb_tx_done_mask,
609 		  OMAP_ABB_FAST_OPP);
610 
611 	opp = get_voltrail_opp(VOLT_MM);
612 	debug("mm: %d\n", vcores->mm.value[opp]);
613 	do_scale_vcore(vcores->mm.addr, vcores->mm.value[opp],
614 		       vcores->mm.pmic);
615 	/* Configure MM ABB LDO after scale */
616 	abb_setup(vcores->mm.efuse.reg[opp],
617 		  (*ctrl)->control_wkup_ldovbb_mm_voltage_ctrl,
618 		  (*prcm)->prm_abbldo_mm_setup,
619 		  (*prcm)->prm_abbldo_mm_ctrl,
620 		  (*prcm)->prm_irqstatus_mpu,
621 		  vcores->mm.abb_tx_done_mask,
622 		  OMAP_ABB_FAST_OPP);
623 
624 	opp = get_voltrail_opp(VOLT_GPU);
625 	debug("gpu: %d\n", vcores->gpu.value[opp]);
626 	do_scale_vcore(vcores->gpu.addr, vcores->gpu.value[opp],
627 		       vcores->gpu.pmic);
628 	/* Configure GPU ABB LDO after scale */
629 	abb_setup(vcores->gpu.efuse.reg[opp],
630 		  (*ctrl)->control_wkup_ldovbb_gpu_voltage_ctrl,
631 		  (*prcm)->prm_abbldo_gpu_setup,
632 		  (*prcm)->prm_abbldo_gpu_ctrl,
633 		  (*prcm)->prm_irqstatus_mpu,
634 		  vcores->gpu.abb_tx_done_mask,
635 		  OMAP_ABB_FAST_OPP);
636 
637 	opp = get_voltrail_opp(VOLT_EVE);
638 	debug("eve: %d\n", vcores->eve.value[opp]);
639 	do_scale_vcore(vcores->eve.addr, vcores->eve.value[opp],
640 		       vcores->eve.pmic);
641 	/* Configure EVE ABB LDO after scale */
642 	abb_setup(vcores->eve.efuse.reg[opp],
643 		  (*ctrl)->control_wkup_ldovbb_eve_voltage_ctrl,
644 		  (*prcm)->prm_abbldo_eve_setup,
645 		  (*prcm)->prm_abbldo_eve_ctrl,
646 		  (*prcm)->prm_irqstatus_mpu,
647 		  vcores->eve.abb_tx_done_mask,
648 		  OMAP_ABB_FAST_OPP);
649 
650 	opp = get_voltrail_opp(VOLT_IVA);
651 	debug("iva: %d\n", vcores->iva.value[opp]);
652 	do_scale_vcore(vcores->iva.addr, vcores->iva.value[opp],
653 		       vcores->iva.pmic);
654 	/* Configure IVA ABB LDO after scale */
655 	abb_setup(vcores->iva.efuse.reg[opp],
656 		  (*ctrl)->control_wkup_ldovbb_iva_voltage_ctrl,
657 		  (*prcm)->prm_abbldo_iva_setup,
658 		  (*prcm)->prm_abbldo_iva_ctrl,
659 		  (*prcm)->prm_irqstatus_mpu,
660 		  vcores->iva.abb_tx_done_mask,
661 		  OMAP_ABB_FAST_OPP);
662 }
663 
enable_clock_domain(u32 const clkctrl_reg,u32 enable_mode)664 static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode)
665 {
666 	clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
667 			enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
668 	debug("Enable clock domain - %x\n", clkctrl_reg);
669 }
670 
disable_clock_domain(u32 const clkctrl_reg)671 static inline void disable_clock_domain(u32 const clkctrl_reg)
672 {
673 	clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
674 			CD_CLKCTRL_CLKTRCTRL_SW_SLEEP <<
675 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
676 	debug("Disable clock domain - %x\n", clkctrl_reg);
677 }
678 
wait_for_clk_enable(u32 clkctrl_addr)679 static inline void wait_for_clk_enable(u32 clkctrl_addr)
680 {
681 	u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
682 	u32 bound = LDELAY;
683 
684 	while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
685 		(idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {
686 
687 		clkctrl = readl(clkctrl_addr);
688 		idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
689 			 MODULE_CLKCTRL_IDLEST_SHIFT;
690 		if (--bound == 0) {
691 			printf("Clock enable failed for 0x%x idlest 0x%x\n",
692 				clkctrl_addr, clkctrl);
693 			return;
694 		}
695 	}
696 }
697 
enable_clock_module(u32 const clkctrl_addr,u32 enable_mode,u32 wait_for_enable)698 static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode,
699 				u32 wait_for_enable)
700 {
701 	clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
702 			enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
703 	debug("Enable clock module - %x\n", clkctrl_addr);
704 	if (wait_for_enable)
705 		wait_for_clk_enable(clkctrl_addr);
706 }
707 
wait_for_clk_disable(u32 clkctrl_addr)708 static inline void wait_for_clk_disable(u32 clkctrl_addr)
709 {
710 	u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_FULLY_FUNCTIONAL;
711 	u32 bound = LDELAY;
712 
713 	while ((idlest != MODULE_CLKCTRL_IDLEST_DISABLED)) {
714 		clkctrl = readl(clkctrl_addr);
715 		idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
716 			 MODULE_CLKCTRL_IDLEST_SHIFT;
717 		if (--bound == 0) {
718 			printf("Clock disable failed for 0x%x idlest 0x%x\n",
719 			       clkctrl_addr, clkctrl);
720 			return;
721 		}
722 	}
723 }
724 
disable_clock_module(u32 const clkctrl_addr,u32 wait_for_disable)725 static inline void disable_clock_module(u32 const clkctrl_addr,
726 					u32 wait_for_disable)
727 {
728 	clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
729 			MODULE_CLKCTRL_MODULEMODE_SW_DISABLE <<
730 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
731 	debug("Disable clock module - %x\n", clkctrl_addr);
732 	if (wait_for_disable)
733 		wait_for_clk_disable(clkctrl_addr);
734 }
735 
freq_update_core(void)736 void freq_update_core(void)
737 {
738 	u32 freq_config1 = 0;
739 	const struct dpll_params *core_dpll_params;
740 	u32 omap_rev = omap_revision();
741 
742 	core_dpll_params = get_core_dpll_params(*dplls_data);
743 	/* Put EMIF clock domain in sw wakeup mode */
744 	enable_clock_domain((*prcm)->cm_memif_clkstctrl,
745 				CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
746 	wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
747 	wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
748 
749 	freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK |
750 	    SHADOW_FREQ_CONFIG1_DLL_RESET_MASK;
751 
752 	freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) &
753 				SHADOW_FREQ_CONFIG1_DPLL_EN_MASK;
754 
755 	freq_config1 |= (core_dpll_params->m2 <<
756 			SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) &
757 			SHADOW_FREQ_CONFIG1_M2_DIV_MASK;
758 
759 	writel(freq_config1, (*prcm)->cm_shadow_freq_config1);
760 	if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0,
761 			(u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) {
762 		puts("FREQ UPDATE procedure failed!!");
763 		hang();
764 	}
765 
766 	/*
767 	 * Putting EMIF in HW_AUTO is seen to be causing issues with
768 	 * EMIF clocks and the master DLL. Keep EMIF in SW_WKUP
769 	 * in OMAP5430 ES1.0 silicon
770 	 */
771 	if (omap_rev != OMAP5430_ES1_0) {
772 		/* Put EMIF clock domain back in hw auto mode */
773 		enable_clock_domain((*prcm)->cm_memif_clkstctrl,
774 					CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
775 		wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
776 		wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
777 	}
778 }
779 
bypass_dpll(u32 const base)780 void bypass_dpll(u32 const base)
781 {
782 	do_bypass_dpll(base);
783 	wait_for_bypass(base);
784 }
785 
lock_dpll(u32 const base)786 void lock_dpll(u32 const base)
787 {
788 	do_lock_dpll(base);
789 	wait_for_lock(base);
790 }
791 
setup_clocks_for_console(void)792 static void setup_clocks_for_console(void)
793 {
794 	/* Do not add any spl_debug prints in this function */
795 	clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
796 			CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
797 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
798 
799 	/* Enable all UARTs - console will be on one of them */
800 	clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl,
801 			MODULE_CLKCTRL_MODULEMODE_MASK,
802 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
803 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
804 
805 	clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl,
806 			MODULE_CLKCTRL_MODULEMODE_MASK,
807 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
808 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
809 
810 	clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl,
811 			MODULE_CLKCTRL_MODULEMODE_MASK,
812 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
813 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
814 
815 	clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl,
816 			MODULE_CLKCTRL_MODULEMODE_MASK,
817 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
818 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
819 
820 	clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
821 			CD_CLKCTRL_CLKTRCTRL_HW_AUTO <<
822 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
823 }
824 
do_enable_clocks(u32 const * clk_domains,u32 const * clk_modules_hw_auto,u32 const * clk_modules_explicit_en,u8 wait_for_enable)825 void do_enable_clocks(u32 const *clk_domains,
826 			    u32 const *clk_modules_hw_auto,
827 			    u32 const *clk_modules_explicit_en,
828 			    u8 wait_for_enable)
829 {
830 	u32 i, max = 100;
831 
832 	/* Put the clock domains in SW_WKUP mode */
833 	for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
834 		enable_clock_domain(clk_domains[i],
835 				    CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
836 	}
837 
838 	/* Clock modules that need to be put in HW_AUTO */
839 	for (i = 0; (i < max) && clk_modules_hw_auto &&
840 		     clk_modules_hw_auto[i]; i++) {
841 		enable_clock_module(clk_modules_hw_auto[i],
842 				    MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
843 				    wait_for_enable);
844 	};
845 
846 	/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
847 	for (i = 0; (i < max) && clk_modules_explicit_en &&
848 		     clk_modules_explicit_en[i]; i++) {
849 		enable_clock_module(clk_modules_explicit_en[i],
850 				    MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
851 				    wait_for_enable);
852 	};
853 
854 	/* Put the clock domains in HW_AUTO mode now */
855 	for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
856 		enable_clock_domain(clk_domains[i],
857 				    CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
858 	}
859 }
860 
do_disable_clocks(u32 const * clk_domains,u32 const * clk_modules_disable,u8 wait_for_disable)861 void do_disable_clocks(u32 const *clk_domains,
862 			    u32 const *clk_modules_disable,
863 			    u8 wait_for_disable)
864 {
865 	u32 i, max = 100;
866 
867 
868 	/* Clock modules that need to be put in SW_DISABLE */
869 	for (i = 0; (i < max) && clk_modules_disable[i]; i++)
870 		disable_clock_module(clk_modules_disable[i],
871 				     wait_for_disable);
872 
873 	/* Put the clock domains in SW_SLEEP mode */
874 	for (i = 0; (i < max) && clk_domains[i]; i++)
875 		disable_clock_domain(clk_domains[i]);
876 }
877 
878 /**
879  * setup_early_clocks() - Setup early clocks needed for SoC
880  *
881  * Setup clocks for console, SPL basic initialization clocks and initialize
882  * the timer. This is invoked prior prcm_init.
883  */
setup_early_clocks(void)884 void setup_early_clocks(void)
885 {
886 	switch (omap_hw_init_context()) {
887 	case OMAP_INIT_CONTEXT_SPL:
888 	case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
889 	case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
890 		setup_clocks_for_console();
891 		enable_basic_clocks();
892 		timer_init();
893 		/* Fall through */
894 	}
895 }
896 
prcm_init(void)897 void prcm_init(void)
898 {
899 	switch (omap_hw_init_context()) {
900 	case OMAP_INIT_CONTEXT_SPL:
901 	case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
902 	case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
903 		scale_vcores(*omap_vcores);
904 		setup_dplls();
905 		setup_warmreset_time();
906 		break;
907 	default:
908 		break;
909 	}
910 
911 	if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context())
912 		enable_basic_uboot_clocks();
913 }
914 
915 #if !CONFIG_IS_ENABLED(DM_I2C)
gpi2c_init(void)916 void gpi2c_init(void)
917 {
918 	static int gpi2c = 1;
919 
920 	if (gpi2c) {
921 		i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
922 			 CONFIG_SYS_OMAP24_I2C_SLAVE);
923 		gpi2c = 0;
924 	}
925 }
926 #endif
927