1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Simple MTD partitioning layer
4  *
5  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
6  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
7  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8  *
9  */
10 
11 #ifndef __UBOOT__
12 #include <log.h>
13 #include <dm/devres.h>
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/kmod.h>
20 #endif
21 
22 #include <common.h>
23 #include <malloc.h>
24 #include <linux/bug.h>
25 #include <linux/errno.h>
26 #include <linux/compat.h>
27 #include <ubi_uboot.h>
28 
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/err.h>
32 #include <linux/sizes.h>
33 
34 #include "mtdcore.h"
35 
36 #ifndef __UBOOT__
37 static DEFINE_MUTEX(mtd_partitions_mutex);
38 #else
39 DEFINE_MUTEX(mtd_partitions_mutex);
40 #endif
41 
42 #ifdef __UBOOT__
43 /* from mm/util.c */
44 
45 /**
46  * kstrdup - allocate space for and copy an existing string
47  * @s: the string to duplicate
48  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49  */
kstrdup(const char * s,gfp_t gfp)50 char *kstrdup(const char *s, gfp_t gfp)
51 {
52 	size_t len;
53 	char *buf;
54 
55 	if (!s)
56 		return NULL;
57 
58 	len = strlen(s) + 1;
59 	buf = kmalloc(len, gfp);
60 	if (buf)
61 		memcpy(buf, s, len);
62 	return buf;
63 }
64 #endif
65 
66 #define MTD_SIZE_REMAINING		(~0LLU)
67 #define MTD_OFFSET_NOT_SPECIFIED	(~0LLU)
68 
mtd_partitions_used(struct mtd_info * master)69 bool mtd_partitions_used(struct mtd_info *master)
70 {
71 	struct mtd_info *slave;
72 
73 	list_for_each_entry(slave, &master->partitions, node) {
74 		if (slave->usecount)
75 			return true;
76 	}
77 
78 	return false;
79 }
80 
81 /**
82  * mtd_parse_partition - Parse @mtdparts partition definition, fill @partition
83  *                       with it and update the @mtdparts string pointer.
84  *
85  * The partition name is allocated and must be freed by the caller.
86  *
87  * This function is widely inspired from part_parse (mtdparts.c).
88  *
89  * @mtdparts: String describing the partition with mtdparts command syntax
90  * @partition: MTD partition structure to fill
91  *
92  * @return 0 on success, an error otherwise.
93  */
mtd_parse_partition(const char ** _mtdparts,struct mtd_partition * partition)94 static int mtd_parse_partition(const char **_mtdparts,
95 			       struct mtd_partition *partition)
96 {
97 	const char *mtdparts = *_mtdparts;
98 	const char *name = NULL;
99 	int name_len;
100 	char *buf;
101 
102 	/* Ensure the partition structure is empty */
103 	memset(partition, 0, sizeof(struct mtd_partition));
104 
105 	/* Fetch the partition size */
106 	if (*mtdparts == '-') {
107 		/* Assign all remaining space to this partition */
108 		partition->size = MTD_SIZE_REMAINING;
109 		mtdparts++;
110 	} else {
111 		partition->size = ustrtoull(mtdparts, (char **)&mtdparts, 0);
112 		if (partition->size < SZ_4K) {
113 			printf("Minimum partition size 4kiB, %lldB requested\n",
114 			       partition->size);
115 			return -EINVAL;
116 		}
117 	}
118 
119 	/* Check for the offset */
120 	partition->offset = MTD_OFFSET_NOT_SPECIFIED;
121 	if (*mtdparts == '@') {
122 		mtdparts++;
123 		partition->offset = ustrtoull(mtdparts, (char **)&mtdparts, 0);
124 	}
125 
126 	/* Now look for the name */
127 	if (*mtdparts == '(') {
128 		name = ++mtdparts;
129 		mtdparts = strchr(name, ')');
130 		if (!mtdparts) {
131 			printf("No closing ')' found in partition name\n");
132 			return -EINVAL;
133 		}
134 		name_len = mtdparts - name + 1;
135 		if ((name_len - 1) == 0) {
136 			printf("Empty partition name\n");
137 			return -EINVAL;
138 		}
139 		mtdparts++;
140 	} else {
141 		/* Name will be of the form size@offset */
142 		name_len = 22;
143 	}
144 
145 	/* Check if the partition is read-only */
146 	if (strncmp(mtdparts, "ro", 2) == 0) {
147 		partition->mask_flags |= MTD_WRITEABLE;
148 		mtdparts += 2;
149 	}
150 
151 	/* Check for a potential next partition definition */
152 	if (*mtdparts == ',') {
153 		if (partition->size == MTD_SIZE_REMAINING) {
154 			printf("No partitions allowed after a fill-up\n");
155 			return -EINVAL;
156 		}
157 		++mtdparts;
158 	} else if ((*mtdparts == ';') || (*mtdparts == '\0')) {
159 		/* NOP */
160 	} else {
161 		printf("Unexpected character '%c' in mtdparts\n", *mtdparts);
162 		return -EINVAL;
163 	}
164 
165 	/*
166 	 * Allocate a buffer for the name and either copy the provided name or
167 	 * auto-generate it with the form 'size@offset'.
168 	 */
169 	buf = malloc(name_len);
170 	if (!buf)
171 		return -ENOMEM;
172 
173 	if (name)
174 		strncpy(buf, name, name_len - 1);
175 	else
176 		snprintf(buf, name_len, "0x%08llx@0x%08llx",
177 			 partition->size, partition->offset);
178 
179 	buf[name_len - 1] = '\0';
180 	partition->name = buf;
181 
182 	*_mtdparts = mtdparts;
183 
184 	return 0;
185 }
186 
187 /**
188  * mtd_parse_partitions - Create a partition array from an mtdparts definition
189  *
190  * Stateless function that takes a @parent MTD device, a string @_mtdparts
191  * describing the partitions (with the "mtdparts" command syntax) and creates
192  * the corresponding MTD partition structure array @_parts. Both the name and
193  * the structure partition itself must be freed freed, the caller may use
194  * @mtd_free_parsed_partitions() for this purpose.
195  *
196  * @parent: MTD device which contains the partitions
197  * @_mtdparts: Pointer to a string describing the partitions with "mtdparts"
198  *             command syntax.
199  * @_parts: Allocated array containing the partitions, must be freed by the
200  *          caller.
201  * @_nparts: Size of @_parts array.
202  *
203  * @return 0 on success, an error otherwise.
204  */
mtd_parse_partitions(struct mtd_info * parent,const char ** _mtdparts,struct mtd_partition ** _parts,int * _nparts)205 int mtd_parse_partitions(struct mtd_info *parent, const char **_mtdparts,
206 			 struct mtd_partition **_parts, int *_nparts)
207 {
208 	struct mtd_partition partition = {}, *parts;
209 	const char *mtdparts = *_mtdparts;
210 	uint64_t cur_off = 0, cur_sz = 0;
211 	int nparts = 0;
212 	int ret, idx;
213 	u64 sz;
214 
215 	/* First, iterate over the partitions until we know their number */
216 	while (mtdparts[0] != '\0' && mtdparts[0] != ';') {
217 		ret = mtd_parse_partition(&mtdparts, &partition);
218 		if (ret)
219 			return ret;
220 
221 		free((char *)partition.name);
222 		nparts++;
223 	}
224 
225 	/* Allocate an array of partitions to give back to the caller */
226 	parts = malloc(sizeof(*parts) * nparts);
227 	if (!parts) {
228 		printf("Not enough space to save partitions meta-data\n");
229 		return -ENOMEM;
230 	}
231 
232 	/* Iterate again over each partition to save the data in our array */
233 	for (idx = 0; idx < nparts; idx++) {
234 		ret = mtd_parse_partition(_mtdparts, &parts[idx]);
235 		if (ret)
236 			return ret;
237 
238 		if (parts[idx].size == MTD_SIZE_REMAINING)
239 			parts[idx].size = parent->size - cur_sz;
240 		cur_sz += parts[idx].size;
241 
242 		sz = parts[idx].size;
243 		if (sz < parent->writesize || do_div(sz, parent->writesize)) {
244 			printf("Partition size must be a multiple of %d\n",
245 			       parent->writesize);
246 			return -EINVAL;
247 		}
248 
249 		if (parts[idx].offset == MTD_OFFSET_NOT_SPECIFIED)
250 			parts[idx].offset = cur_off;
251 		cur_off += parts[idx].size;
252 
253 		parts[idx].ecclayout = parent->ecclayout;
254 	}
255 
256 	/* Offset by one mtdparts to point to the next device if any */
257 	if (*_mtdparts[0] == ';')
258 		(*_mtdparts)++;
259 
260 	*_parts = parts;
261 	*_nparts = nparts;
262 
263 	return 0;
264 }
265 
266 /**
267  * mtd_free_parsed_partitions - Free dynamically allocated partitions
268  *
269  * Each successful call to @mtd_parse_partitions must be followed by a call to
270  * @mtd_free_parsed_partitions to free any allocated array during the parsing
271  * process.
272  *
273  * @parts: Array containing the partitions that will be freed.
274  * @nparts: Size of @parts array.
275  */
mtd_free_parsed_partitions(struct mtd_partition * parts,unsigned int nparts)276 void mtd_free_parsed_partitions(struct mtd_partition *parts,
277 				unsigned int nparts)
278 {
279 	int i;
280 
281 	for (i = 0; i < nparts; i++)
282 		free((char *)parts[i].name);
283 
284 	free(parts);
285 }
286 
287 /*
288  * MTD methods which simply translate the effective address and pass through
289  * to the _real_ device.
290  */
291 
part_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)292 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
293 		size_t *retlen, u_char *buf)
294 {
295 	struct mtd_ecc_stats stats;
296 	int res;
297 
298 	stats = mtd->parent->ecc_stats;
299 	res = mtd->parent->_read(mtd->parent, from + mtd->offset, len,
300 				 retlen, buf);
301 	if (unlikely(mtd_is_eccerr(res)))
302 		mtd->ecc_stats.failed +=
303 			mtd->parent->ecc_stats.failed - stats.failed;
304 	else
305 		mtd->ecc_stats.corrected +=
306 			mtd->parent->ecc_stats.corrected - stats.corrected;
307 	return res;
308 }
309 
310 #ifndef __UBOOT__
part_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)311 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
312 		size_t *retlen, void **virt, resource_size_t *phys)
313 {
314 	return mtd->parent->_point(mtd->parent, from + mtd->offset, len,
315 				   retlen, virt, phys);
316 }
317 
part_unpoint(struct mtd_info * mtd,loff_t from,size_t len)318 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
319 {
320 	return mtd->parent->_unpoint(mtd->parent, from + mtd->offset, len);
321 }
322 #endif
323 
part_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)324 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
325 					    unsigned long len,
326 					    unsigned long offset,
327 					    unsigned long flags)
328 {
329 	offset += mtd->offset;
330 	return mtd->parent->_get_unmapped_area(mtd->parent, len, offset, flags);
331 }
332 
part_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)333 static int part_read_oob(struct mtd_info *mtd, loff_t from,
334 		struct mtd_oob_ops *ops)
335 {
336 	int res;
337 
338 	if (from >= mtd->size)
339 		return -EINVAL;
340 	if (ops->datbuf && from + ops->len > mtd->size)
341 		return -EINVAL;
342 
343 	/*
344 	 * If OOB is also requested, make sure that we do not read past the end
345 	 * of this partition.
346 	 */
347 	if (ops->oobbuf) {
348 		size_t len, pages;
349 
350 		if (ops->mode == MTD_OPS_AUTO_OOB)
351 			len = mtd->oobavail;
352 		else
353 			len = mtd->oobsize;
354 		pages = mtd_div_by_ws(mtd->size, mtd);
355 		pages -= mtd_div_by_ws(from, mtd);
356 		if (ops->ooboffs + ops->ooblen > pages * len)
357 			return -EINVAL;
358 	}
359 
360 	res = mtd->parent->_read_oob(mtd->parent, from + mtd->offset, ops);
361 	if (unlikely(res)) {
362 		if (mtd_is_bitflip(res))
363 			mtd->ecc_stats.corrected++;
364 		if (mtd_is_eccerr(res))
365 			mtd->ecc_stats.failed++;
366 	}
367 	return res;
368 }
369 
part_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)370 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
371 		size_t len, size_t *retlen, u_char *buf)
372 {
373 	return mtd->parent->_read_user_prot_reg(mtd->parent, from, len,
374 						retlen, buf);
375 }
376 
part_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)377 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
378 				   size_t *retlen, struct otp_info *buf)
379 {
380 	return mtd->parent->_get_user_prot_info(mtd->parent, len, retlen,
381 						buf);
382 }
383 
part_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)384 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
385 		size_t len, size_t *retlen, u_char *buf)
386 {
387 	return mtd->parent->_read_fact_prot_reg(mtd->parent, from, len,
388 						retlen, buf);
389 }
390 
part_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)391 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
392 				   size_t *retlen, struct otp_info *buf)
393 {
394 	return mtd->parent->_get_fact_prot_info(mtd->parent, len, retlen,
395 						buf);
396 }
397 
part_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)398 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
399 		size_t *retlen, const u_char *buf)
400 {
401 	return mtd->parent->_write(mtd->parent, to + mtd->offset, len,
402 				   retlen, buf);
403 }
404 
part_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)405 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
406 		size_t *retlen, const u_char *buf)
407 {
408 	return mtd->parent->_panic_write(mtd->parent, to + mtd->offset, len,
409 					 retlen, buf);
410 }
411 
part_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)412 static int part_write_oob(struct mtd_info *mtd, loff_t to,
413 		struct mtd_oob_ops *ops)
414 {
415 	if (to >= mtd->size)
416 		return -EINVAL;
417 	if (ops->datbuf && to + ops->len > mtd->size)
418 		return -EINVAL;
419 	return mtd->parent->_write_oob(mtd->parent, to + mtd->offset, ops);
420 }
421 
part_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)422 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
423 		size_t len, size_t *retlen, u_char *buf)
424 {
425 	return mtd->parent->_write_user_prot_reg(mtd->parent, from, len,
426 						 retlen, buf);
427 }
428 
part_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)429 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
430 		size_t len)
431 {
432 	return mtd->parent->_lock_user_prot_reg(mtd->parent, from, len);
433 }
434 
435 #ifndef __UBOOT__
part_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)436 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
437 		unsigned long count, loff_t to, size_t *retlen)
438 {
439 	return mtd->parent->_writev(mtd->parent, vecs, count,
440 				    to + mtd->offset, retlen);
441 }
442 #endif
443 
part_erase(struct mtd_info * mtd,struct erase_info * instr)444 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
445 {
446 	int ret;
447 
448 	instr->addr += mtd->offset;
449 	ret = mtd->parent->_erase(mtd->parent, instr);
450 	if (ret) {
451 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
452 			instr->fail_addr -= mtd->offset;
453 		instr->addr -= mtd->offset;
454 	}
455 	return ret;
456 }
457 
mtd_erase_callback(struct erase_info * instr)458 void mtd_erase_callback(struct erase_info *instr)
459 {
460 	if (instr->mtd->_erase == part_erase) {
461 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
462 			instr->fail_addr -= instr->mtd->offset;
463 		instr->addr -= instr->mtd->offset;
464 	}
465 	if (instr->callback)
466 		instr->callback(instr);
467 }
468 EXPORT_SYMBOL_GPL(mtd_erase_callback);
469 
part_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)470 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
471 {
472 	return mtd->parent->_lock(mtd->parent, ofs + mtd->offset, len);
473 }
474 
part_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)475 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
476 {
477 	return mtd->parent->_unlock(mtd->parent, ofs + mtd->offset, len);
478 }
479 
part_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)480 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
481 {
482 	return mtd->parent->_is_locked(mtd->parent, ofs + mtd->offset, len);
483 }
484 
part_sync(struct mtd_info * mtd)485 static void part_sync(struct mtd_info *mtd)
486 {
487 	mtd->parent->_sync(mtd->parent);
488 }
489 
490 #ifndef __UBOOT__
part_suspend(struct mtd_info * mtd)491 static int part_suspend(struct mtd_info *mtd)
492 {
493 	return mtd->parent->_suspend(mtd->parent);
494 }
495 
part_resume(struct mtd_info * mtd)496 static void part_resume(struct mtd_info *mtd)
497 {
498 	mtd->parent->_resume(mtd->parent);
499 }
500 #endif
501 
part_block_isreserved(struct mtd_info * mtd,loff_t ofs)502 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
503 {
504 	ofs += mtd->offset;
505 	return mtd->parent->_block_isreserved(mtd->parent, ofs);
506 }
507 
part_block_isbad(struct mtd_info * mtd,loff_t ofs)508 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
509 {
510 	ofs += mtd->offset;
511 	return mtd->parent->_block_isbad(mtd->parent, ofs);
512 }
513 
part_block_markbad(struct mtd_info * mtd,loff_t ofs)514 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
515 {
516 	int res;
517 
518 	ofs += mtd->offset;
519 	res = mtd->parent->_block_markbad(mtd->parent, ofs);
520 	if (!res)
521 		mtd->ecc_stats.badblocks++;
522 	return res;
523 }
524 
free_partition(struct mtd_info * p)525 static inline void free_partition(struct mtd_info *p)
526 {
527 	kfree(p->name);
528 	kfree(p);
529 }
530 
531 /*
532  * This function unregisters and destroy all slave MTD objects which are
533  * attached to the given master MTD object, recursively.
534  */
do_del_mtd_partitions(struct mtd_info * master)535 static int do_del_mtd_partitions(struct mtd_info *master)
536 {
537 	struct mtd_info *slave, *next;
538 	int ret, err = 0;
539 
540 	list_for_each_entry_safe(slave, next, &master->partitions, node) {
541 		if (mtd_has_partitions(slave))
542 			del_mtd_partitions(slave);
543 
544 		debug("Deleting %s MTD partition\n", slave->name);
545 		ret = del_mtd_device(slave);
546 		if (ret < 0) {
547 			printf("Error when deleting partition \"%s\" (%d)\n",
548 			       slave->name, ret);
549 			err = ret;
550 			continue;
551 		}
552 
553 		list_del(&slave->node);
554 		free_partition(slave);
555 	}
556 
557 	return err;
558 }
559 
del_mtd_partitions(struct mtd_info * master)560 int del_mtd_partitions(struct mtd_info *master)
561 {
562 	int ret;
563 
564 	debug("Deleting MTD partitions on \"%s\":\n", master->name);
565 
566 	mutex_lock(&mtd_partitions_mutex);
567 	ret = do_del_mtd_partitions(master);
568 	mutex_unlock(&mtd_partitions_mutex);
569 
570 	return ret;
571 }
572 
allocate_partition(struct mtd_info * master,const struct mtd_partition * part,int partno,uint64_t cur_offset)573 static struct mtd_info *allocate_partition(struct mtd_info *master,
574 					   const struct mtd_partition *part,
575 					   int partno, uint64_t cur_offset)
576 {
577 	struct mtd_info *slave;
578 	char *name;
579 
580 	/* allocate the partition structure */
581 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
582 	name = kstrdup(part->name, GFP_KERNEL);
583 	if (!name || !slave) {
584 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
585 		       master->name);
586 		kfree(name);
587 		kfree(slave);
588 		return ERR_PTR(-ENOMEM);
589 	}
590 
591 	/* set up the MTD object for this partition */
592 	slave->type = master->type;
593 	slave->flags = master->flags & ~part->mask_flags;
594 	slave->size = part->size;
595 	slave->writesize = master->writesize;
596 	slave->writebufsize = master->writebufsize;
597 	slave->oobsize = master->oobsize;
598 	slave->oobavail = master->oobavail;
599 	slave->subpage_sft = master->subpage_sft;
600 
601 	slave->name = name;
602 	slave->owner = master->owner;
603 #ifndef __UBOOT__
604 	slave->backing_dev_info = master->backing_dev_info;
605 
606 	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
607 	 * to have the same data be in two different partitions.
608 	 */
609 	slave->dev.parent = master->dev.parent;
610 #endif
611 
612 	if (master->_read)
613 		slave->_read = part_read;
614 	if (master->_write)
615 		slave->_write = part_write;
616 
617 	if (master->_panic_write)
618 		slave->_panic_write = part_panic_write;
619 
620 #ifndef __UBOOT__
621 	if (master->_point && master->_unpoint) {
622 		slave->_point = part_point;
623 		slave->_unpoint = part_unpoint;
624 	}
625 #endif
626 
627 	if (master->_get_unmapped_area)
628 		slave->_get_unmapped_area = part_get_unmapped_area;
629 	if (master->_read_oob)
630 		slave->_read_oob = part_read_oob;
631 	if (master->_write_oob)
632 		slave->_write_oob = part_write_oob;
633 	if (master->_read_user_prot_reg)
634 		slave->_read_user_prot_reg = part_read_user_prot_reg;
635 	if (master->_read_fact_prot_reg)
636 		slave->_read_fact_prot_reg = part_read_fact_prot_reg;
637 	if (master->_write_user_prot_reg)
638 		slave->_write_user_prot_reg = part_write_user_prot_reg;
639 	if (master->_lock_user_prot_reg)
640 		slave->_lock_user_prot_reg = part_lock_user_prot_reg;
641 	if (master->_get_user_prot_info)
642 		slave->_get_user_prot_info = part_get_user_prot_info;
643 	if (master->_get_fact_prot_info)
644 		slave->_get_fact_prot_info = part_get_fact_prot_info;
645 	if (master->_sync)
646 		slave->_sync = part_sync;
647 #ifndef __UBOOT__
648 	if (!partno && !master->dev.class && master->_suspend &&
649 	    master->_resume) {
650 		slave->_suspend = part_suspend;
651 		slave->_resume = part_resume;
652 	}
653 	if (master->_writev)
654 		slave->_writev = part_writev;
655 #endif
656 	if (master->_lock)
657 		slave->_lock = part_lock;
658 	if (master->_unlock)
659 		slave->_unlock = part_unlock;
660 	if (master->_is_locked)
661 		slave->_is_locked = part_is_locked;
662 	if (master->_block_isreserved)
663 		slave->_block_isreserved = part_block_isreserved;
664 	if (master->_block_isbad)
665 		slave->_block_isbad = part_block_isbad;
666 	if (master->_block_markbad)
667 		slave->_block_markbad = part_block_markbad;
668 	slave->_erase = part_erase;
669 	slave->parent = master;
670 	slave->offset = part->offset;
671 	INIT_LIST_HEAD(&slave->partitions);
672 	INIT_LIST_HEAD(&slave->node);
673 
674 	if (slave->offset == MTDPART_OFS_APPEND)
675 		slave->offset = cur_offset;
676 	if (slave->offset == MTDPART_OFS_NXTBLK) {
677 		slave->offset = cur_offset;
678 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
679 			/* Round up to next erasesize */
680 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
681 			debug("Moving partition %d: "
682 			       "0x%012llx -> 0x%012llx\n", partno,
683 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
684 		}
685 	}
686 	if (slave->offset == MTDPART_OFS_RETAIN) {
687 		slave->offset = cur_offset;
688 		if (master->size - slave->offset >= slave->size) {
689 			slave->size = master->size - slave->offset
690 							- slave->size;
691 		} else {
692 			debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
693 				part->name, master->size - slave->offset,
694 				slave->size);
695 			/* register to preserve ordering */
696 			goto out_register;
697 		}
698 	}
699 	if (slave->size == MTDPART_SIZ_FULL)
700 		slave->size = master->size - slave->offset;
701 
702 	debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
703 		(unsigned long long)(slave->offset + slave->size), slave->name);
704 
705 	/* let's do some sanity checks */
706 	if (slave->offset >= master->size) {
707 		/* let's register it anyway to preserve ordering */
708 		slave->offset = 0;
709 		slave->size = 0;
710 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
711 			part->name);
712 		goto out_register;
713 	}
714 	if (slave->offset + slave->size > master->size) {
715 		slave->size = master->size - slave->offset;
716 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
717 		       part->name, master->name, slave->size);
718 	}
719 	if (master->numeraseregions > 1) {
720 		/* Deal with variable erase size stuff */
721 		int i, max = master->numeraseregions;
722 		u64 end = slave->offset + slave->size;
723 		struct mtd_erase_region_info *regions = master->eraseregions;
724 
725 		/* Find the first erase regions which is part of this
726 		 * partition. */
727 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
728 			;
729 		/* The loop searched for the region _behind_ the first one */
730 		if (i > 0)
731 			i--;
732 
733 		/* Pick biggest erasesize */
734 		for (; i < max && regions[i].offset < end; i++) {
735 			if (slave->erasesize < regions[i].erasesize)
736 				slave->erasesize = regions[i].erasesize;
737 		}
738 		WARN_ON(slave->erasesize == 0);
739 	} else {
740 		/* Single erase size */
741 		slave->erasesize = master->erasesize;
742 	}
743 
744 	if ((slave->flags & MTD_WRITEABLE) &&
745 	    mtd_mod_by_eb(slave->offset, slave)) {
746 		/* Doesn't start on a boundary of major erase size */
747 		/* FIXME: Let it be writable if it is on a boundary of
748 		 * _minor_ erase size though */
749 		slave->flags &= ~MTD_WRITEABLE;
750 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
751 			part->name);
752 	}
753 	if ((slave->flags & MTD_WRITEABLE) &&
754 	    mtd_mod_by_eb(slave->size, slave)) {
755 		slave->flags &= ~MTD_WRITEABLE;
756 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
757 			part->name);
758 	}
759 
760 	slave->ecclayout = master->ecclayout;
761 	slave->ecc_step_size = master->ecc_step_size;
762 	slave->ecc_strength = master->ecc_strength;
763 	slave->bitflip_threshold = master->bitflip_threshold;
764 
765 	if (master->_block_isbad) {
766 		uint64_t offs = 0;
767 
768 		while (offs < slave->size) {
769 			if (mtd_block_isbad(master, offs + slave->offset))
770 				slave->ecc_stats.badblocks++;
771 			offs += slave->erasesize;
772 		}
773 	}
774 
775 out_register:
776 	return slave;
777 }
778 
779 #ifndef __UBOOT__
mtd_add_partition(struct mtd_info * master,const char * name,long long offset,long long length)780 int mtd_add_partition(struct mtd_info *master, const char *name,
781 		      long long offset, long long length)
782 {
783 	struct mtd_partition part;
784 	struct mtd_info *p, *new;
785 	uint64_t start, end;
786 	int ret = 0;
787 
788 	/* the direct offset is expected */
789 	if (offset == MTDPART_OFS_APPEND ||
790 	    offset == MTDPART_OFS_NXTBLK)
791 		return -EINVAL;
792 
793 	if (length == MTDPART_SIZ_FULL)
794 		length = master->size - offset;
795 
796 	if (length <= 0)
797 		return -EINVAL;
798 
799 	part.name = name;
800 	part.size = length;
801 	part.offset = offset;
802 	part.mask_flags = 0;
803 	part.ecclayout = NULL;
804 
805 	new = allocate_partition(master, &part, -1, offset);
806 	if (IS_ERR(new))
807 		return PTR_ERR(new);
808 
809 	start = offset;
810 	end = offset + length;
811 
812 	mutex_lock(&mtd_partitions_mutex);
813 	list_for_each_entry(p, &master->partitions, node) {
814 		if (start >= p->offset &&
815 		    (start < (p->offset + p->size)))
816 			goto err_inv;
817 
818 		if (end >= p->offset &&
819 		    (end < (p->offset + p->size)))
820 			goto err_inv;
821 	}
822 
823 	list_add_tail(&new->node, &master->partitions);
824 	mutex_unlock(&mtd_partitions_mutex);
825 
826 	add_mtd_device(new);
827 
828 	return ret;
829 err_inv:
830 	mutex_unlock(&mtd_partitions_mutex);
831 	free_partition(new);
832 	return -EINVAL;
833 }
834 EXPORT_SYMBOL_GPL(mtd_add_partition);
835 
mtd_del_partition(struct mtd_info * master,int partno)836 int mtd_del_partition(struct mtd_info *master, int partno)
837 {
838 	struct mtd_info *slave, *next;
839 	int ret = -EINVAL;
840 
841 	mutex_lock(&mtd_partitions_mutex);
842 	list_for_each_entry_safe(slave, next, &master->partitions, node)
843 		if (slave->index == partno) {
844 			ret = del_mtd_device(slave);
845 			if (ret < 0)
846 				break;
847 
848 			list_del(&slave->node);
849 			free_partition(slave);
850 			break;
851 		}
852 	mutex_unlock(&mtd_partitions_mutex);
853 
854 	return ret;
855 }
856 EXPORT_SYMBOL_GPL(mtd_del_partition);
857 #endif
858 
859 /*
860  * This function, given a master MTD object and a partition table, creates
861  * and registers slave MTD objects which are bound to the master according to
862  * the partition definitions.
863  *
864  * We don't register the master, or expect the caller to have done so,
865  * for reasons of data integrity.
866  */
867 
add_mtd_partitions(struct mtd_info * master,const struct mtd_partition * parts,int nbparts)868 int add_mtd_partitions(struct mtd_info *master,
869 		       const struct mtd_partition *parts,
870 		       int nbparts)
871 {
872 	struct mtd_info *slave;
873 	uint64_t cur_offset = 0;
874 	int i;
875 
876 	debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
877 
878 	for (i = 0; i < nbparts; i++) {
879 		slave = allocate_partition(master, parts + i, i, cur_offset);
880 		if (IS_ERR(slave))
881 			return PTR_ERR(slave);
882 
883 		mutex_lock(&mtd_partitions_mutex);
884 		list_add_tail(&slave->node, &master->partitions);
885 		mutex_unlock(&mtd_partitions_mutex);
886 
887 		add_mtd_device(slave);
888 
889 		cur_offset = slave->offset + slave->size;
890 	}
891 
892 	return 0;
893 }
894 
895 #ifndef __UBOOT__
896 static DEFINE_SPINLOCK(part_parser_lock);
897 static LIST_HEAD(part_parsers);
898 
get_partition_parser(const char * name)899 static struct mtd_part_parser *get_partition_parser(const char *name)
900 {
901 	struct mtd_part_parser *p, *ret = NULL;
902 
903 	spin_lock(&part_parser_lock);
904 
905 	list_for_each_entry(p, &part_parsers, list)
906 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
907 			ret = p;
908 			break;
909 		}
910 
911 	spin_unlock(&part_parser_lock);
912 
913 	return ret;
914 }
915 
916 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
917 
register_mtd_parser(struct mtd_part_parser * p)918 void register_mtd_parser(struct mtd_part_parser *p)
919 {
920 	spin_lock(&part_parser_lock);
921 	list_add(&p->list, &part_parsers);
922 	spin_unlock(&part_parser_lock);
923 }
924 EXPORT_SYMBOL_GPL(register_mtd_parser);
925 
deregister_mtd_parser(struct mtd_part_parser * p)926 void deregister_mtd_parser(struct mtd_part_parser *p)
927 {
928 	spin_lock(&part_parser_lock);
929 	list_del(&p->list);
930 	spin_unlock(&part_parser_lock);
931 }
932 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
933 
934 /*
935  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
936  * are changing this array!
937  */
938 static const char * const default_mtd_part_types[] = {
939 	"cmdlinepart",
940 	"ofpart",
941 	NULL
942 };
943 
944 /**
945  * parse_mtd_partitions - parse MTD partitions
946  * @master: the master partition (describes whole MTD device)
947  * @types: names of partition parsers to try or %NULL
948  * @pparts: array of partitions found is returned here
949  * @data: MTD partition parser-specific data
950  *
951  * This function tries to find partition on MTD device @master. It uses MTD
952  * partition parsers, specified in @types. However, if @types is %NULL, then
953  * the default list of parsers is used. The default list contains only the
954  * "cmdlinepart" and "ofpart" parsers ATM.
955  * Note: If there are more then one parser in @types, the kernel only takes the
956  * partitions parsed out by the first parser.
957  *
958  * This function may return:
959  * o a negative error code in case of failure
960  * o zero if no partitions were found
961  * o a positive number of found partitions, in which case on exit @pparts will
962  *   point to an array containing this number of &struct mtd_info objects.
963  */
parse_mtd_partitions(struct mtd_info * master,const char * const * types,struct mtd_partition ** pparts,struct mtd_part_parser_data * data)964 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
965 			 struct mtd_partition **pparts,
966 			 struct mtd_part_parser_data *data)
967 {
968 	struct mtd_part_parser *parser;
969 	int ret = 0;
970 
971 	if (!types)
972 		types = default_mtd_part_types;
973 
974 	for ( ; ret <= 0 && *types; types++) {
975 		parser = get_partition_parser(*types);
976 		if (!parser && !request_module("%s", *types))
977 			parser = get_partition_parser(*types);
978 		if (!parser)
979 			continue;
980 		ret = (*parser->parse_fn)(master, pparts, data);
981 		put_partition_parser(parser);
982 		if (ret > 0) {
983 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
984 			       ret, parser->name, master->name);
985 			break;
986 		}
987 	}
988 	return ret;
989 }
990 #endif
991 
992 /* Returns the size of the entire flash chip */
mtd_get_device_size(const struct mtd_info * mtd)993 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
994 {
995 	if (mtd_is_partition(mtd))
996 		return mtd->parent->size;
997 
998 	return mtd->size;
999 }
1000 EXPORT_SYMBOL_GPL(mtd_get_device_size);
1001