1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2007
4  * Sascha Hauer, Pengutronix
5  *
6  * (C) Copyright 2009 Freescale Semiconductor, Inc.
7  */
8 
9 #include <bootm.h>
10 #include <common.h>
11 #include <dm.h>
12 #include <init.h>
13 #include <log.h>
14 #include <net.h>
15 #include <netdev.h>
16 #include <linux/errno.h>
17 #include <asm/io.h>
18 #include <asm/arch/imx-regs.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/sys_proto.h>
21 #include <asm/arch/crm_regs.h>
22 #include <asm/mach-imx/boot_mode.h>
23 #include <imx_thermal.h>
24 #include <ipu_pixfmt.h>
25 #include <thermal.h>
26 #include <sata.h>
27 #include <dm/device-internal.h>
28 #include <dm/uclass-internal.h>
29 
30 #ifdef CONFIG_FSL_ESDHC_IMX
31 #include <fsl_esdhc_imx.h>
32 #endif
33 
34 static u32 reset_cause = -1;
35 
get_imx_reset_cause(void)36 u32 get_imx_reset_cause(void)
37 {
38 	struct src *src_regs = (struct src *)SRC_BASE_ADDR;
39 
40 	if (reset_cause == -1) {
41 		reset_cause = readl(&src_regs->srsr);
42 /* preserve the value for U-Boot proper */
43 #if !defined(CONFIG_SPL_BUILD)
44 		writel(reset_cause, &src_regs->srsr);
45 #endif
46 	}
47 
48 	return reset_cause;
49 }
50 
51 #if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_SPL_BUILD)
get_reset_cause(void)52 static char *get_reset_cause(void)
53 {
54 	switch (get_imx_reset_cause()) {
55 	case 0x00001:
56 	case 0x00011:
57 		return "POR";
58 	case 0x00004:
59 		return "CSU";
60 	case 0x00008:
61 		return "IPP USER";
62 	case 0x00010:
63 #ifdef	CONFIG_MX7
64 		return "WDOG1";
65 #else
66 		return "WDOG";
67 #endif
68 	case 0x00020:
69 		return "JTAG HIGH-Z";
70 	case 0x00040:
71 		return "JTAG SW";
72 	case 0x00080:
73 		return "WDOG3";
74 #ifdef CONFIG_MX7
75 	case 0x00100:
76 		return "WDOG4";
77 	case 0x00200:
78 		return "TEMPSENSE";
79 #elif defined(CONFIG_IMX8M)
80 	case 0x00100:
81 		return "WDOG2";
82 	case 0x00200:
83 		return "TEMPSENSE";
84 #else
85 	case 0x00100:
86 		return "TEMPSENSE";
87 	case 0x10000:
88 		return "WARM BOOT";
89 #endif
90 	default:
91 		return "unknown reset";
92 	}
93 }
94 #endif
95 
96 #if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_SPL_BUILD)
97 
get_imx_type(u32 imxtype)98 const char *get_imx_type(u32 imxtype)
99 {
100 	switch (imxtype) {
101 	case MXC_CPU_IMX8MP:
102 		return "8MP[8]";	/* Quad-core version of the imx8mp */
103 	case MXC_CPU_IMX8MPD:
104 		return "8MP Dual[3]";	/* Dual-core version of the imx8mp */
105 	case MXC_CPU_IMX8MPL:
106 		return "8MP Lite[4]";	/* Quad-core Lite version of the imx8mp */
107 	case MXC_CPU_IMX8MP6:
108 		return "8MP[6]";	/* Quad-core version of the imx8mp, NPU fused */
109 	case MXC_CPU_IMX8MN:
110 		return "8MNano Quad"; /* Quad-core version */
111 	case MXC_CPU_IMX8MND:
112 		return "8MNano Dual"; /* Dual-core version */
113 	case MXC_CPU_IMX8MNS:
114 		return "8MNano Solo"; /* Single-core version */
115 	case MXC_CPU_IMX8MNL:
116 		return "8MNano QuadLite"; /* Quad-core Lite version */
117 	case MXC_CPU_IMX8MNDL:
118 		return "8MNano DualLite"; /* Dual-core Lite version */
119 	case MXC_CPU_IMX8MNSL:
120 		return "8MNano SoloLite";/* Single-core Lite version of the imx8mn */
121 	case MXC_CPU_IMX8MNUQ:
122 		return "8MNano UltraLite Quad";/* Quad-core UltraLite version of the imx8mn */
123 	case MXC_CPU_IMX8MNUD:
124 		return "8MNano UltraLite Dual";/* Dual-core UltraLite version of the imx8mn */
125 	case MXC_CPU_IMX8MNUS:
126 		return "8MNano UltraLite Solo";/* Single-core UltraLite version of the imx8mn */
127 	case MXC_CPU_IMX8MM:
128 		return "8MMQ";	/* Quad-core version of the imx8mm */
129 	case MXC_CPU_IMX8MML:
130 		return "8MMQL";	/* Quad-core Lite version of the imx8mm */
131 	case MXC_CPU_IMX8MMD:
132 		return "8MMD";	/* Dual-core version of the imx8mm */
133 	case MXC_CPU_IMX8MMDL:
134 		return "8MMDL";	/* Dual-core Lite version of the imx8mm */
135 	case MXC_CPU_IMX8MMS:
136 		return "8MMS";	/* Single-core version of the imx8mm */
137 	case MXC_CPU_IMX8MMSL:
138 		return "8MMSL";	/* Single-core Lite version of the imx8mm */
139 	case MXC_CPU_IMX8MQ:
140 		return "8MQ";	/* Quad-core version of the imx8mq */
141 	case MXC_CPU_IMX8MQL:
142 		return "8MQLite";	/* Quad-core Lite version of the imx8mq */
143 	case MXC_CPU_IMX8MD:
144 		return "8MD";	/* Dual-core version of the imx8mq */
145 	case MXC_CPU_MX7S:
146 		return "7S";	/* Single-core version of the mx7 */
147 	case MXC_CPU_MX7D:
148 		return "7D";	/* Dual-core version of the mx7 */
149 	case MXC_CPU_MX6QP:
150 		return "6QP";	/* Quad-Plus version of the mx6 */
151 	case MXC_CPU_MX6DP:
152 		return "6DP";	/* Dual-Plus version of the mx6 */
153 	case MXC_CPU_MX6Q:
154 		return "6Q";	/* Quad-core version of the mx6 */
155 	case MXC_CPU_MX6D:
156 		return "6D";	/* Dual-core version of the mx6 */
157 	case MXC_CPU_MX6DL:
158 		return "6DL";	/* Dual Lite version of the mx6 */
159 	case MXC_CPU_MX6SOLO:
160 		return "6SOLO";	/* Solo version of the mx6 */
161 	case MXC_CPU_MX6SL:
162 		return "6SL";	/* Solo-Lite version of the mx6 */
163 	case MXC_CPU_MX6SLL:
164 		return "6SLL";	/* SLL version of the mx6 */
165 	case MXC_CPU_MX6SX:
166 		return "6SX";   /* SoloX version of the mx6 */
167 	case MXC_CPU_MX6UL:
168 		return "6UL";   /* Ultra-Lite version of the mx6 */
169 	case MXC_CPU_MX6ULL:
170 		return "6ULL";	/* ULL version of the mx6 */
171 	case MXC_CPU_MX6ULZ:
172 		return "6ULZ";	/* ULZ version of the mx6 */
173 	case MXC_CPU_MX51:
174 		return "51";
175 	case MXC_CPU_MX53:
176 		return "53";
177 	default:
178 		return "??";
179 	}
180 }
181 
print_cpuinfo(void)182 int print_cpuinfo(void)
183 {
184 	u32 cpurev;
185 	__maybe_unused u32 max_freq;
186 
187 	cpurev = get_cpu_rev();
188 
189 #if defined(CONFIG_IMX_THERMAL) || defined(CONFIG_IMX_TMU)
190 	struct udevice *thermal_dev;
191 	int cpu_tmp, minc, maxc, ret;
192 
193 	printf("CPU:   Freescale i.MX%s rev%d.%d",
194 	       get_imx_type((cpurev & 0x1FF000) >> 12),
195 	       (cpurev & 0x000F0) >> 4,
196 	       (cpurev & 0x0000F) >> 0);
197 	max_freq = get_cpu_speed_grade_hz();
198 	if (!max_freq || max_freq == mxc_get_clock(MXC_ARM_CLK)) {
199 		printf(" at %dMHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000);
200 	} else {
201 		printf(" %d MHz (running at %d MHz)\n", max_freq / 1000000,
202 		       mxc_get_clock(MXC_ARM_CLK) / 1000000);
203 	}
204 #else
205 	printf("CPU:   Freescale i.MX%s rev%d.%d at %d MHz\n",
206 		get_imx_type((cpurev & 0x1FF000) >> 12),
207 		(cpurev & 0x000F0) >> 4,
208 		(cpurev & 0x0000F) >> 0,
209 		mxc_get_clock(MXC_ARM_CLK) / 1000000);
210 #endif
211 
212 #if defined(CONFIG_IMX_THERMAL) || defined(CONFIG_IMX_TMU)
213 	puts("CPU:   ");
214 	switch (get_cpu_temp_grade(&minc, &maxc)) {
215 	case TEMP_AUTOMOTIVE:
216 		puts("Automotive temperature grade ");
217 		break;
218 	case TEMP_INDUSTRIAL:
219 		puts("Industrial temperature grade ");
220 		break;
221 	case TEMP_EXTCOMMERCIAL:
222 		puts("Extended Commercial temperature grade ");
223 		break;
224 	default:
225 		puts("Commercial temperature grade ");
226 		break;
227 	}
228 	printf("(%dC to %dC)", minc, maxc);
229 	ret = uclass_get_device(UCLASS_THERMAL, 0, &thermal_dev);
230 	if (!ret) {
231 		ret = thermal_get_temp(thermal_dev, &cpu_tmp);
232 
233 		if (!ret)
234 			printf(" at %dC", cpu_tmp);
235 		else
236 			debug(" - invalid sensor data\n");
237 	} else {
238 		debug(" - invalid sensor device\n");
239 	}
240 	puts("\n");
241 #endif
242 
243 	printf("Reset cause: %s\n", get_reset_cause());
244 	return 0;
245 }
246 #endif
247 
cpu_eth_init(struct bd_info * bis)248 int cpu_eth_init(struct bd_info *bis)
249 {
250 	int rc = -ENODEV;
251 
252 #if defined(CONFIG_FEC_MXC)
253 	rc = fecmxc_initialize(bis);
254 #endif
255 
256 	return rc;
257 }
258 
259 #ifdef CONFIG_FSL_ESDHC_IMX
260 /*
261  * Initializes on-chip MMC controllers.
262  * to override, implement board_mmc_init()
263  */
cpu_mmc_init(struct bd_info * bis)264 int cpu_mmc_init(struct bd_info *bis)
265 {
266 	return fsl_esdhc_mmc_init(bis);
267 }
268 #endif
269 
270 #if !(defined(CONFIG_MX7) || defined(CONFIG_IMX8M))
get_ahb_clk(void)271 u32 get_ahb_clk(void)
272 {
273 	struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
274 	u32 reg, ahb_podf;
275 
276 	reg = __raw_readl(&imx_ccm->cbcdr);
277 	reg &= MXC_CCM_CBCDR_AHB_PODF_MASK;
278 	ahb_podf = reg >> MXC_CCM_CBCDR_AHB_PODF_OFFSET;
279 
280 	return get_periph_clk() / (ahb_podf + 1);
281 }
282 #endif
283 
arch_preboot_os(void)284 void arch_preboot_os(void)
285 {
286 #if defined(CONFIG_PCIE_IMX) && !CONFIG_IS_ENABLED(DM_PCI)
287 	imx_pcie_remove();
288 #endif
289 
290 #if defined(CONFIG_IMX_AHCI)
291 	struct udevice *dev;
292 	int rc;
293 
294 	rc = uclass_find_device(UCLASS_AHCI, 0, &dev);
295 	if (!rc && dev) {
296 		rc = device_remove(dev, DM_REMOVE_NORMAL);
297 		if (rc)
298 			printf("Cannot remove SATA device '%s' (err=%d)\n",
299 				dev->name, rc);
300 	}
301 #endif
302 
303 #if defined(CONFIG_SATA)
304 	if (!is_mx6sdl()) {
305 		sata_remove(0);
306 #if defined(CONFIG_MX6)
307 		disable_sata_clock();
308 #endif
309 	}
310 #endif
311 #if defined(CONFIG_VIDEO_IPUV3)
312 	/* disable video before launching O/S */
313 	ipuv3_fb_shutdown();
314 #endif
315 #if defined(CONFIG_VIDEO_MXS) && !defined(CONFIG_DM_VIDEO)
316 	lcdif_power_down();
317 #endif
318 }
319 
320 #ifndef CONFIG_IMX8M
set_chipselect_size(int const cs_size)321 void set_chipselect_size(int const cs_size)
322 {
323 	unsigned int reg;
324 	struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR;
325 	reg = readl(&iomuxc_regs->gpr[1]);
326 
327 	switch (cs_size) {
328 	case CS0_128:
329 		reg &= ~0x7;	/* CS0=128MB, CS1=0, CS2=0, CS3=0 */
330 		reg |= 0x5;
331 		break;
332 	case CS0_64M_CS1_64M:
333 		reg &= ~0x3F;	/* CS0=64MB, CS1=64MB, CS2=0, CS3=0 */
334 		reg |= 0x1B;
335 		break;
336 	case CS0_64M_CS1_32M_CS2_32M:
337 		reg &= ~0x1FF;	/* CS0=64MB, CS1=32MB, CS2=32MB, CS3=0 */
338 		reg |= 0x4B;
339 		break;
340 	case CS0_32M_CS1_32M_CS2_32M_CS3_32M:
341 		reg &= ~0xFFF;  /* CS0=32MB, CS1=32MB, CS2=32MB, CS3=32MB */
342 		reg |= 0x249;
343 		break;
344 	default:
345 		printf("Unknown chip select size: %d\n", cs_size);
346 		break;
347 	}
348 
349 	writel(reg, &iomuxc_regs->gpr[1]);
350 }
351 #endif
352 
353 #if defined(CONFIG_MX7) || defined(CONFIG_IMX8M)
354 /*
355  * OCOTP_TESTER3[9:8] (see Fusemap Description Table offset 0x440)
356  * defines a 2-bit SPEED_GRADING
357  */
358 #define OCOTP_TESTER3_SPEED_SHIFT	8
359 enum cpu_speed {
360 	OCOTP_TESTER3_SPEED_GRADE0,
361 	OCOTP_TESTER3_SPEED_GRADE1,
362 	OCOTP_TESTER3_SPEED_GRADE2,
363 	OCOTP_TESTER3_SPEED_GRADE3,
364 	OCOTP_TESTER3_SPEED_GRADE4,
365 };
366 
get_cpu_speed_grade_hz(void)367 u32 get_cpu_speed_grade_hz(void)
368 {
369 	struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
370 	struct fuse_bank *bank = &ocotp->bank[1];
371 	struct fuse_bank1_regs *fuse =
372 		(struct fuse_bank1_regs *)bank->fuse_regs;
373 	uint32_t val;
374 
375 	val = readl(&fuse->tester3);
376 	val >>= OCOTP_TESTER3_SPEED_SHIFT;
377 
378 	if (is_imx8mn() || is_imx8mp()) {
379 		val &= 0xf;
380 		return 2300000000 - val * 100000000;
381 	}
382 
383 	if (is_imx8mm())
384 		val &= 0x7;
385 	else
386 		val &= 0x3;
387 
388 	switch(val) {
389 	case OCOTP_TESTER3_SPEED_GRADE0:
390 		return 800000000;
391 	case OCOTP_TESTER3_SPEED_GRADE1:
392 		return (is_mx7() ? 500000000 : (is_imx8mq() ? 1000000000 : 1200000000));
393 	case OCOTP_TESTER3_SPEED_GRADE2:
394 		return (is_mx7() ? 1000000000 : (is_imx8mq() ? 1300000000 : 1600000000));
395 	case OCOTP_TESTER3_SPEED_GRADE3:
396 		return (is_mx7() ? 1200000000 : (is_imx8mq() ? 1500000000 : 1800000000));
397 	case OCOTP_TESTER3_SPEED_GRADE4:
398 		return 2000000000;
399 	}
400 
401 	return 0;
402 }
403 
404 /*
405  * OCOTP_TESTER3[7:6] (see Fusemap Description Table offset 0x440)
406  * defines a 2-bit SPEED_GRADING
407  */
408 #define OCOTP_TESTER3_TEMP_SHIFT	6
409 
410 /* iMX8MP uses OCOTP_TESTER3[6:5] for Market segment */
411 #define IMX8MP_OCOTP_TESTER3_TEMP_SHIFT	5
412 
get_cpu_temp_grade(int * minc,int * maxc)413 u32 get_cpu_temp_grade(int *minc, int *maxc)
414 {
415 	struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
416 	struct fuse_bank *bank = &ocotp->bank[1];
417 	struct fuse_bank1_regs *fuse =
418 		(struct fuse_bank1_regs *)bank->fuse_regs;
419 	uint32_t val;
420 
421 	val = readl(&fuse->tester3);
422 	if (is_imx8mp())
423 		val >>= IMX8MP_OCOTP_TESTER3_TEMP_SHIFT;
424 	else
425 		val >>= OCOTP_TESTER3_TEMP_SHIFT;
426 	val &= 0x3;
427 
428 	if (minc && maxc) {
429 		if (val == TEMP_AUTOMOTIVE) {
430 			*minc = -40;
431 			*maxc = 125;
432 		} else if (val == TEMP_INDUSTRIAL) {
433 			*minc = -40;
434 			*maxc = 105;
435 		} else if (val == TEMP_EXTCOMMERCIAL) {
436 			*minc = -20;
437 			*maxc = 105;
438 		} else {
439 			*minc = 0;
440 			*maxc = 95;
441 		}
442 	}
443 	return val;
444 }
445 #endif
446 
447 #if defined(CONFIG_MX7) || defined(CONFIG_IMX8MQ) || defined(CONFIG_IMX8MM)
get_boot_device(void)448 enum boot_device get_boot_device(void)
449 {
450 	struct bootrom_sw_info **p =
451 		(struct bootrom_sw_info **)(ulong)ROM_SW_INFO_ADDR;
452 
453 	enum boot_device boot_dev = SD1_BOOT;
454 	u8 boot_type = (*p)->boot_dev_type;
455 	u8 boot_instance = (*p)->boot_dev_instance;
456 
457 	switch (boot_type) {
458 	case BOOT_TYPE_SD:
459 		boot_dev = boot_instance + SD1_BOOT;
460 		break;
461 	case BOOT_TYPE_MMC:
462 		boot_dev = boot_instance + MMC1_BOOT;
463 		break;
464 	case BOOT_TYPE_NAND:
465 		boot_dev = NAND_BOOT;
466 		break;
467 	case BOOT_TYPE_QSPI:
468 		boot_dev = QSPI_BOOT;
469 		break;
470 	case BOOT_TYPE_WEIM:
471 		boot_dev = WEIM_NOR_BOOT;
472 		break;
473 	case BOOT_TYPE_SPINOR:
474 		boot_dev = SPI_NOR_BOOT;
475 		break;
476 	case BOOT_TYPE_USB:
477 		boot_dev = USB_BOOT;
478 		break;
479 	default:
480 #ifdef CONFIG_IMX8M
481 		if (((readl(SRC_BASE_ADDR + 0x58) & 0x00007FFF) >> 12) == 0x4)
482 			boot_dev = QSPI_BOOT;
483 #endif
484 		break;
485 	}
486 
487 	return boot_dev;
488 }
489 #endif
490 
491 #ifdef CONFIG_NXP_BOARD_REVISION
nxp_board_rev(void)492 int nxp_board_rev(void)
493 {
494 	/*
495 	 * Get Board ID information from OCOTP_GP1[15:8]
496 	 * RevA: 0x1
497 	 * RevB: 0x2
498 	 * RevC: 0x3
499 	 */
500 	struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
501 	struct fuse_bank *bank = &ocotp->bank[4];
502 	struct fuse_bank4_regs *fuse =
503 			(struct fuse_bank4_regs *)bank->fuse_regs;
504 
505 	return (readl(&fuse->gp1) >> 8 & 0x0F);
506 }
507 
nxp_board_rev_string(void)508 char nxp_board_rev_string(void)
509 {
510 	const char *rev = "A";
511 
512 	return (*rev + nxp_board_rev() - 1);
513 }
514 #endif
515