1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2018 Simon Goldschmidt
4  */
5 
6 #include <common.h>
7 #include <dm.h>
8 #include <lmb.h>
9 #include <log.h>
10 #include <malloc.h>
11 #include <dm/test.h>
12 #include <test/test.h>
13 #include <test/ut.h>
14 
check_lmb(struct unit_test_state * uts,struct lmb * lmb,phys_addr_t ram_base,phys_size_t ram_size,unsigned long num_reserved,phys_addr_t base1,phys_size_t size1,phys_addr_t base2,phys_size_t size2,phys_addr_t base3,phys_size_t size3)15 static int check_lmb(struct unit_test_state *uts, struct lmb *lmb,
16 		     phys_addr_t ram_base, phys_size_t ram_size,
17 		     unsigned long num_reserved,
18 		     phys_addr_t base1, phys_size_t size1,
19 		     phys_addr_t base2, phys_size_t size2,
20 		     phys_addr_t base3, phys_size_t size3)
21 {
22 	if (ram_size) {
23 		ut_asserteq(lmb->memory.cnt, 1);
24 		ut_asserteq(lmb->memory.region[0].base, ram_base);
25 		ut_asserteq(lmb->memory.region[0].size, ram_size);
26 	}
27 
28 	ut_asserteq(lmb->reserved.cnt, num_reserved);
29 	if (num_reserved > 0) {
30 		ut_asserteq(lmb->reserved.region[0].base, base1);
31 		ut_asserteq(lmb->reserved.region[0].size, size1);
32 	}
33 	if (num_reserved > 1) {
34 		ut_asserteq(lmb->reserved.region[1].base, base2);
35 		ut_asserteq(lmb->reserved.region[1].size, size2);
36 	}
37 	if (num_reserved > 2) {
38 		ut_asserteq(lmb->reserved.region[2].base, base3);
39 		ut_asserteq(lmb->reserved.region[2].size, size3);
40 	}
41 	return 0;
42 }
43 
44 #define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \
45 		   base2, size2, base3, size3) \
46 		   ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \
47 			     num_reserved, base1, size1, base2, size2, base3, \
48 			     size3))
49 
50 /*
51  * Test helper function that reserves 64 KiB somewhere in the simulated RAM and
52  * then does some alloc + free tests.
53  */
test_multi_alloc(struct unit_test_state * uts,const phys_addr_t ram,const phys_size_t ram_size,const phys_addr_t ram0,const phys_size_t ram0_size,const phys_addr_t alloc_64k_addr)54 static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram,
55 			    const phys_size_t ram_size, const phys_addr_t ram0,
56 			    const phys_size_t ram0_size,
57 			    const phys_addr_t alloc_64k_addr)
58 {
59 	const phys_addr_t ram_end = ram + ram_size;
60 	const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000;
61 
62 	struct lmb lmb;
63 	long ret;
64 	phys_addr_t a, a2, b, b2, c, d;
65 
66 	/* check for overflow */
67 	ut_assert(ram_end == 0 || ram_end > ram);
68 	ut_assert(alloc_64k_end > alloc_64k_addr);
69 	/* check input addresses + size */
70 	ut_assert(alloc_64k_addr >= ram + 8);
71 	ut_assert(alloc_64k_end <= ram_end - 8);
72 
73 	lmb_init(&lmb);
74 
75 	if (ram0_size) {
76 		ret = lmb_add(&lmb, ram0, ram0_size);
77 		ut_asserteq(ret, 0);
78 	}
79 
80 	ret = lmb_add(&lmb, ram, ram_size);
81 	ut_asserteq(ret, 0);
82 
83 	if (ram0_size) {
84 		ut_asserteq(lmb.memory.cnt, 2);
85 		ut_asserteq(lmb.memory.region[0].base, ram0);
86 		ut_asserteq(lmb.memory.region[0].size, ram0_size);
87 		ut_asserteq(lmb.memory.region[1].base, ram);
88 		ut_asserteq(lmb.memory.region[1].size, ram_size);
89 	} else {
90 		ut_asserteq(lmb.memory.cnt, 1);
91 		ut_asserteq(lmb.memory.region[0].base, ram);
92 		ut_asserteq(lmb.memory.region[0].size, ram_size);
93 	}
94 
95 	/* reserve 64KiB somewhere */
96 	ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
97 	ut_asserteq(ret, 0);
98 	ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
99 		   0, 0, 0, 0);
100 
101 	/* allocate somewhere, should be at the end of RAM */
102 	a = lmb_alloc(&lmb, 4, 1);
103 	ut_asserteq(a, ram_end - 4);
104 	ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr, 0x10000,
105 		   ram_end - 4, 4, 0, 0);
106 	/* alloc below end of reserved region -> below reserved region */
107 	b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
108 	ut_asserteq(b, alloc_64k_addr - 4);
109 	ASSERT_LMB(&lmb, 0, 0, 2,
110 		   alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
111 
112 	/* 2nd time */
113 	c = lmb_alloc(&lmb, 4, 1);
114 	ut_asserteq(c, ram_end - 8);
115 	ASSERT_LMB(&lmb, 0, 0, 2,
116 		   alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
117 	d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
118 	ut_asserteq(d, alloc_64k_addr - 8);
119 	ASSERT_LMB(&lmb, 0, 0, 2,
120 		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
121 
122 	ret = lmb_free(&lmb, a, 4);
123 	ut_asserteq(ret, 0);
124 	ASSERT_LMB(&lmb, 0, 0, 2,
125 		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
126 	/* allocate again to ensure we get the same address */
127 	a2 = lmb_alloc(&lmb, 4, 1);
128 	ut_asserteq(a, a2);
129 	ASSERT_LMB(&lmb, 0, 0, 2,
130 		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
131 	ret = lmb_free(&lmb, a2, 4);
132 	ut_asserteq(ret, 0);
133 	ASSERT_LMB(&lmb, 0, 0, 2,
134 		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
135 
136 	ret = lmb_free(&lmb, b, 4);
137 	ut_asserteq(ret, 0);
138 	ASSERT_LMB(&lmb, 0, 0, 3,
139 		   alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
140 		   ram_end - 8, 4);
141 	/* allocate again to ensure we get the same address */
142 	b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
143 	ut_asserteq(b, b2);
144 	ASSERT_LMB(&lmb, 0, 0, 2,
145 		   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
146 	ret = lmb_free(&lmb, b2, 4);
147 	ut_asserteq(ret, 0);
148 	ASSERT_LMB(&lmb, 0, 0, 3,
149 		   alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
150 		   ram_end - 8, 4);
151 
152 	ret = lmb_free(&lmb, c, 4);
153 	ut_asserteq(ret, 0);
154 	ASSERT_LMB(&lmb, 0, 0, 2,
155 		   alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
156 	ret = lmb_free(&lmb, d, 4);
157 	ut_asserteq(ret, 0);
158 	ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
159 		   0, 0, 0, 0);
160 
161 	if (ram0_size) {
162 		ut_asserteq(lmb.memory.cnt, 2);
163 		ut_asserteq(lmb.memory.region[0].base, ram0);
164 		ut_asserteq(lmb.memory.region[0].size, ram0_size);
165 		ut_asserteq(lmb.memory.region[1].base, ram);
166 		ut_asserteq(lmb.memory.region[1].size, ram_size);
167 	} else {
168 		ut_asserteq(lmb.memory.cnt, 1);
169 		ut_asserteq(lmb.memory.region[0].base, ram);
170 		ut_asserteq(lmb.memory.region[0].size, ram_size);
171 	}
172 
173 	return 0;
174 }
175 
test_multi_alloc_512mb(struct unit_test_state * uts,const phys_addr_t ram)176 static int test_multi_alloc_512mb(struct unit_test_state *uts,
177 				  const phys_addr_t ram)
178 {
179 	return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000);
180 }
181 
test_multi_alloc_512mb_x2(struct unit_test_state * uts,const phys_addr_t ram,const phys_addr_t ram0)182 static int test_multi_alloc_512mb_x2(struct unit_test_state *uts,
183 				     const phys_addr_t ram,
184 				     const phys_addr_t ram0)
185 {
186 	return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000,
187 				ram + 0x10000000);
188 }
189 
190 /* Create a memory region with one reserved region and allocate */
lib_test_lmb_simple(struct unit_test_state * uts)191 static int lib_test_lmb_simple(struct unit_test_state *uts)
192 {
193 	int ret;
194 
195 	/* simulate 512 MiB RAM beginning at 1GiB */
196 	ret = test_multi_alloc_512mb(uts, 0x40000000);
197 	if (ret)
198 		return ret;
199 
200 	/* simulate 512 MiB RAM beginning at 1.5GiB */
201 	return test_multi_alloc_512mb(uts, 0xE0000000);
202 }
203 
204 DM_TEST(lib_test_lmb_simple, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
205 
206 /* Create two memory regions with one reserved region and allocate */
lib_test_lmb_simple_x2(struct unit_test_state * uts)207 static int lib_test_lmb_simple_x2(struct unit_test_state *uts)
208 {
209 	int ret;
210 
211 	/* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */
212 	ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000);
213 	if (ret)
214 		return ret;
215 
216 	/* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */
217 	return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000);
218 }
219 
220 DM_TEST(lib_test_lmb_simple_x2,  UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
221 
222 /* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
test_bigblock(struct unit_test_state * uts,const phys_addr_t ram)223 static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
224 {
225 	const phys_size_t ram_size = 0x20000000;
226 	const phys_size_t big_block_size = 0x10000000;
227 	const phys_addr_t ram_end = ram + ram_size;
228 	const phys_addr_t alloc_64k_addr = ram + 0x10000000;
229 	struct lmb lmb;
230 	long ret;
231 	phys_addr_t a, b;
232 
233 	/* check for overflow */
234 	ut_assert(ram_end == 0 || ram_end > ram);
235 
236 	lmb_init(&lmb);
237 
238 	ret = lmb_add(&lmb, ram, ram_size);
239 	ut_asserteq(ret, 0);
240 
241 	/* reserve 64KiB in the middle of RAM */
242 	ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
243 	ut_asserteq(ret, 0);
244 	ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
245 		   0, 0, 0, 0);
246 
247 	/* allocate a big block, should be below reserved */
248 	a = lmb_alloc(&lmb, big_block_size, 1);
249 	ut_asserteq(a, ram);
250 	ASSERT_LMB(&lmb, ram, ram_size, 1, a,
251 		   big_block_size + 0x10000, 0, 0, 0, 0);
252 	/* allocate 2nd big block */
253 	/* This should fail, printing an error */
254 	b = lmb_alloc(&lmb, big_block_size, 1);
255 	ut_asserteq(b, 0);
256 	ASSERT_LMB(&lmb, ram, ram_size, 1, a,
257 		   big_block_size + 0x10000, 0, 0, 0, 0);
258 
259 	ret = lmb_free(&lmb, a, big_block_size);
260 	ut_asserteq(ret, 0);
261 	ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
262 		   0, 0, 0, 0);
263 
264 	/* allocate too big block */
265 	/* This should fail, printing an error */
266 	a = lmb_alloc(&lmb, ram_size, 1);
267 	ut_asserteq(a, 0);
268 	ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
269 		   0, 0, 0, 0);
270 
271 	return 0;
272 }
273 
lib_test_lmb_big(struct unit_test_state * uts)274 static int lib_test_lmb_big(struct unit_test_state *uts)
275 {
276 	int ret;
277 
278 	/* simulate 512 MiB RAM beginning at 1GiB */
279 	ret = test_bigblock(uts, 0x40000000);
280 	if (ret)
281 		return ret;
282 
283 	/* simulate 512 MiB RAM beginning at 1.5GiB */
284 	return test_bigblock(uts, 0xE0000000);
285 }
286 
287 DM_TEST(lib_test_lmb_big, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
288 
289 /* Simulate 512 MiB RAM, allocate a block without previous reservation */
test_noreserved(struct unit_test_state * uts,const phys_addr_t ram,const phys_addr_t alloc_size,const ulong align)290 static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram,
291 			   const phys_addr_t alloc_size, const ulong align)
292 {
293 	const phys_size_t ram_size = 0x20000000;
294 	const phys_addr_t ram_end = ram + ram_size;
295 	struct lmb lmb;
296 	long ret;
297 	phys_addr_t a, b;
298 	const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) &
299 		~(align - 1);
300 
301 	/* check for overflow */
302 	ut_assert(ram_end == 0 || ram_end > ram);
303 
304 	lmb_init(&lmb);
305 
306 	ret = lmb_add(&lmb, ram, ram_size);
307 	ut_asserteq(ret, 0);
308 	ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
309 
310 	/* allocate a block */
311 	a = lmb_alloc(&lmb, alloc_size, align);
312 	ut_assert(a != 0);
313 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
314 		   alloc_size, 0, 0, 0, 0);
315 	/* allocate another block */
316 	b = lmb_alloc(&lmb, alloc_size, align);
317 	ut_assert(b != 0);
318 	if (alloc_size == alloc_size_aligned) {
319 		ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size -
320 			   (alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0,
321 			   0);
322 	} else {
323 		ASSERT_LMB(&lmb, ram, ram_size, 2, ram + ram_size -
324 			   (alloc_size_aligned * 2), alloc_size, ram + ram_size
325 			   - alloc_size_aligned, alloc_size, 0, 0);
326 	}
327 	/* and free them */
328 	ret = lmb_free(&lmb, b, alloc_size);
329 	ut_asserteq(ret, 0);
330 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
331 		   alloc_size, 0, 0, 0, 0);
332 	ret = lmb_free(&lmb, a, alloc_size);
333 	ut_asserteq(ret, 0);
334 	ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
335 
336 	/* allocate a block with base*/
337 	b = lmb_alloc_base(&lmb, alloc_size, align, ram_end);
338 	ut_assert(a == b);
339 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
340 		   alloc_size, 0, 0, 0, 0);
341 	/* and free it */
342 	ret = lmb_free(&lmb, b, alloc_size);
343 	ut_asserteq(ret, 0);
344 	ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
345 
346 	return 0;
347 }
348 
lib_test_lmb_noreserved(struct unit_test_state * uts)349 static int lib_test_lmb_noreserved(struct unit_test_state *uts)
350 {
351 	int ret;
352 
353 	/* simulate 512 MiB RAM beginning at 1GiB */
354 	ret = test_noreserved(uts, 0x40000000, 4, 1);
355 	if (ret)
356 		return ret;
357 
358 	/* simulate 512 MiB RAM beginning at 1.5GiB */
359 	return test_noreserved(uts, 0xE0000000, 4, 1);
360 }
361 
362 DM_TEST(lib_test_lmb_noreserved, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
363 
lib_test_lmb_unaligned_size(struct unit_test_state * uts)364 static int lib_test_lmb_unaligned_size(struct unit_test_state *uts)
365 {
366 	int ret;
367 
368 	/* simulate 512 MiB RAM beginning at 1GiB */
369 	ret = test_noreserved(uts, 0x40000000, 5, 8);
370 	if (ret)
371 		return ret;
372 
373 	/* simulate 512 MiB RAM beginning at 1.5GiB */
374 	return test_noreserved(uts, 0xE0000000, 5, 8);
375 }
376 
377 DM_TEST(lib_test_lmb_unaligned_size, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
378 /*
379  * Simulate a RAM that starts at 0 and allocate down to address 0, which must
380  * fail as '0' means failure for the lmb_alloc functions.
381  */
lib_test_lmb_at_0(struct unit_test_state * uts)382 static int lib_test_lmb_at_0(struct unit_test_state *uts)
383 {
384 	const phys_addr_t ram = 0;
385 	const phys_size_t ram_size = 0x20000000;
386 	struct lmb lmb;
387 	long ret;
388 	phys_addr_t a, b;
389 
390 	lmb_init(&lmb);
391 
392 	ret = lmb_add(&lmb, ram, ram_size);
393 	ut_asserteq(ret, 0);
394 
395 	/* allocate nearly everything */
396 	a = lmb_alloc(&lmb, ram_size - 4, 1);
397 	ut_asserteq(a, ram + 4);
398 	ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
399 		   0, 0, 0, 0);
400 	/* allocate the rest */
401 	/* This should fail as the allocated address would be 0 */
402 	b = lmb_alloc(&lmb, 4, 1);
403 	ut_asserteq(b, 0);
404 	/* check that this was an error by checking lmb */
405 	ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
406 		   0, 0, 0, 0);
407 	/* check that this was an error by freeing b */
408 	ret = lmb_free(&lmb, b, 4);
409 	ut_asserteq(ret, -1);
410 	ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
411 		   0, 0, 0, 0);
412 
413 	ret = lmb_free(&lmb, a, ram_size - 4);
414 	ut_asserteq(ret, 0);
415 	ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
416 
417 	return 0;
418 }
419 
420 DM_TEST(lib_test_lmb_at_0, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
421 
422 /* Check that calling lmb_reserve with overlapping regions fails. */
lib_test_lmb_overlapping_reserve(struct unit_test_state * uts)423 static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts)
424 {
425 	const phys_addr_t ram = 0x40000000;
426 	const phys_size_t ram_size = 0x20000000;
427 	struct lmb lmb;
428 	long ret;
429 
430 	lmb_init(&lmb);
431 
432 	ret = lmb_add(&lmb, ram, ram_size);
433 	ut_asserteq(ret, 0);
434 
435 	ret = lmb_reserve(&lmb, 0x40010000, 0x10000);
436 	ut_asserteq(ret, 0);
437 	ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
438 		   0, 0, 0, 0);
439 	/* allocate overlapping region should fail */
440 	ret = lmb_reserve(&lmb, 0x40011000, 0x10000);
441 	ut_asserteq(ret, -1);
442 	ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
443 		   0, 0, 0, 0);
444 	/* allocate 3nd region */
445 	ret = lmb_reserve(&lmb, 0x40030000, 0x10000);
446 	ut_asserteq(ret, 0);
447 	ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40010000, 0x10000,
448 		   0x40030000, 0x10000, 0, 0);
449 	/* allocate 2nd region */
450 	ret = lmb_reserve(&lmb, 0x40020000, 0x10000);
451 	ut_assert(ret >= 0);
452 	ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x30000,
453 		   0, 0, 0, 0);
454 
455 	return 0;
456 }
457 
458 DM_TEST(lib_test_lmb_overlapping_reserve,
459 	UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
460 
461 /*
462  * Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between.
463  * Expect addresses outside the memory range to fail.
464  */
test_alloc_addr(struct unit_test_state * uts,const phys_addr_t ram)465 static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram)
466 {
467 	const phys_size_t ram_size = 0x20000000;
468 	const phys_addr_t ram_end = ram + ram_size;
469 	const phys_size_t alloc_addr_a = ram + 0x8000000;
470 	const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
471 	const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
472 	struct lmb lmb;
473 	long ret;
474 	phys_addr_t a, b, c, d, e;
475 
476 	/* check for overflow */
477 	ut_assert(ram_end == 0 || ram_end > ram);
478 
479 	lmb_init(&lmb);
480 
481 	ret = lmb_add(&lmb, ram, ram_size);
482 	ut_asserteq(ret, 0);
483 
484 	/*  reserve 3 blocks */
485 	ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
486 	ut_asserteq(ret, 0);
487 	ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
488 	ut_asserteq(ret, 0);
489 	ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
490 	ut_asserteq(ret, 0);
491 	ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
492 		   alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
493 
494 	/* allocate blocks */
495 	a = lmb_alloc_addr(&lmb, ram, alloc_addr_a - ram);
496 	ut_asserteq(a, ram);
497 	ASSERT_LMB(&lmb, ram, ram_size, 3, ram, 0x8010000,
498 		   alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
499 	b = lmb_alloc_addr(&lmb, alloc_addr_a + 0x10000,
500 			   alloc_addr_b - alloc_addr_a - 0x10000);
501 	ut_asserteq(b, alloc_addr_a + 0x10000);
502 	ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x10010000,
503 		   alloc_addr_c, 0x10000, 0, 0);
504 	c = lmb_alloc_addr(&lmb, alloc_addr_b + 0x10000,
505 			   alloc_addr_c - alloc_addr_b - 0x10000);
506 	ut_asserteq(c, alloc_addr_b + 0x10000);
507 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
508 		   0, 0, 0, 0);
509 	d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000,
510 			   ram_end - alloc_addr_c - 0x10000);
511 	ut_asserteq(d, alloc_addr_c + 0x10000);
512 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
513 		   0, 0, 0, 0);
514 
515 	/* allocating anything else should fail */
516 	e = lmb_alloc(&lmb, 1, 1);
517 	ut_asserteq(e, 0);
518 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
519 		   0, 0, 0, 0);
520 
521 	ret = lmb_free(&lmb, d, ram_end - alloc_addr_c - 0x10000);
522 	ut_asserteq(ret, 0);
523 
524 	/* allocate at 3 points in free range */
525 
526 	d = lmb_alloc_addr(&lmb, ram_end - 4, 4);
527 	ut_asserteq(d, ram_end - 4);
528 	ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
529 		   d, 4, 0, 0);
530 	ret = lmb_free(&lmb, d, 4);
531 	ut_asserteq(ret, 0);
532 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
533 		   0, 0, 0, 0);
534 
535 	d = lmb_alloc_addr(&lmb, ram_end - 128, 4);
536 	ut_asserteq(d, ram_end - 128);
537 	ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
538 		   d, 4, 0, 0);
539 	ret = lmb_free(&lmb, d, 4);
540 	ut_asserteq(ret, 0);
541 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
542 		   0, 0, 0, 0);
543 
544 	d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 4);
545 	ut_asserteq(d, alloc_addr_c + 0x10000);
546 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010004,
547 		   0, 0, 0, 0);
548 	ret = lmb_free(&lmb, d, 4);
549 	ut_asserteq(ret, 0);
550 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
551 		   0, 0, 0, 0);
552 
553 	/* allocate at the bottom */
554 	ret = lmb_free(&lmb, a, alloc_addr_a - ram);
555 	ut_asserteq(ret, 0);
556 	ASSERT_LMB(&lmb, ram, ram_size, 1, ram + 0x8000000, 0x10010000,
557 		   0, 0, 0, 0);
558 	d = lmb_alloc_addr(&lmb, ram, 4);
559 	ut_asserteq(d, ram);
560 	ASSERT_LMB(&lmb, ram, ram_size, 2, d, 4,
561 		   ram + 0x8000000, 0x10010000, 0, 0);
562 
563 	/* check that allocating outside memory fails */
564 	if (ram_end != 0) {
565 		ret = lmb_alloc_addr(&lmb, ram_end, 1);
566 		ut_asserteq(ret, 0);
567 	}
568 	if (ram != 0) {
569 		ret = lmb_alloc_addr(&lmb, ram - 1, 1);
570 		ut_asserteq(ret, 0);
571 	}
572 
573 	return 0;
574 }
575 
lib_test_lmb_alloc_addr(struct unit_test_state * uts)576 static int lib_test_lmb_alloc_addr(struct unit_test_state *uts)
577 {
578 	int ret;
579 
580 	/* simulate 512 MiB RAM beginning at 1GiB */
581 	ret = test_alloc_addr(uts, 0x40000000);
582 	if (ret)
583 		return ret;
584 
585 	/* simulate 512 MiB RAM beginning at 1.5GiB */
586 	return test_alloc_addr(uts, 0xE0000000);
587 }
588 
589 DM_TEST(lib_test_lmb_alloc_addr, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
590 
591 /* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */
test_get_unreserved_size(struct unit_test_state * uts,const phys_addr_t ram)592 static int test_get_unreserved_size(struct unit_test_state *uts,
593 				    const phys_addr_t ram)
594 {
595 	const phys_size_t ram_size = 0x20000000;
596 	const phys_addr_t ram_end = ram + ram_size;
597 	const phys_size_t alloc_addr_a = ram + 0x8000000;
598 	const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
599 	const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
600 	struct lmb lmb;
601 	long ret;
602 	phys_size_t s;
603 
604 	/* check for overflow */
605 	ut_assert(ram_end == 0 || ram_end > ram);
606 
607 	lmb_init(&lmb);
608 
609 	ret = lmb_add(&lmb, ram, ram_size);
610 	ut_asserteq(ret, 0);
611 
612 	/*  reserve 3 blocks */
613 	ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
614 	ut_asserteq(ret, 0);
615 	ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
616 	ut_asserteq(ret, 0);
617 	ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
618 	ut_asserteq(ret, 0);
619 	ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
620 		   alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
621 
622 	/* check addresses in between blocks */
623 	s = lmb_get_free_size(&lmb, ram);
624 	ut_asserteq(s, alloc_addr_a - ram);
625 	s = lmb_get_free_size(&lmb, ram + 0x10000);
626 	ut_asserteq(s, alloc_addr_a - ram - 0x10000);
627 	s = lmb_get_free_size(&lmb, alloc_addr_a - 4);
628 	ut_asserteq(s, 4);
629 
630 	s = lmb_get_free_size(&lmb, alloc_addr_a + 0x10000);
631 	ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000);
632 	s = lmb_get_free_size(&lmb, alloc_addr_a + 0x20000);
633 	ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000);
634 	s = lmb_get_free_size(&lmb, alloc_addr_b - 4);
635 	ut_asserteq(s, 4);
636 
637 	s = lmb_get_free_size(&lmb, alloc_addr_c + 0x10000);
638 	ut_asserteq(s, ram_end - alloc_addr_c - 0x10000);
639 	s = lmb_get_free_size(&lmb, alloc_addr_c + 0x20000);
640 	ut_asserteq(s, ram_end - alloc_addr_c - 0x20000);
641 	s = lmb_get_free_size(&lmb, ram_end - 4);
642 	ut_asserteq(s, 4);
643 
644 	return 0;
645 }
646 
lib_test_lmb_get_free_size(struct unit_test_state * uts)647 static int lib_test_lmb_get_free_size(struct unit_test_state *uts)
648 {
649 	int ret;
650 
651 	/* simulate 512 MiB RAM beginning at 1GiB */
652 	ret = test_get_unreserved_size(uts, 0x40000000);
653 	if (ret)
654 		return ret;
655 
656 	/* simulate 512 MiB RAM beginning at 1.5GiB */
657 	return test_get_unreserved_size(uts, 0xE0000000);
658 }
659 
660 DM_TEST(lib_test_lmb_get_free_size,
661 	UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
662 
lib_test_lmb_max_regions(struct unit_test_state * uts)663 static int lib_test_lmb_max_regions(struct unit_test_state *uts)
664 {
665 	const phys_addr_t ram = 0x00000000;
666 	const phys_size_t ram_size = 0x8000000;
667 	const phys_size_t blk_size = 0x10000;
668 	phys_addr_t offset;
669 	struct lmb lmb;
670 	int ret, i;
671 
672 	lmb_init(&lmb);
673 
674 	ut_asserteq(lmb.memory.cnt, 0);
675 	ut_asserteq(lmb.memory.max, 8);
676 	ut_asserteq(lmb.reserved.cnt, 0);
677 	ut_asserteq(lmb.reserved.max, 8);
678 
679 	/*  Add 8 memory regions */
680 	for (i = 0; i < 8; i++) {
681 		offset = ram + 2 * i * ram_size;
682 		ret = lmb_add(&lmb, offset, ram_size);
683 		ut_asserteq(ret, 0);
684 	}
685 	ut_asserteq(lmb.memory.cnt, 8);
686 	ut_asserteq(lmb.reserved.cnt, 0);
687 
688 	/*  error for the 9th memory regions */
689 	offset = ram + 2 * 8 * ram_size;
690 	ret = lmb_add(&lmb, offset, ram_size);
691 	ut_asserteq(ret, -1);
692 
693 	ut_asserteq(lmb.memory.cnt, 8);
694 	ut_asserteq(lmb.reserved.cnt, 0);
695 
696 	/*  reserve 8 regions */
697 	for (i = 0; i < 8; i++) {
698 		offset = ram + 2 * i * blk_size;
699 		ret = lmb_reserve(&lmb, offset, blk_size);
700 		ut_asserteq(ret, 0);
701 	}
702 
703 	ut_asserteq(lmb.memory.cnt, 8);
704 	ut_asserteq(lmb.reserved.cnt, 8);
705 
706 	/*  error for the 9th reserved blocks */
707 	offset = ram + 2 * 8 * blk_size;
708 	ret = lmb_reserve(&lmb, offset, blk_size);
709 	ut_asserteq(ret, -1);
710 
711 	ut_asserteq(lmb.memory.cnt, 8);
712 	ut_asserteq(lmb.reserved.cnt, 8);
713 
714 	/*  check each regions */
715 	for (i = 0; i < 8; i++)
716 		ut_asserteq(lmb.memory.region[i].base, ram + 2 * i * ram_size);
717 
718 	for (i = 0; i < 8; i++)
719 		ut_asserteq(lmb.reserved.region[i].base, ram + 2 * i * blk_size);
720 
721 	return 0;
722 }
723 
724 DM_TEST(lib_test_lmb_max_regions,
725 	UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
726