1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2009
4  * Sergey Kubushyn, himself, ksi@koi8.net
5  *
6  * Changes for unified multibus/multiadapter I2C support.
7  *
8  * (C) Copyright 2001
9  * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
10  */
11 
12 /*
13  * I2C Functions similar to the standard memory functions.
14  *
15  * There are several parameters in many of the commands that bear further
16  * explanations:
17  *
18  * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
19  *   Each I2C chip on the bus has a unique address.  On the I2C data bus,
20  *   the address is the upper seven bits and the LSB is the "read/write"
21  *   bit.  Note that the {i2c_chip} address specified on the command
22  *   line is not shifted up: e.g. a typical EEPROM memory chip may have
23  *   an I2C address of 0x50, but the data put on the bus will be 0xA0
24  *   for write and 0xA1 for read.  This "non shifted" address notation
25  *   matches at least half of the data sheets :-/.
26  *
27  * {addr} is the address (or offset) within the chip.  Small memory
28  *   chips have 8 bit addresses.  Large memory chips have 16 bit
29  *   addresses.  Other memory chips have 9, 10, or 11 bit addresses.
30  *   Many non-memory chips have multiple registers and {addr} is used
31  *   as the register index.  Some non-memory chips have only one register
32  *   and therefore don't need any {addr} parameter.
33  *
34  *   The default {addr} parameter is one byte (.1) which works well for
35  *   memories and registers with 8 bits of address space.
36  *
37  *   You can specify the length of the {addr} field with the optional .0,
38  *   .1, or .2 modifier (similar to the .b, .w, .l modifier).  If you are
39  *   manipulating a single register device which doesn't use an address
40  *   field, use "0.0" for the address and the ".0" length field will
41  *   suppress the address in the I2C data stream.  This also works for
42  *   successive reads using the I2C auto-incrementing memory pointer.
43  *
44  *   If you are manipulating a large memory with 2-byte addresses, use
45  *   the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
46  *
47  *   Then there are the unfortunate memory chips that spill the most
48  *   significant 1, 2, or 3 bits of address into the chip address byte.
49  *   This effectively makes one chip (logically) look like 2, 4, or
50  *   8 chips.  This is handled (awkwardly) by #defining
51  *   CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
52  *   {addr} field (since .1 is the default, it doesn't actually have to
53  *   be specified).  Examples: given a memory chip at I2C chip address
54  *   0x50, the following would happen...
55  *     i2c md 50 0 10   display 16 bytes starting at 0x000
56  *                      On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
57  *     i2c md 50 100 10 display 16 bytes starting at 0x100
58  *                      On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
59  *     i2c md 50 210 10 display 16 bytes starting at 0x210
60  *                      On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
61  *   This is awfully ugly.  It would be nice if someone would think up
62  *   a better way of handling this.
63  *
64  * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
65  */
66 
67 #include <common.h>
68 #include <bootretry.h>
69 #include <cli.h>
70 #include <command.h>
71 #include <console.h>
72 #include <dm.h>
73 #include <edid.h>
74 #include <errno.h>
75 #include <i2c.h>
76 #include <log.h>
77 #include <malloc.h>
78 #include <asm/byteorder.h>
79 #include <linux/compiler.h>
80 #include <linux/delay.h>
81 #include <u-boot/crc.h>
82 
83 /* Display values from last command.
84  * Memory modify remembered values are different from display memory.
85  */
86 static uint	i2c_dp_last_chip;
87 static uint	i2c_dp_last_addr;
88 static uint	i2c_dp_last_alen;
89 static uint	i2c_dp_last_length = 0x10;
90 
91 static uint	i2c_mm_last_chip;
92 static uint	i2c_mm_last_addr;
93 static uint	i2c_mm_last_alen;
94 
95 /* If only one I2C bus is present, the list of devices to ignore when
96  * the probe command is issued is represented by a 1D array of addresses.
97  * When multiple buses are present, the list is an array of bus-address
98  * pairs.  The following macros take care of this */
99 
100 #if defined(CONFIG_SYS_I2C_NOPROBES)
101 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
102 static struct
103 {
104 	uchar	bus;
105 	uchar	addr;
106 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
107 #define GET_BUS_NUM	i2c_get_bus_num()
108 #define COMPARE_BUS(b,i)	(i2c_no_probes[(i)].bus == (b))
109 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)].addr == (a))
110 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)].addr
111 #else		/* single bus */
112 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
113 #define GET_BUS_NUM	0
114 #define COMPARE_BUS(b,i)	((b) == 0)	/* Make compiler happy */
115 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)] == (a))
116 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)]
117 #endif	/* defined(CONFIG_SYS_I2C) */
118 #endif
119 
120 #define DISP_LINE_LEN	16
121 
122 /*
123  * Default for driver model is to use the chip's existing address length.
124  * For legacy code, this is not stored, so we need to use a suitable
125  * default.
126  */
127 #if CONFIG_IS_ENABLED(DM_I2C)
128 #define DEFAULT_ADDR_LEN	(-1)
129 #else
130 #define DEFAULT_ADDR_LEN	1
131 #endif
132 
133 #if CONFIG_IS_ENABLED(DM_I2C)
134 static struct udevice *i2c_cur_bus;
135 
cmd_i2c_set_bus_num(unsigned int busnum)136 static int cmd_i2c_set_bus_num(unsigned int busnum)
137 {
138 	struct udevice *bus;
139 	int ret;
140 
141 	ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
142 	if (ret) {
143 		debug("%s: No bus %d\n", __func__, busnum);
144 		return ret;
145 	}
146 	i2c_cur_bus = bus;
147 
148 	return 0;
149 }
150 
i2c_get_cur_bus(struct udevice ** busp)151 static int i2c_get_cur_bus(struct udevice **busp)
152 {
153 #ifdef CONFIG_I2C_SET_DEFAULT_BUS_NUM
154 	if (!i2c_cur_bus) {
155 		if (cmd_i2c_set_bus_num(CONFIG_I2C_DEFAULT_BUS_NUMBER)) {
156 			printf("Default I2C bus %d not found\n",
157 			       CONFIG_I2C_DEFAULT_BUS_NUMBER);
158 			return -ENODEV;
159 		}
160 	}
161 #endif
162 
163 	if (!i2c_cur_bus) {
164 		puts("No I2C bus selected\n");
165 		return -ENODEV;
166 	}
167 	*busp = i2c_cur_bus;
168 
169 	return 0;
170 }
171 
i2c_get_cur_bus_chip(uint chip_addr,struct udevice ** devp)172 static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
173 {
174 	struct udevice *bus;
175 	int ret;
176 
177 	ret = i2c_get_cur_bus(&bus);
178 	if (ret)
179 		return ret;
180 
181 	return i2c_get_chip(bus, chip_addr, 1, devp);
182 }
183 
184 #endif
185 
186 /**
187  * i2c_init_board() - Board-specific I2C bus init
188  *
189  * This function is the default no-op implementation of I2C bus
190  * initialization. This function can be overridden by board-specific
191  * implementation if needed.
192  */
193 __weak
i2c_init_board(void)194 void i2c_init_board(void)
195 {
196 }
197 
198 /* TODO: Implement architecture-specific get/set functions */
199 
200 /**
201  * i2c_get_bus_speed() - Return I2C bus speed
202  *
203  * This function is the default implementation of function for retrieveing
204  * the current I2C bus speed in Hz.
205  *
206  * A driver implementing runtime switching of I2C bus speed must override
207  * this function to report the speed correctly. Simple or legacy drivers
208  * can use this fallback.
209  *
210  * Returns I2C bus speed in Hz.
211  */
212 #if !defined(CONFIG_SYS_I2C) && !CONFIG_IS_ENABLED(DM_I2C)
213 /*
214  * TODO: Implement architecture-specific get/set functions
215  * Should go away, if we switched completely to new multibus support
216  */
217 __weak
i2c_get_bus_speed(void)218 unsigned int i2c_get_bus_speed(void)
219 {
220 	return CONFIG_SYS_I2C_SPEED;
221 }
222 
223 /**
224  * i2c_set_bus_speed() - Configure I2C bus speed
225  * @speed:	Newly set speed of the I2C bus in Hz
226  *
227  * This function is the default implementation of function for setting
228  * the I2C bus speed in Hz.
229  *
230  * A driver implementing runtime switching of I2C bus speed must override
231  * this function to report the speed correctly. Simple or legacy drivers
232  * can use this fallback.
233  *
234  * Returns zero on success, negative value on error.
235  */
236 __weak
i2c_set_bus_speed(unsigned int speed)237 int i2c_set_bus_speed(unsigned int speed)
238 {
239 	if (speed != CONFIG_SYS_I2C_SPEED)
240 		return -1;
241 
242 	return 0;
243 }
244 #endif
245 
246 /**
247  * get_alen() - Small parser helper function to get address length
248  *
249  * Returns the address length.
250  */
get_alen(char * arg,int default_len)251 static uint get_alen(char *arg, int default_len)
252 {
253 	int	j;
254 	int	alen;
255 
256 	alen = default_len;
257 	for (j = 0; j < 8; j++) {
258 		if (arg[j] == '.') {
259 			alen = arg[j+1] - '0';
260 			break;
261 		} else if (arg[j] == '\0')
262 			break;
263 	}
264 	return alen;
265 }
266 
267 enum i2c_err_op {
268 	I2C_ERR_READ,
269 	I2C_ERR_WRITE,
270 };
271 
i2c_report_err(int ret,enum i2c_err_op op)272 static int i2c_report_err(int ret, enum i2c_err_op op)
273 {
274 	printf("Error %s the chip: %d\n",
275 	       op == I2C_ERR_READ ? "reading" : "writing", ret);
276 
277 	return CMD_RET_FAILURE;
278 }
279 
280 /**
281  * do_i2c_read() - Handle the "i2c read" command-line command
282  * @cmdtp:	Command data struct pointer
283  * @flag:	Command flag
284  * @argc:	Command-line argument count
285  * @argv:	Array of command-line arguments
286  *
287  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
288  * on error.
289  *
290  * Syntax:
291  *	i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
292  */
do_i2c_read(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])293 static int do_i2c_read(struct cmd_tbl *cmdtp, int flag, int argc,
294 		       char *const argv[])
295 {
296 	uint	chip;
297 	uint	devaddr, length;
298 	int alen;
299 	u_char  *memaddr;
300 	int ret;
301 #if CONFIG_IS_ENABLED(DM_I2C)
302 	struct udevice *dev;
303 #endif
304 
305 	if (argc != 5)
306 		return CMD_RET_USAGE;
307 
308 	/*
309 	 * I2C chip address
310 	 */
311 	chip = simple_strtoul(argv[1], NULL, 16);
312 
313 	/*
314 	 * I2C data address within the chip.  This can be 1 or
315 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
316 	 */
317 	devaddr = simple_strtoul(argv[2], NULL, 16);
318 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
319 	if (alen > 3)
320 		return CMD_RET_USAGE;
321 
322 	/*
323 	 * Length is the number of objects, not number of bytes.
324 	 */
325 	length = simple_strtoul(argv[3], NULL, 16);
326 
327 	/*
328 	 * memaddr is the address where to store things in memory
329 	 */
330 	memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
331 
332 #if CONFIG_IS_ENABLED(DM_I2C)
333 	ret = i2c_get_cur_bus_chip(chip, &dev);
334 	if (!ret && alen != -1)
335 		ret = i2c_set_chip_offset_len(dev, alen);
336 	if (!ret)
337 		ret = dm_i2c_read(dev, devaddr, memaddr, length);
338 #else
339 	ret = i2c_read(chip, devaddr, alen, memaddr, length);
340 #endif
341 	if (ret)
342 		return i2c_report_err(ret, I2C_ERR_READ);
343 
344 	return 0;
345 }
346 
do_i2c_write(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])347 static int do_i2c_write(struct cmd_tbl *cmdtp, int flag, int argc,
348 			char *const argv[])
349 {
350 	uint	chip;
351 	uint	devaddr, length;
352 	int alen;
353 	u_char  *memaddr;
354 	int ret;
355 #if CONFIG_IS_ENABLED(DM_I2C)
356 	struct udevice *dev;
357 	struct dm_i2c_chip *i2c_chip;
358 #endif
359 
360 	if ((argc < 5) || (argc > 6))
361 		return cmd_usage(cmdtp);
362 
363 	/*
364 	 * memaddr is the address where to store things in memory
365 	 */
366 	memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
367 
368 	/*
369 	 * I2C chip address
370 	 */
371 	chip = simple_strtoul(argv[2], NULL, 16);
372 
373 	/*
374 	 * I2C data address within the chip.  This can be 1 or
375 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
376 	 */
377 	devaddr = simple_strtoul(argv[3], NULL, 16);
378 	alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
379 	if (alen > 3)
380 		return cmd_usage(cmdtp);
381 
382 	/*
383 	 * Length is the number of bytes.
384 	 */
385 	length = simple_strtoul(argv[4], NULL, 16);
386 
387 #if CONFIG_IS_ENABLED(DM_I2C)
388 	ret = i2c_get_cur_bus_chip(chip, &dev);
389 	if (!ret && alen != -1)
390 		ret = i2c_set_chip_offset_len(dev, alen);
391 	if (ret)
392 		return i2c_report_err(ret, I2C_ERR_WRITE);
393 	i2c_chip = dev_get_parent_plat(dev);
394 	if (!i2c_chip)
395 		return i2c_report_err(ret, I2C_ERR_WRITE);
396 #endif
397 
398 	if (argc == 6 && !strcmp(argv[5], "-s")) {
399 		/*
400 		 * Write all bytes in a single I2C transaction. If the target
401 		 * device is an EEPROM, it is your responsibility to not cross
402 		 * a page boundary. No write delay upon completion, take this
403 		 * into account if linking commands.
404 		 */
405 #if CONFIG_IS_ENABLED(DM_I2C)
406 		i2c_chip->flags &= ~DM_I2C_CHIP_WR_ADDRESS;
407 		ret = dm_i2c_write(dev, devaddr, memaddr, length);
408 #else
409 		ret = i2c_write(chip, devaddr, alen, memaddr, length);
410 #endif
411 		if (ret)
412 			return i2c_report_err(ret, I2C_ERR_WRITE);
413 	} else {
414 		/*
415 		 * Repeated addressing - perform <length> separate
416 		 * write transactions of one byte each
417 		 */
418 		while (length-- > 0) {
419 #if CONFIG_IS_ENABLED(DM_I2C)
420 			i2c_chip->flags |= DM_I2C_CHIP_WR_ADDRESS;
421 			ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
422 #else
423 			ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
424 #endif
425 			if (ret)
426 				return i2c_report_err(ret, I2C_ERR_WRITE);
427 /*
428  * No write delay with FRAM devices.
429  */
430 #if !defined(CONFIG_SYS_I2C_FRAM)
431 			udelay(11000);
432 #endif
433 		}
434 	}
435 	return 0;
436 }
437 
438 #if CONFIG_IS_ENABLED(DM_I2C)
do_i2c_flags(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])439 static int do_i2c_flags(struct cmd_tbl *cmdtp, int flag, int argc,
440 			char *const argv[])
441 {
442 	struct udevice *dev;
443 	uint flags;
444 	int chip;
445 	int ret;
446 
447 	if (argc < 2)
448 		return CMD_RET_USAGE;
449 
450 	chip = simple_strtoul(argv[1], NULL, 16);
451 	ret = i2c_get_cur_bus_chip(chip, &dev);
452 	if (ret)
453 		return i2c_report_err(ret, I2C_ERR_READ);
454 
455 	if (argc > 2) {
456 		flags = simple_strtoul(argv[2], NULL, 16);
457 		ret = i2c_set_chip_flags(dev, flags);
458 	} else  {
459 		ret = i2c_get_chip_flags(dev, &flags);
460 		if (!ret)
461 			printf("%x\n", flags);
462 	}
463 	if (ret)
464 		return i2c_report_err(ret, I2C_ERR_READ);
465 
466 	return 0;
467 }
468 
do_i2c_olen(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])469 static int do_i2c_olen(struct cmd_tbl *cmdtp, int flag, int argc,
470 		       char *const argv[])
471 {
472 	struct udevice *dev;
473 	uint olen;
474 	int chip;
475 	int ret;
476 
477 	if (argc < 2)
478 		return CMD_RET_USAGE;
479 
480 	chip = simple_strtoul(argv[1], NULL, 16);
481 	ret = i2c_get_cur_bus_chip(chip, &dev);
482 	if (ret)
483 		return i2c_report_err(ret, I2C_ERR_READ);
484 
485 	if (argc > 2) {
486 		olen = simple_strtoul(argv[2], NULL, 16);
487 		ret = i2c_set_chip_offset_len(dev, olen);
488 	} else  {
489 		ret = i2c_get_chip_offset_len(dev);
490 		if (ret >= 0) {
491 			printf("%x\n", ret);
492 			ret = 0;
493 		}
494 	}
495 	if (ret)
496 		return i2c_report_err(ret, I2C_ERR_READ);
497 
498 	return 0;
499 }
500 #endif
501 
502 /**
503  * do_i2c_md() - Handle the "i2c md" command-line command
504  * @cmdtp:	Command data struct pointer
505  * @flag:	Command flag
506  * @argc:	Command-line argument count
507  * @argv:	Array of command-line arguments
508  *
509  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
510  * on error.
511  *
512  * Syntax:
513  *	i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
514  */
do_i2c_md(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])515 static int do_i2c_md(struct cmd_tbl *cmdtp, int flag, int argc,
516 		     char *const argv[])
517 {
518 	uint	chip;
519 	uint	addr, length;
520 	int alen;
521 	int	j, nbytes, linebytes;
522 	int ret;
523 #if CONFIG_IS_ENABLED(DM_I2C)
524 	struct udevice *dev;
525 #endif
526 
527 	/* We use the last specified parameters, unless new ones are
528 	 * entered.
529 	 */
530 	chip   = i2c_dp_last_chip;
531 	addr   = i2c_dp_last_addr;
532 	alen   = i2c_dp_last_alen;
533 	length = i2c_dp_last_length;
534 
535 	if (argc < 3)
536 		return CMD_RET_USAGE;
537 
538 	if ((flag & CMD_FLAG_REPEAT) == 0) {
539 		/*
540 		 * New command specified.
541 		 */
542 
543 		/*
544 		 * I2C chip address
545 		 */
546 		chip = simple_strtoul(argv[1], NULL, 16);
547 
548 		/*
549 		 * I2C data address within the chip.  This can be 1 or
550 		 * 2 bytes long.  Some day it might be 3 bytes long :-).
551 		 */
552 		addr = simple_strtoul(argv[2], NULL, 16);
553 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
554 		if (alen > 3)
555 			return CMD_RET_USAGE;
556 
557 		/*
558 		 * If another parameter, it is the length to display.
559 		 * Length is the number of objects, not number of bytes.
560 		 */
561 		if (argc > 3)
562 			length = simple_strtoul(argv[3], NULL, 16);
563 	}
564 
565 #if CONFIG_IS_ENABLED(DM_I2C)
566 	ret = i2c_get_cur_bus_chip(chip, &dev);
567 	if (!ret && alen != -1)
568 		ret = i2c_set_chip_offset_len(dev, alen);
569 	if (ret)
570 		return i2c_report_err(ret, I2C_ERR_READ);
571 #endif
572 
573 	/*
574 	 * Print the lines.
575 	 *
576 	 * We buffer all read data, so we can make sure data is read only
577 	 * once.
578 	 */
579 	nbytes = length;
580 	do {
581 		unsigned char	linebuf[DISP_LINE_LEN];
582 		unsigned char	*cp;
583 
584 		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
585 
586 #if CONFIG_IS_ENABLED(DM_I2C)
587 		ret = dm_i2c_read(dev, addr, linebuf, linebytes);
588 #else
589 		ret = i2c_read(chip, addr, alen, linebuf, linebytes);
590 #endif
591 		if (ret)
592 			return i2c_report_err(ret, I2C_ERR_READ);
593 		else {
594 			printf("%04x:", addr);
595 			cp = linebuf;
596 			for (j=0; j<linebytes; j++) {
597 				printf(" %02x", *cp++);
598 				addr++;
599 			}
600 			puts ("    ");
601 			cp = linebuf;
602 			for (j=0; j<linebytes; j++) {
603 				if ((*cp < 0x20) || (*cp > 0x7e))
604 					puts (".");
605 				else
606 					printf("%c", *cp);
607 				cp++;
608 			}
609 			putc ('\n');
610 		}
611 		nbytes -= linebytes;
612 	} while (nbytes > 0);
613 
614 	i2c_dp_last_chip   = chip;
615 	i2c_dp_last_addr   = addr;
616 	i2c_dp_last_alen   = alen;
617 	i2c_dp_last_length = length;
618 
619 	return 0;
620 }
621 
622 /**
623  * do_i2c_mw() - Handle the "i2c mw" command-line command
624  * @cmdtp:	Command data struct pointer
625  * @flag:	Command flag
626  * @argc:	Command-line argument count
627  * @argv:	Array of command-line arguments
628  *
629  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
630  * on error.
631  *
632  * Syntax:
633  *	i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
634  */
do_i2c_mw(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])635 static int do_i2c_mw(struct cmd_tbl *cmdtp, int flag, int argc,
636 		     char *const argv[])
637 {
638 	uint	chip;
639 	ulong	addr;
640 	int	alen;
641 	uchar	byte;
642 	int	count;
643 	int ret;
644 #if CONFIG_IS_ENABLED(DM_I2C)
645 	struct udevice *dev;
646 #endif
647 
648 	if ((argc < 4) || (argc > 5))
649 		return CMD_RET_USAGE;
650 
651 	/*
652 	 * Chip is always specified.
653 	 */
654 	chip = simple_strtoul(argv[1], NULL, 16);
655 
656 	/*
657 	 * Address is always specified.
658 	 */
659 	addr = simple_strtoul(argv[2], NULL, 16);
660 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
661 	if (alen > 3)
662 		return CMD_RET_USAGE;
663 
664 #if CONFIG_IS_ENABLED(DM_I2C)
665 	ret = i2c_get_cur_bus_chip(chip, &dev);
666 	if (!ret && alen != -1)
667 		ret = i2c_set_chip_offset_len(dev, alen);
668 	if (ret)
669 		return i2c_report_err(ret, I2C_ERR_WRITE);
670 #endif
671 	/*
672 	 * Value to write is always specified.
673 	 */
674 	byte = simple_strtoul(argv[3], NULL, 16);
675 
676 	/*
677 	 * Optional count
678 	 */
679 	if (argc == 5)
680 		count = simple_strtoul(argv[4], NULL, 16);
681 	else
682 		count = 1;
683 
684 	while (count-- > 0) {
685 #if CONFIG_IS_ENABLED(DM_I2C)
686 		ret = dm_i2c_write(dev, addr++, &byte, 1);
687 #else
688 		ret = i2c_write(chip, addr++, alen, &byte, 1);
689 #endif
690 		if (ret)
691 			return i2c_report_err(ret, I2C_ERR_WRITE);
692 		/*
693 		 * Wait for the write to complete.  The write can take
694 		 * up to 10mSec (we allow a little more time).
695 		 */
696 /*
697  * No write delay with FRAM devices.
698  */
699 #if !defined(CONFIG_SYS_I2C_FRAM)
700 		udelay(11000);
701 #endif
702 	}
703 
704 	return 0;
705 }
706 
707 /**
708  * do_i2c_crc() - Handle the "i2c crc32" command-line command
709  * @cmdtp:	Command data struct pointer
710  * @flag:	Command flag
711  * @argc:	Command-line argument count
712  * @argv:	Array of command-line arguments
713  *
714  * Calculate a CRC on memory
715  *
716  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
717  * on error.
718  *
719  * Syntax:
720  *	i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
721  */
do_i2c_crc(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])722 static int do_i2c_crc(struct cmd_tbl *cmdtp, int flag, int argc,
723 		      char *const argv[])
724 {
725 	uint	chip;
726 	ulong	addr;
727 	int	alen;
728 	int	count;
729 	uchar	byte;
730 	ulong	crc;
731 	ulong	err;
732 	int ret = 0;
733 #if CONFIG_IS_ENABLED(DM_I2C)
734 	struct udevice *dev;
735 #endif
736 
737 	if (argc < 4)
738 		return CMD_RET_USAGE;
739 
740 	/*
741 	 * Chip is always specified.
742 	 */
743 	chip = simple_strtoul(argv[1], NULL, 16);
744 
745 	/*
746 	 * Address is always specified.
747 	 */
748 	addr = simple_strtoul(argv[2], NULL, 16);
749 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
750 	if (alen > 3)
751 		return CMD_RET_USAGE;
752 
753 #if CONFIG_IS_ENABLED(DM_I2C)
754 	ret = i2c_get_cur_bus_chip(chip, &dev);
755 	if (!ret && alen != -1)
756 		ret = i2c_set_chip_offset_len(dev, alen);
757 	if (ret)
758 		return i2c_report_err(ret, I2C_ERR_READ);
759 #endif
760 	/*
761 	 * Count is always specified
762 	 */
763 	count = simple_strtoul(argv[3], NULL, 16);
764 
765 	printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
766 	/*
767 	 * CRC a byte at a time.  This is going to be slooow, but hey, the
768 	 * memories are small and slow too so hopefully nobody notices.
769 	 */
770 	crc = 0;
771 	err = 0;
772 	while (count-- > 0) {
773 #if CONFIG_IS_ENABLED(DM_I2C)
774 		ret = dm_i2c_read(dev, addr, &byte, 1);
775 #else
776 		ret = i2c_read(chip, addr, alen, &byte, 1);
777 #endif
778 		if (ret)
779 			err++;
780 		crc = crc32(crc, &byte, 1);
781 		addr++;
782 	}
783 	if (err > 0)
784 		i2c_report_err(ret, I2C_ERR_READ);
785 	else
786 		printf ("%08lx\n", crc);
787 
788 	return 0;
789 }
790 
791 /**
792  * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
793  * @cmdtp:	Command data struct pointer
794  * @flag:	Command flag
795  * @argc:	Command-line argument count
796  * @argv:	Array of command-line arguments
797  *
798  * Modify memory.
799  *
800  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
801  * on error.
802  *
803  * Syntax:
804  *	i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
805  *	i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
806  */
mod_i2c_mem(struct cmd_tbl * cmdtp,int incrflag,int flag,int argc,char * const argv[])807 static int mod_i2c_mem(struct cmd_tbl *cmdtp, int incrflag, int flag, int argc,
808 		       char *const argv[])
809 {
810 	uint	chip;
811 	ulong	addr;
812 	int	alen;
813 	ulong	data;
814 	int	size = 1;
815 	int	nbytes;
816 	int ret;
817 #if CONFIG_IS_ENABLED(DM_I2C)
818 	struct udevice *dev;
819 #endif
820 
821 	if (argc != 3)
822 		return CMD_RET_USAGE;
823 
824 	bootretry_reset_cmd_timeout();	/* got a good command to get here */
825 	/*
826 	 * We use the last specified parameters, unless new ones are
827 	 * entered.
828 	 */
829 	chip = i2c_mm_last_chip;
830 	addr = i2c_mm_last_addr;
831 	alen = i2c_mm_last_alen;
832 
833 	if ((flag & CMD_FLAG_REPEAT) == 0) {
834 		/*
835 		 * New command specified.  Check for a size specification.
836 		 * Defaults to byte if no or incorrect specification.
837 		 */
838 		size = cmd_get_data_size(argv[0], 1);
839 
840 		/*
841 		 * Chip is always specified.
842 		 */
843 		chip = simple_strtoul(argv[1], NULL, 16);
844 
845 		/*
846 		 * Address is always specified.
847 		 */
848 		addr = simple_strtoul(argv[2], NULL, 16);
849 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
850 		if (alen > 3)
851 			return CMD_RET_USAGE;
852 	}
853 
854 #if CONFIG_IS_ENABLED(DM_I2C)
855 	ret = i2c_get_cur_bus_chip(chip, &dev);
856 	if (!ret && alen != -1)
857 		ret = i2c_set_chip_offset_len(dev, alen);
858 	if (ret)
859 		return i2c_report_err(ret, I2C_ERR_WRITE);
860 #endif
861 
862 	/*
863 	 * Print the address, followed by value.  Then accept input for
864 	 * the next value.  A non-converted value exits.
865 	 */
866 	do {
867 		printf("%08lx:", addr);
868 #if CONFIG_IS_ENABLED(DM_I2C)
869 		ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
870 #else
871 		ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
872 #endif
873 		if (ret)
874 			return i2c_report_err(ret, I2C_ERR_READ);
875 
876 		data = cpu_to_be32(data);
877 		if (size == 1)
878 			printf(" %02lx", (data >> 24) & 0x000000FF);
879 		else if (size == 2)
880 			printf(" %04lx", (data >> 16) & 0x0000FFFF);
881 		else
882 			printf(" %08lx", data);
883 
884 		nbytes = cli_readline(" ? ");
885 		if (nbytes == 0) {
886 			/*
887 			 * <CR> pressed as only input, don't modify current
888 			 * location and move to next.
889 			 */
890 			if (incrflag)
891 				addr += size;
892 			nbytes = size;
893 			/* good enough to not time out */
894 			bootretry_reset_cmd_timeout();
895 		}
896 #ifdef CONFIG_BOOT_RETRY_TIME
897 		else if (nbytes == -2)
898 			break;	/* timed out, exit the command	*/
899 #endif
900 		else {
901 			char *endp;
902 
903 			data = simple_strtoul(console_buffer, &endp, 16);
904 			if (size == 1)
905 				data = data << 24;
906 			else if (size == 2)
907 				data = data << 16;
908 			data = be32_to_cpu(data);
909 			nbytes = endp - console_buffer;
910 			if (nbytes) {
911 				/*
912 				 * good enough to not time out
913 				 */
914 				bootretry_reset_cmd_timeout();
915 #if CONFIG_IS_ENABLED(DM_I2C)
916 				ret = dm_i2c_write(dev, addr, (uchar *)&data,
917 						   size);
918 #else
919 				ret = i2c_write(chip, addr, alen,
920 						(uchar *)&data, size);
921 #endif
922 				if (ret)
923 					return i2c_report_err(ret,
924 							      I2C_ERR_WRITE);
925 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
926 				udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
927 #endif
928 				if (incrflag)
929 					addr += size;
930 			}
931 		}
932 	} while (nbytes);
933 
934 	i2c_mm_last_chip = chip;
935 	i2c_mm_last_addr = addr;
936 	i2c_mm_last_alen = alen;
937 
938 	return 0;
939 }
940 
941 /**
942  * do_i2c_probe() - Handle the "i2c probe" command-line command
943  * @cmdtp:	Command data struct pointer
944  * @flag:	Command flag
945  * @argc:	Command-line argument count
946  * @argv:	Array of command-line arguments
947  *
948  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
949  * on error.
950  *
951  * Syntax:
952  *	i2c probe {addr}
953  *
954  * Returns zero (success) if one or more I2C devices was found
955  */
do_i2c_probe(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])956 static int do_i2c_probe(struct cmd_tbl *cmdtp, int flag, int argc,
957 			char *const argv[])
958 {
959 	int j;
960 	int addr = -1;
961 	int found = 0;
962 #if defined(CONFIG_SYS_I2C_NOPROBES)
963 	int k, skip;
964 	unsigned int bus = GET_BUS_NUM;
965 #endif	/* NOPROBES */
966 	int ret;
967 #if CONFIG_IS_ENABLED(DM_I2C)
968 	struct udevice *bus, *dev;
969 
970 	if (i2c_get_cur_bus(&bus))
971 		return CMD_RET_FAILURE;
972 #endif
973 
974 	if (argc == 2)
975 		addr = simple_strtol(argv[1], 0, 16);
976 
977 	puts ("Valid chip addresses:");
978 	for (j = 0; j < 128; j++) {
979 		if ((0 <= addr) && (j != addr))
980 			continue;
981 
982 #if defined(CONFIG_SYS_I2C_NOPROBES)
983 		skip = 0;
984 		for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
985 			if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
986 				skip = 1;
987 				break;
988 			}
989 		}
990 		if (skip)
991 			continue;
992 #endif
993 #if CONFIG_IS_ENABLED(DM_I2C)
994 		ret = dm_i2c_probe(bus, j, 0, &dev);
995 #else
996 		ret = i2c_probe(j);
997 #endif
998 		if (ret == 0) {
999 			printf(" %02X", j);
1000 			found++;
1001 		}
1002 	}
1003 	putc ('\n');
1004 
1005 #if defined(CONFIG_SYS_I2C_NOPROBES)
1006 	puts ("Excluded chip addresses:");
1007 	for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
1008 		if (COMPARE_BUS(bus,k))
1009 			printf(" %02X", NO_PROBE_ADDR(k));
1010 	}
1011 	putc ('\n');
1012 #endif
1013 
1014 	return (0 == found);
1015 }
1016 
1017 /**
1018  * do_i2c_loop() - Handle the "i2c loop" command-line command
1019  * @cmdtp:	Command data struct pointer
1020  * @flag:	Command flag
1021  * @argc:	Command-line argument count
1022  * @argv:	Array of command-line arguments
1023  *
1024  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1025  * on error.
1026  *
1027  * Syntax:
1028  *	i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
1029  *	{length} - Number of bytes to read
1030  *	{delay}  - A DECIMAL number and defaults to 1000 uSec
1031  */
do_i2c_loop(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1032 static int do_i2c_loop(struct cmd_tbl *cmdtp, int flag, int argc,
1033 		       char *const argv[])
1034 {
1035 	uint	chip;
1036 	int alen;
1037 	uint	addr;
1038 	uint	length;
1039 	u_char	bytes[16];
1040 	int	delay;
1041 	int ret;
1042 #if CONFIG_IS_ENABLED(DM_I2C)
1043 	struct udevice *dev;
1044 #endif
1045 
1046 	if (argc < 3)
1047 		return CMD_RET_USAGE;
1048 
1049 	/*
1050 	 * Chip is always specified.
1051 	 */
1052 	chip = simple_strtoul(argv[1], NULL, 16);
1053 
1054 	/*
1055 	 * Address is always specified.
1056 	 */
1057 	addr = simple_strtoul(argv[2], NULL, 16);
1058 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
1059 	if (alen > 3)
1060 		return CMD_RET_USAGE;
1061 #if CONFIG_IS_ENABLED(DM_I2C)
1062 	ret = i2c_get_cur_bus_chip(chip, &dev);
1063 	if (!ret && alen != -1)
1064 		ret = i2c_set_chip_offset_len(dev, alen);
1065 	if (ret)
1066 		return i2c_report_err(ret, I2C_ERR_WRITE);
1067 #endif
1068 
1069 	/*
1070 	 * Length is the number of objects, not number of bytes.
1071 	 */
1072 	length = 1;
1073 	length = simple_strtoul(argv[3], NULL, 16);
1074 	if (length > sizeof(bytes))
1075 		length = sizeof(bytes);
1076 
1077 	/*
1078 	 * The delay time (uSec) is optional.
1079 	 */
1080 	delay = 1000;
1081 	if (argc > 3)
1082 		delay = simple_strtoul(argv[4], NULL, 10);
1083 	/*
1084 	 * Run the loop...
1085 	 */
1086 	while (1) {
1087 #if CONFIG_IS_ENABLED(DM_I2C)
1088 		ret = dm_i2c_read(dev, addr, bytes, length);
1089 #else
1090 		ret = i2c_read(chip, addr, alen, bytes, length);
1091 #endif
1092 		if (ret)
1093 			i2c_report_err(ret, I2C_ERR_READ);
1094 		udelay(delay);
1095 	}
1096 
1097 	/* NOTREACHED */
1098 	return 0;
1099 }
1100 
1101 /*
1102  * The SDRAM command is separately configured because many
1103  * (most?) embedded boards don't use SDRAM DIMMs.
1104  *
1105  * FIXME: Document and probably move elsewhere!
1106  */
1107 #if defined(CONFIG_CMD_SDRAM)
print_ddr2_tcyc(u_char const b)1108 static void print_ddr2_tcyc (u_char const b)
1109 {
1110 	printf ("%d.", (b >> 4) & 0x0F);
1111 	switch (b & 0x0F) {
1112 	case 0x0:
1113 	case 0x1:
1114 	case 0x2:
1115 	case 0x3:
1116 	case 0x4:
1117 	case 0x5:
1118 	case 0x6:
1119 	case 0x7:
1120 	case 0x8:
1121 	case 0x9:
1122 		printf ("%d ns\n", b & 0x0F);
1123 		break;
1124 	case 0xA:
1125 		puts ("25 ns\n");
1126 		break;
1127 	case 0xB:
1128 		puts ("33 ns\n");
1129 		break;
1130 	case 0xC:
1131 		puts ("66 ns\n");
1132 		break;
1133 	case 0xD:
1134 		puts ("75 ns\n");
1135 		break;
1136 	default:
1137 		puts ("?? ns\n");
1138 		break;
1139 	}
1140 }
1141 
decode_bits(u_char const b,char const * str[],int const do_once)1142 static void decode_bits (u_char const b, char const *str[], int const do_once)
1143 {
1144 	u_char mask;
1145 
1146 	for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
1147 		if (b & mask) {
1148 			puts (*str);
1149 			if (do_once)
1150 				return;
1151 		}
1152 	}
1153 }
1154 
1155 /*
1156  * Syntax:
1157  *	i2c sdram {i2c_chip}
1158  */
do_sdram(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1159 static int do_sdram(struct cmd_tbl *cmdtp, int flag, int argc,
1160 		    char *const argv[])
1161 {
1162 	enum { unknown, EDO, SDRAM, DDR, DDR2, DDR3, DDR4 } type;
1163 
1164 	uint	chip;
1165 	u_char	data[128];
1166 	u_char	cksum;
1167 	int	j, ret;
1168 #if CONFIG_IS_ENABLED(DM_I2C)
1169 	struct udevice *dev;
1170 #endif
1171 
1172 	static const char *decode_CAS_DDR2[] = {
1173 		" TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
1174 	};
1175 
1176 	static const char *decode_CAS_default[] = {
1177 		" TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
1178 	};
1179 
1180 	static const char *decode_CS_WE_default[] = {
1181 		" TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
1182 	};
1183 
1184 	static const char *decode_byte21_default[] = {
1185 		"  TBD (bit 7)\n",
1186 		"  Redundant row address\n",
1187 		"  Differential clock input\n",
1188 		"  Registerd DQMB inputs\n",
1189 		"  Buffered DQMB inputs\n",
1190 		"  On-card PLL\n",
1191 		"  Registered address/control lines\n",
1192 		"  Buffered address/control lines\n"
1193 	};
1194 
1195 	static const char *decode_byte22_DDR2[] = {
1196 		"  TBD (bit 7)\n",
1197 		"  TBD (bit 6)\n",
1198 		"  TBD (bit 5)\n",
1199 		"  TBD (bit 4)\n",
1200 		"  TBD (bit 3)\n",
1201 		"  Supports partial array self refresh\n",
1202 		"  Supports 50 ohm ODT\n",
1203 		"  Supports weak driver\n"
1204 	};
1205 
1206 	static const char *decode_row_density_DDR2[] = {
1207 		"512 MiB", "256 MiB", "128 MiB", "16 GiB",
1208 		"8 GiB", "4 GiB", "2 GiB", "1 GiB"
1209 	};
1210 
1211 	static const char *decode_row_density_default[] = {
1212 		"512 MiB", "256 MiB", "128 MiB", "64 MiB",
1213 		"32 MiB", "16 MiB", "8 MiB", "4 MiB"
1214 	};
1215 
1216 	if (argc < 2)
1217 		return CMD_RET_USAGE;
1218 
1219 	/*
1220 	 * Chip is always specified.
1221 	 */
1222 	chip = simple_strtoul (argv[1], NULL, 16);
1223 
1224 #if CONFIG_IS_ENABLED(DM_I2C)
1225 	ret = i2c_get_cur_bus_chip(chip, &dev);
1226 	if (!ret)
1227 		ret = dm_i2c_read(dev, 0, data, sizeof(data));
1228 #else
1229 	ret = i2c_read(chip, 0, 1, data, sizeof(data));
1230 #endif
1231 	if (ret) {
1232 		puts ("No SDRAM Serial Presence Detect found.\n");
1233 		return 1;
1234 	}
1235 
1236 	cksum = 0;
1237 	for (j = 0; j < 63; j++) {
1238 		cksum += data[j];
1239 	}
1240 	if (cksum != data[63]) {
1241 		printf ("WARNING: Configuration data checksum failure:\n"
1242 			"  is 0x%02x, calculated 0x%02x\n", data[63], cksum);
1243 	}
1244 	printf ("SPD data revision            %d.%d\n",
1245 		(data[62] >> 4) & 0x0F, data[62] & 0x0F);
1246 	printf ("Bytes used                   0x%02X\n", data[0]);
1247 	printf ("Serial memory size           0x%02X\n", 1 << data[1]);
1248 
1249 	puts ("Memory type                  ");
1250 	switch (data[2]) {
1251 	case 2:
1252 		type = EDO;
1253 		puts ("EDO\n");
1254 		break;
1255 	case 4:
1256 		type = SDRAM;
1257 		puts ("SDRAM\n");
1258 		break;
1259 	case 7:
1260 		type = DDR;
1261 		puts("DDR\n");
1262 		break;
1263 	case 8:
1264 		type = DDR2;
1265 		puts ("DDR2\n");
1266 		break;
1267 	case 11:
1268 		type = DDR3;
1269 		puts("DDR3\n");
1270 		break;
1271 	case 12:
1272 		type = DDR4;
1273 		puts("DDR4\n");
1274 		break;
1275 	default:
1276 		type = unknown;
1277 		puts ("unknown\n");
1278 		break;
1279 	}
1280 
1281 	puts ("Row address bits             ");
1282 	if ((data[3] & 0x00F0) == 0)
1283 		printf ("%d\n", data[3] & 0x0F);
1284 	else
1285 		printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
1286 
1287 	puts ("Column address bits          ");
1288 	if ((data[4] & 0x00F0) == 0)
1289 		printf ("%d\n", data[4] & 0x0F);
1290 	else
1291 		printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
1292 
1293 	switch (type) {
1294 	case DDR2:
1295 		printf ("Number of ranks              %d\n",
1296 			(data[5] & 0x07) + 1);
1297 		break;
1298 	default:
1299 		printf ("Module rows                  %d\n", data[5]);
1300 		break;
1301 	}
1302 
1303 	switch (type) {
1304 	case DDR2:
1305 		printf ("Module data width            %d bits\n", data[6]);
1306 		break;
1307 	default:
1308 		printf ("Module data width            %d bits\n",
1309 			(data[7] << 8) | data[6]);
1310 		break;
1311 	}
1312 
1313 	puts ("Interface signal levels      ");
1314 	switch(data[8]) {
1315 		case 0:  puts ("TTL 5.0 V\n");	break;
1316 		case 1:  puts ("LVTTL\n");	break;
1317 		case 2:  puts ("HSTL 1.5 V\n");	break;
1318 		case 3:  puts ("SSTL 3.3 V\n");	break;
1319 		case 4:  puts ("SSTL 2.5 V\n");	break;
1320 		case 5:  puts ("SSTL 1.8 V\n");	break;
1321 		default: puts ("unknown\n");	break;
1322 	}
1323 
1324 	switch (type) {
1325 	case DDR2:
1326 		printf ("SDRAM cycle time             ");
1327 		print_ddr2_tcyc (data[9]);
1328 		break;
1329 	default:
1330 		printf ("SDRAM cycle time             %d.%d ns\n",
1331 			(data[9] >> 4) & 0x0F, data[9] & 0x0F);
1332 		break;
1333 	}
1334 
1335 	switch (type) {
1336 	case DDR2:
1337 		printf ("SDRAM access time            0.%d%d ns\n",
1338 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1339 		break;
1340 	default:
1341 		printf ("SDRAM access time            %d.%d ns\n",
1342 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1343 		break;
1344 	}
1345 
1346 	puts ("EDC configuration            ");
1347 	switch (data[11]) {
1348 		case 0:  puts ("None\n");	break;
1349 		case 1:  puts ("Parity\n");	break;
1350 		case 2:  puts ("ECC\n");	break;
1351 		default: puts ("unknown\n");	break;
1352 	}
1353 
1354 	if ((data[12] & 0x80) == 0)
1355 		puts ("No self refresh, rate        ");
1356 	else
1357 		puts ("Self refresh, rate           ");
1358 
1359 	switch(data[12] & 0x7F) {
1360 		case 0:  puts ("15.625 us\n");	break;
1361 		case 1:  puts ("3.9 us\n");	break;
1362 		case 2:  puts ("7.8 us\n");	break;
1363 		case 3:  puts ("31.3 us\n");	break;
1364 		case 4:  puts ("62.5 us\n");	break;
1365 		case 5:  puts ("125 us\n");	break;
1366 		default: puts ("unknown\n");	break;
1367 	}
1368 
1369 	switch (type) {
1370 	case DDR2:
1371 		printf ("SDRAM width (primary)        %d\n", data[13]);
1372 		break;
1373 	default:
1374 		printf ("SDRAM width (primary)        %d\n", data[13] & 0x7F);
1375 		if ((data[13] & 0x80) != 0) {
1376 			printf ("  (second bank)              %d\n",
1377 				2 * (data[13] & 0x7F));
1378 		}
1379 		break;
1380 	}
1381 
1382 	switch (type) {
1383 	case DDR2:
1384 		if (data[14] != 0)
1385 			printf ("EDC width                    %d\n", data[14]);
1386 		break;
1387 	default:
1388 		if (data[14] != 0) {
1389 			printf ("EDC width                    %d\n",
1390 				data[14] & 0x7F);
1391 
1392 			if ((data[14] & 0x80) != 0) {
1393 				printf ("  (second bank)              %d\n",
1394 					2 * (data[14] & 0x7F));
1395 			}
1396 		}
1397 		break;
1398 	}
1399 
1400 	if (DDR2 != type) {
1401 		printf ("Min clock delay, back-to-back random column addresses "
1402 			"%d\n", data[15]);
1403 	}
1404 
1405 	puts ("Burst length(s)             ");
1406 	if (data[16] & 0x80) puts (" Page");
1407 	if (data[16] & 0x08) puts (" 8");
1408 	if (data[16] & 0x04) puts (" 4");
1409 	if (data[16] & 0x02) puts (" 2");
1410 	if (data[16] & 0x01) puts (" 1");
1411 	putc ('\n');
1412 	printf ("Number of banks              %d\n", data[17]);
1413 
1414 	switch (type) {
1415 	case DDR2:
1416 		puts ("CAS latency(s)              ");
1417 		decode_bits (data[18], decode_CAS_DDR2, 0);
1418 		putc ('\n');
1419 		break;
1420 	default:
1421 		puts ("CAS latency(s)              ");
1422 		decode_bits (data[18], decode_CAS_default, 0);
1423 		putc ('\n');
1424 		break;
1425 	}
1426 
1427 	if (DDR2 != type) {
1428 		puts ("CS latency(s)               ");
1429 		decode_bits (data[19], decode_CS_WE_default, 0);
1430 		putc ('\n');
1431 	}
1432 
1433 	if (DDR2 != type) {
1434 		puts ("WE latency(s)               ");
1435 		decode_bits (data[20], decode_CS_WE_default, 0);
1436 		putc ('\n');
1437 	}
1438 
1439 	switch (type) {
1440 	case DDR2:
1441 		puts ("Module attributes:\n");
1442 		if (data[21] & 0x80)
1443 			puts ("  TBD (bit 7)\n");
1444 		if (data[21] & 0x40)
1445 			puts ("  Analysis probe installed\n");
1446 		if (data[21] & 0x20)
1447 			puts ("  TBD (bit 5)\n");
1448 		if (data[21] & 0x10)
1449 			puts ("  FET switch external enable\n");
1450 		printf ("  %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1451 		if (data[20] & 0x11) {
1452 			printf ("  %d active registers on DIMM\n",
1453 				(data[21] & 0x03) + 1);
1454 		}
1455 		break;
1456 	default:
1457 		puts ("Module attributes:\n");
1458 		if (!data[21])
1459 			puts ("  (none)\n");
1460 		else
1461 			decode_bits (data[21], decode_byte21_default, 0);
1462 		break;
1463 	}
1464 
1465 	switch (type) {
1466 	case DDR2:
1467 		decode_bits (data[22], decode_byte22_DDR2, 0);
1468 		break;
1469 	default:
1470 		puts ("Device attributes:\n");
1471 		if (data[22] & 0x80) puts ("  TBD (bit 7)\n");
1472 		if (data[22] & 0x40) puts ("  TBD (bit 6)\n");
1473 		if (data[22] & 0x20) puts ("  Upper Vcc tolerance 5%\n");
1474 		else                 puts ("  Upper Vcc tolerance 10%\n");
1475 		if (data[22] & 0x10) puts ("  Lower Vcc tolerance 5%\n");
1476 		else                 puts ("  Lower Vcc tolerance 10%\n");
1477 		if (data[22] & 0x08) puts ("  Supports write1/read burst\n");
1478 		if (data[22] & 0x04) puts ("  Supports precharge all\n");
1479 		if (data[22] & 0x02) puts ("  Supports auto precharge\n");
1480 		if (data[22] & 0x01) puts ("  Supports early RAS# precharge\n");
1481 		break;
1482 	}
1483 
1484 	switch (type) {
1485 	case DDR2:
1486 		printf ("SDRAM cycle time (2nd highest CAS latency)        ");
1487 		print_ddr2_tcyc (data[23]);
1488 		break;
1489 	default:
1490 		printf ("SDRAM cycle time (2nd highest CAS latency)        %d."
1491 			"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1492 		break;
1493 	}
1494 
1495 	switch (type) {
1496 	case DDR2:
1497 		printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1498 			"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1499 		break;
1500 	default:
1501 		printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1502 			"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1503 		break;
1504 	}
1505 
1506 	switch (type) {
1507 	case DDR2:
1508 		printf ("SDRAM cycle time (3rd highest CAS latency)        ");
1509 		print_ddr2_tcyc (data[25]);
1510 		break;
1511 	default:
1512 		printf ("SDRAM cycle time (3rd highest CAS latency)        %d."
1513 			"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1514 		break;
1515 	}
1516 
1517 	switch (type) {
1518 	case DDR2:
1519 		printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1520 			"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1521 		break;
1522 	default:
1523 		printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1524 			"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1525 		break;
1526 	}
1527 
1528 	switch (type) {
1529 	case DDR2:
1530 		printf ("Minimum row precharge        %d.%02d ns\n",
1531 			(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1532 		break;
1533 	default:
1534 		printf ("Minimum row precharge        %d ns\n", data[27]);
1535 		break;
1536 	}
1537 
1538 	switch (type) {
1539 	case DDR2:
1540 		printf ("Row active to row active min %d.%02d ns\n",
1541 			(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1542 		break;
1543 	default:
1544 		printf ("Row active to row active min %d ns\n", data[28]);
1545 		break;
1546 	}
1547 
1548 	switch (type) {
1549 	case DDR2:
1550 		printf ("RAS to CAS delay min         %d.%02d ns\n",
1551 			(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1552 		break;
1553 	default:
1554 		printf ("RAS to CAS delay min         %d ns\n", data[29]);
1555 		break;
1556 	}
1557 
1558 	printf ("Minimum RAS pulse width      %d ns\n", data[30]);
1559 
1560 	switch (type) {
1561 	case DDR2:
1562 		puts ("Density of each row          ");
1563 		decode_bits (data[31], decode_row_density_DDR2, 1);
1564 		putc ('\n');
1565 		break;
1566 	default:
1567 		puts ("Density of each row          ");
1568 		decode_bits (data[31], decode_row_density_default, 1);
1569 		putc ('\n');
1570 		break;
1571 	}
1572 
1573 	switch (type) {
1574 	case DDR2:
1575 		puts ("Command and Address setup    ");
1576 		if (data[32] >= 0xA0) {
1577 			printf ("1.%d%d ns\n",
1578 				((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1579 		} else {
1580 			printf ("0.%d%d ns\n",
1581 				((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1582 		}
1583 		break;
1584 	default:
1585 		printf ("Command and Address setup    %c%d.%d ns\n",
1586 			(data[32] & 0x80) ? '-' : '+',
1587 			(data[32] >> 4) & 0x07, data[32] & 0x0F);
1588 		break;
1589 	}
1590 
1591 	switch (type) {
1592 	case DDR2:
1593 		puts ("Command and Address hold     ");
1594 		if (data[33] >= 0xA0) {
1595 			printf ("1.%d%d ns\n",
1596 				((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1597 		} else {
1598 			printf ("0.%d%d ns\n",
1599 				((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1600 		}
1601 		break;
1602 	default:
1603 		printf ("Command and Address hold     %c%d.%d ns\n",
1604 			(data[33] & 0x80) ? '-' : '+',
1605 			(data[33] >> 4) & 0x07, data[33] & 0x0F);
1606 		break;
1607 	}
1608 
1609 	switch (type) {
1610 	case DDR2:
1611 		printf ("Data signal input setup      0.%d%d ns\n",
1612 			(data[34] >> 4) & 0x0F, data[34] & 0x0F);
1613 		break;
1614 	default:
1615 		printf ("Data signal input setup      %c%d.%d ns\n",
1616 			(data[34] & 0x80) ? '-' : '+',
1617 			(data[34] >> 4) & 0x07, data[34] & 0x0F);
1618 		break;
1619 	}
1620 
1621 	switch (type) {
1622 	case DDR2:
1623 		printf ("Data signal input hold       0.%d%d ns\n",
1624 			(data[35] >> 4) & 0x0F, data[35] & 0x0F);
1625 		break;
1626 	default:
1627 		printf ("Data signal input hold       %c%d.%d ns\n",
1628 			(data[35] & 0x80) ? '-' : '+',
1629 			(data[35] >> 4) & 0x07, data[35] & 0x0F);
1630 		break;
1631 	}
1632 
1633 	puts ("Manufacturer's JEDEC ID      ");
1634 	for (j = 64; j <= 71; j++)
1635 		printf ("%02X ", data[j]);
1636 	putc ('\n');
1637 	printf ("Manufacturing Location       %02X\n", data[72]);
1638 	puts ("Manufacturer's Part Number   ");
1639 	for (j = 73; j <= 90; j++)
1640 		printf ("%02X ", data[j]);
1641 	putc ('\n');
1642 	printf ("Revision Code                %02X %02X\n", data[91], data[92]);
1643 	printf ("Manufacturing Date           %02X %02X\n", data[93], data[94]);
1644 	puts ("Assembly Serial Number       ");
1645 	for (j = 95; j <= 98; j++)
1646 		printf ("%02X ", data[j]);
1647 	putc ('\n');
1648 
1649 	if (DDR2 != type) {
1650 		printf ("Speed rating                 PC%d\n",
1651 			data[126] == 0x66 ? 66 : data[126]);
1652 	}
1653 	return 0;
1654 }
1655 #endif
1656 
1657 /*
1658  * Syntax:
1659  *	i2c edid {i2c_chip}
1660  */
1661 #if defined(CONFIG_I2C_EDID)
do_edid(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1662 int do_edid(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[])
1663 {
1664 	uint chip;
1665 	struct edid1_info edid;
1666 	int ret;
1667 #if CONFIG_IS_ENABLED(DM_I2C)
1668 	struct udevice *dev;
1669 #endif
1670 
1671 	if (argc < 2) {
1672 		cmd_usage(cmdtp);
1673 		return 1;
1674 	}
1675 
1676 	chip = simple_strtoul(argv[1], NULL, 16);
1677 #if CONFIG_IS_ENABLED(DM_I2C)
1678 	ret = i2c_get_cur_bus_chip(chip, &dev);
1679 	if (!ret)
1680 		ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
1681 #else
1682 	ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
1683 #endif
1684 	if (ret)
1685 		return i2c_report_err(ret, I2C_ERR_READ);
1686 
1687 	if (edid_check_info(&edid)) {
1688 		puts("Content isn't valid EDID.\n");
1689 		return 1;
1690 	}
1691 
1692 	edid_print_info(&edid);
1693 	return 0;
1694 
1695 }
1696 #endif /* CONFIG_I2C_EDID */
1697 
1698 #if CONFIG_IS_ENABLED(DM_I2C)
show_bus(struct udevice * bus)1699 static void show_bus(struct udevice *bus)
1700 {
1701 	struct udevice *dev;
1702 
1703 	printf("Bus %d:\t%s", dev_seq(bus), bus->name);
1704 	if (device_active(bus))
1705 		printf("  (active %d)", dev_seq(bus));
1706 	printf("\n");
1707 	for (device_find_first_child(bus, &dev);
1708 	     dev;
1709 	     device_find_next_child(&dev)) {
1710 		struct dm_i2c_chip *chip = dev_get_parent_plat(dev);
1711 
1712 		printf("   %02x: %s, offset len %x, flags %x\n",
1713 		       chip->chip_addr, dev->name, chip->offset_len,
1714 		       chip->flags);
1715 	}
1716 }
1717 #endif
1718 
1719 /**
1720  * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1721  * @cmdtp:	Command data struct pointer
1722  * @flag:	Command flag
1723  * @argc:	Command-line argument count
1724  * @argv:	Array of command-line arguments
1725  *
1726  * Returns zero always.
1727  */
1728 #if defined(CONFIG_SYS_I2C) || CONFIG_IS_ENABLED(DM_I2C)
do_i2c_show_bus(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1729 static int do_i2c_show_bus(struct cmd_tbl *cmdtp, int flag, int argc,
1730 			   char *const argv[])
1731 {
1732 	if (argc == 1) {
1733 		/* show all busses */
1734 #if CONFIG_IS_ENABLED(DM_I2C)
1735 		struct udevice *bus;
1736 		struct uclass *uc;
1737 		int ret;
1738 
1739 		ret = uclass_get(UCLASS_I2C, &uc);
1740 		if (ret)
1741 			return CMD_RET_FAILURE;
1742 		uclass_foreach_dev(bus, uc)
1743 			show_bus(bus);
1744 #else
1745 		int i;
1746 
1747 		for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1748 			printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1749 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1750 			int j;
1751 
1752 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1753 				if (i2c_bus[i].next_hop[j].chip == 0)
1754 					break;
1755 				printf("->%s@0x%2x:%d",
1756 				       i2c_bus[i].next_hop[j].mux.name,
1757 				       i2c_bus[i].next_hop[j].chip,
1758 				       i2c_bus[i].next_hop[j].channel);
1759 			}
1760 #endif
1761 			printf("\n");
1762 		}
1763 #endif
1764 	} else {
1765 		int i;
1766 
1767 		/* show specific bus */
1768 		i = simple_strtoul(argv[1], NULL, 10);
1769 #if CONFIG_IS_ENABLED(DM_I2C)
1770 		struct udevice *bus;
1771 		int ret;
1772 
1773 		ret = uclass_get_device_by_seq(UCLASS_I2C, i, &bus);
1774 		if (ret) {
1775 			printf("Invalid bus %d: err=%d\n", i, ret);
1776 			return CMD_RET_FAILURE;
1777 		}
1778 		show_bus(bus);
1779 #else
1780 		if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1781 			printf("Invalid bus %d\n", i);
1782 			return -1;
1783 		}
1784 		printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1785 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1786 			int j;
1787 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1788 				if (i2c_bus[i].next_hop[j].chip == 0)
1789 					break;
1790 				printf("->%s@0x%2x:%d",
1791 				       i2c_bus[i].next_hop[j].mux.name,
1792 				       i2c_bus[i].next_hop[j].chip,
1793 				       i2c_bus[i].next_hop[j].channel);
1794 			}
1795 #endif
1796 		printf("\n");
1797 #endif
1798 	}
1799 
1800 	return 0;
1801 }
1802 #endif
1803 
1804 /**
1805  * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1806  * @cmdtp:	Command data struct pointer
1807  * @flag:	Command flag
1808  * @argc:	Command-line argument count
1809  * @argv:	Array of command-line arguments
1810  *
1811  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1812  * on error.
1813  */
1814 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS) || \
1815 		CONFIG_IS_ENABLED(DM_I2C)
do_i2c_bus_num(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1816 static int do_i2c_bus_num(struct cmd_tbl *cmdtp, int flag, int argc,
1817 			  char *const argv[])
1818 {
1819 	int		ret = 0;
1820 	int	bus_no;
1821 
1822 	if (argc == 1) {
1823 		/* querying current setting */
1824 #if CONFIG_IS_ENABLED(DM_I2C)
1825 		struct udevice *bus;
1826 
1827 		if (!i2c_get_cur_bus(&bus))
1828 			bus_no = dev_seq(bus);
1829 		else
1830 			bus_no = -1;
1831 #else
1832 		bus_no = i2c_get_bus_num();
1833 #endif
1834 		printf("Current bus is %d\n", bus_no);
1835 	} else {
1836 		bus_no = simple_strtoul(argv[1], NULL, 10);
1837 #if defined(CONFIG_SYS_I2C)
1838 		if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1839 			printf("Invalid bus %d\n", bus_no);
1840 			return -1;
1841 		}
1842 #endif
1843 		printf("Setting bus to %d\n", bus_no);
1844 #if CONFIG_IS_ENABLED(DM_I2C)
1845 		ret = cmd_i2c_set_bus_num(bus_no);
1846 #else
1847 		ret = i2c_set_bus_num(bus_no);
1848 #endif
1849 		if (ret)
1850 			printf("Failure changing bus number (%d)\n", ret);
1851 	}
1852 
1853 	return ret ? CMD_RET_FAILURE : 0;
1854 }
1855 #endif  /* defined(CONFIG_SYS_I2C) */
1856 
1857 /**
1858  * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1859  * @cmdtp:	Command data struct pointer
1860  * @flag:	Command flag
1861  * @argc:	Command-line argument count
1862  * @argv:	Array of command-line arguments
1863  *
1864  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1865  * on error.
1866  */
do_i2c_bus_speed(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1867 static int do_i2c_bus_speed(struct cmd_tbl *cmdtp, int flag, int argc,
1868 			    char *const argv[])
1869 {
1870 	int speed, ret=0;
1871 
1872 #if CONFIG_IS_ENABLED(DM_I2C)
1873 	struct udevice *bus;
1874 
1875 	if (i2c_get_cur_bus(&bus))
1876 		return 1;
1877 #endif
1878 	if (argc == 1) {
1879 #if CONFIG_IS_ENABLED(DM_I2C)
1880 		speed = dm_i2c_get_bus_speed(bus);
1881 #else
1882 		speed = i2c_get_bus_speed();
1883 #endif
1884 		/* querying current speed */
1885 		printf("Current bus speed=%d\n", speed);
1886 	} else {
1887 		speed = simple_strtoul(argv[1], NULL, 10);
1888 		printf("Setting bus speed to %d Hz\n", speed);
1889 #if CONFIG_IS_ENABLED(DM_I2C)
1890 		ret = dm_i2c_set_bus_speed(bus, speed);
1891 #else
1892 		ret = i2c_set_bus_speed(speed);
1893 #endif
1894 		if (ret)
1895 			printf("Failure changing bus speed (%d)\n", ret);
1896 	}
1897 
1898 	return ret ? CMD_RET_FAILURE : 0;
1899 }
1900 
1901 /**
1902  * do_i2c_mm() - Handle the "i2c mm" command-line command
1903  * @cmdtp:	Command data struct pointer
1904  * @flag:	Command flag
1905  * @argc:	Command-line argument count
1906  * @argv:	Array of command-line arguments
1907  *
1908  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1909  * on error.
1910  */
do_i2c_mm(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1911 static int do_i2c_mm(struct cmd_tbl *cmdtp, int flag, int argc,
1912 		     char *const argv[])
1913 {
1914 	return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1915 }
1916 
1917 /**
1918  * do_i2c_nm() - Handle the "i2c nm" command-line command
1919  * @cmdtp:	Command data struct pointer
1920  * @flag:	Command flag
1921  * @argc:	Command-line argument count
1922  * @argv:	Array of command-line arguments
1923  *
1924  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1925  * on error.
1926  */
do_i2c_nm(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1927 static int do_i2c_nm(struct cmd_tbl *cmdtp, int flag, int argc,
1928 		     char *const argv[])
1929 {
1930 	return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1931 }
1932 
1933 /**
1934  * do_i2c_reset() - Handle the "i2c reset" command-line command
1935  * @cmdtp:	Command data struct pointer
1936  * @flag:	Command flag
1937  * @argc:	Command-line argument count
1938  * @argv:	Array of command-line arguments
1939  *
1940  * Returns zero always.
1941  */
do_i2c_reset(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1942 static int do_i2c_reset(struct cmd_tbl *cmdtp, int flag, int argc,
1943 			char *const argv[])
1944 {
1945 #if CONFIG_IS_ENABLED(DM_I2C)
1946 	struct udevice *bus;
1947 
1948 	if (i2c_get_cur_bus(&bus))
1949 		return CMD_RET_FAILURE;
1950 	if (i2c_deblock(bus)) {
1951 		printf("Error: Not supported by the driver\n");
1952 		return CMD_RET_FAILURE;
1953 	}
1954 #elif defined(CONFIG_SYS_I2C)
1955 	i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1956 #else
1957 	i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1958 #endif
1959 	return 0;
1960 }
1961 
1962 static struct cmd_tbl cmd_i2c_sub[] = {
1963 #if defined(CONFIG_SYS_I2C) || CONFIG_IS_ENABLED(DM_I2C)
1964 	U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1965 #endif
1966 	U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1967 #if defined(CONFIG_SYS_I2C) || \
1968 	defined(CONFIG_I2C_MULTI_BUS) || CONFIG_IS_ENABLED(DM_I2C)
1969 	U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1970 #endif  /* CONFIG_I2C_MULTI_BUS */
1971 #if defined(CONFIG_I2C_EDID)
1972 	U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1973 #endif  /* CONFIG_I2C_EDID */
1974 	U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1975 	U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1976 	U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1977 	U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1978 	U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1979 	U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1980 	U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1981 	U_BOOT_CMD_MKENT(write, 6, 0, do_i2c_write, "", ""),
1982 #if CONFIG_IS_ENABLED(DM_I2C)
1983 	U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
1984 	U_BOOT_CMD_MKENT(olen, 2, 1, do_i2c_olen, "", ""),
1985 #endif
1986 	U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1987 #if defined(CONFIG_CMD_SDRAM)
1988 	U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1989 #endif
1990 	U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1991 };
1992 
i2c_reloc(void)1993 static __maybe_unused void i2c_reloc(void)
1994 {
1995 	static int relocated;
1996 
1997 	if (!relocated) {
1998 		fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1999 		relocated = 1;
2000 	};
2001 }
2002 
2003 /**
2004  * do_i2c() - Handle the "i2c" command-line command
2005  * @cmdtp:	Command data struct pointer
2006  * @flag:	Command flag
2007  * @argc:	Command-line argument count
2008  * @argv:	Array of command-line arguments
2009  *
2010  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
2011  * on error.
2012  */
do_i2c(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])2013 static int do_i2c(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[])
2014 {
2015 	struct cmd_tbl *c;
2016 
2017 #ifdef CONFIG_NEEDS_MANUAL_RELOC
2018 	i2c_reloc();
2019 #endif
2020 
2021 	if (argc < 2)
2022 		return CMD_RET_USAGE;
2023 
2024 	/* Strip off leading 'i2c' command argument */
2025 	argc--;
2026 	argv++;
2027 
2028 	c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
2029 
2030 	if (c)
2031 		return c->cmd(cmdtp, flag, argc, argv);
2032 	else
2033 		return CMD_RET_USAGE;
2034 }
2035 
2036 /***************************************************/
2037 #ifdef CONFIG_SYS_LONGHELP
2038 static char i2c_help_text[] =
2039 #if defined(CONFIG_SYS_I2C) || CONFIG_IS_ENABLED(DM_I2C)
2040 	"bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
2041 	"i2c " /* That's the prefix for the crc32 command below. */
2042 #endif
2043 	"crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
2044 #if defined(CONFIG_SYS_I2C) || \
2045 	defined(CONFIG_I2C_MULTI_BUS) || CONFIG_IS_ENABLED(DM_I2C)
2046 	"i2c dev [dev] - show or set current I2C bus\n"
2047 #endif  /* CONFIG_I2C_MULTI_BUS */
2048 #if defined(CONFIG_I2C_EDID)
2049 	"i2c edid chip - print EDID configuration information\n"
2050 #endif  /* CONFIG_I2C_EDID */
2051 	"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
2052 	"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
2053 	"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
2054 	"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
2055 	"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
2056 	"i2c probe [address] - test for and show device(s) on the I2C bus\n"
2057 	"i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
2058 	"i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory\n"
2059 	"          to I2C; the -s option selects bulk write in a single transaction\n"
2060 #if CONFIG_IS_ENABLED(DM_I2C)
2061 	"i2c flags chip [flags] - set or get chip flags\n"
2062 	"i2c olen chip [offset_length] - set or get chip offset length\n"
2063 #endif
2064 	"i2c reset - re-init the I2C Controller\n"
2065 #if defined(CONFIG_CMD_SDRAM)
2066 	"i2c sdram chip - print SDRAM configuration information\n"
2067 #endif
2068 	"i2c speed [speed] - show or set I2C bus speed";
2069 #endif
2070 
2071 U_BOOT_CMD(
2072 	i2c, 7, 1, do_i2c,
2073 	"I2C sub-system",
2074 	i2c_help_text
2075 );
2076