1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
13  * the UBIFS B-tree.
14  *
15  * At the moment the locking rules of the TNC tree are quite simple and
16  * straightforward. We just have a mutex and lock it when we traverse the
17  * tree. If a znode is not in memory, we read it from flash while still having
18  * the mutex locked.
19  */
20 
21 #ifndef __UBOOT__
22 #include <log.h>
23 #include <dm/devres.h>
24 #include <linux/crc32.h>
25 #include <linux/slab.h>
26 #include <u-boot/crc.h>
27 #else
28 #include <linux/bitops.h>
29 #include <linux/bug.h>
30 #include <linux/compat.h>
31 #include <linux/err.h>
32 #include <linux/stat.h>
33 #endif
34 #include "ubifs.h"
35 
36 /*
37  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38  * @NAME_LESS: name corresponding to the first argument is less than second
39  * @NAME_MATCHES: names match
40  * @NAME_GREATER: name corresponding to the second argument is greater than
41  *                first
42  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43  *
44  * These constants were introduce to improve readability.
45  */
46 enum {
47 	NAME_LESS    = 0,
48 	NAME_MATCHES = 1,
49 	NAME_GREATER = 2,
50 	NOT_ON_MEDIA = 3,
51 };
52 
53 /**
54  * insert_old_idx - record an index node obsoleted since the last commit start.
55  * @c: UBIFS file-system description object
56  * @lnum: LEB number of obsoleted index node
57  * @offs: offset of obsoleted index node
58  *
59  * Returns %0 on success, and a negative error code on failure.
60  *
61  * For recovery, there must always be a complete intact version of the index on
62  * flash at all times. That is called the "old index". It is the index as at the
63  * time of the last successful commit. Many of the index nodes in the old index
64  * may be dirty, but they must not be erased until the next successful commit
65  * (at which point that index becomes the old index).
66  *
67  * That means that the garbage collection and the in-the-gaps method of
68  * committing must be able to determine if an index node is in the old index.
69  * Most of the old index nodes can be found by looking up the TNC using the
70  * 'lookup_znode()' function. However, some of the old index nodes may have
71  * been deleted from the current index or may have been changed so much that
72  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
73  * That is what this function does. The RB-tree is ordered by LEB number and
74  * offset because they uniquely identify the old index node.
75  */
insert_old_idx(struct ubifs_info * c,int lnum,int offs)76 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
77 {
78 	struct ubifs_old_idx *old_idx, *o;
79 	struct rb_node **p, *parent = NULL;
80 
81 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
82 	if (unlikely(!old_idx))
83 		return -ENOMEM;
84 	old_idx->lnum = lnum;
85 	old_idx->offs = offs;
86 
87 	p = &c->old_idx.rb_node;
88 	while (*p) {
89 		parent = *p;
90 		o = rb_entry(parent, struct ubifs_old_idx, rb);
91 		if (lnum < o->lnum)
92 			p = &(*p)->rb_left;
93 		else if (lnum > o->lnum)
94 			p = &(*p)->rb_right;
95 		else if (offs < o->offs)
96 			p = &(*p)->rb_left;
97 		else if (offs > o->offs)
98 			p = &(*p)->rb_right;
99 		else {
100 			ubifs_err(c, "old idx added twice!");
101 			kfree(old_idx);
102 			return 0;
103 		}
104 	}
105 	rb_link_node(&old_idx->rb, parent, p);
106 	rb_insert_color(&old_idx->rb, &c->old_idx);
107 	return 0;
108 }
109 
110 /**
111  * insert_old_idx_znode - record a znode obsoleted since last commit start.
112  * @c: UBIFS file-system description object
113  * @znode: znode of obsoleted index node
114  *
115  * Returns %0 on success, and a negative error code on failure.
116  */
insert_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)117 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
118 {
119 	if (znode->parent) {
120 		struct ubifs_zbranch *zbr;
121 
122 		zbr = &znode->parent->zbranch[znode->iip];
123 		if (zbr->len)
124 			return insert_old_idx(c, zbr->lnum, zbr->offs);
125 	} else
126 		if (c->zroot.len)
127 			return insert_old_idx(c, c->zroot.lnum,
128 					      c->zroot.offs);
129 	return 0;
130 }
131 
132 /**
133  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
134  * @c: UBIFS file-system description object
135  * @znode: znode of obsoleted index node
136  *
137  * Returns %0 on success, and a negative error code on failure.
138  */
ins_clr_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)139 static int ins_clr_old_idx_znode(struct ubifs_info *c,
140 				 struct ubifs_znode *znode)
141 {
142 	int err;
143 
144 	if (znode->parent) {
145 		struct ubifs_zbranch *zbr;
146 
147 		zbr = &znode->parent->zbranch[znode->iip];
148 		if (zbr->len) {
149 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
150 			if (err)
151 				return err;
152 			zbr->lnum = 0;
153 			zbr->offs = 0;
154 			zbr->len = 0;
155 		}
156 	} else
157 		if (c->zroot.len) {
158 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
159 			if (err)
160 				return err;
161 			c->zroot.lnum = 0;
162 			c->zroot.offs = 0;
163 			c->zroot.len = 0;
164 		}
165 	return 0;
166 }
167 
168 /**
169  * destroy_old_idx - destroy the old_idx RB-tree.
170  * @c: UBIFS file-system description object
171  *
172  * During start commit, the old_idx RB-tree is used to avoid overwriting index
173  * nodes that were in the index last commit but have since been deleted.  This
174  * is necessary for recovery i.e. the old index must be kept intact until the
175  * new index is successfully written.  The old-idx RB-tree is used for the
176  * in-the-gaps method of writing index nodes and is destroyed every commit.
177  */
destroy_old_idx(struct ubifs_info * c)178 void destroy_old_idx(struct ubifs_info *c)
179 {
180 	struct ubifs_old_idx *old_idx, *n;
181 
182 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
183 		kfree(old_idx);
184 
185 	c->old_idx = RB_ROOT;
186 }
187 
188 /**
189  * copy_znode - copy a dirty znode.
190  * @c: UBIFS file-system description object
191  * @znode: znode to copy
192  *
193  * A dirty znode being committed may not be changed, so it is copied.
194  */
copy_znode(struct ubifs_info * c,struct ubifs_znode * znode)195 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
196 				      struct ubifs_znode *znode)
197 {
198 	struct ubifs_znode *zn;
199 
200 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
201 	if (unlikely(!zn))
202 		return ERR_PTR(-ENOMEM);
203 
204 	memcpy(zn, znode, c->max_znode_sz);
205 	zn->cnext = NULL;
206 	__set_bit(DIRTY_ZNODE, &zn->flags);
207 	__clear_bit(COW_ZNODE, &zn->flags);
208 
209 	ubifs_assert(!ubifs_zn_obsolete(znode));
210 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
211 
212 	if (znode->level != 0) {
213 		int i;
214 		const int n = zn->child_cnt;
215 
216 		/* The children now have new parent */
217 		for (i = 0; i < n; i++) {
218 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
219 
220 			if (zbr->znode)
221 				zbr->znode->parent = zn;
222 		}
223 	}
224 
225 	atomic_long_inc(&c->dirty_zn_cnt);
226 	return zn;
227 }
228 
229 /**
230  * add_idx_dirt - add dirt due to a dirty znode.
231  * @c: UBIFS file-system description object
232  * @lnum: LEB number of index node
233  * @dirt: size of index node
234  *
235  * This function updates lprops dirty space and the new size of the index.
236  */
add_idx_dirt(struct ubifs_info * c,int lnum,int dirt)237 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
238 {
239 	c->calc_idx_sz -= ALIGN(dirt, 8);
240 	return ubifs_add_dirt(c, lnum, dirt);
241 }
242 
243 /**
244  * dirty_cow_znode - ensure a znode is not being committed.
245  * @c: UBIFS file-system description object
246  * @zbr: branch of znode to check
247  *
248  * Returns dirtied znode on success or negative error code on failure.
249  */
dirty_cow_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)250 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
251 					   struct ubifs_zbranch *zbr)
252 {
253 	struct ubifs_znode *znode = zbr->znode;
254 	struct ubifs_znode *zn;
255 	int err;
256 
257 	if (!ubifs_zn_cow(znode)) {
258 		/* znode is not being committed */
259 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
260 			atomic_long_inc(&c->dirty_zn_cnt);
261 			atomic_long_dec(&c->clean_zn_cnt);
262 			atomic_long_dec(&ubifs_clean_zn_cnt);
263 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
264 			if (unlikely(err))
265 				return ERR_PTR(err);
266 		}
267 		return znode;
268 	}
269 
270 	zn = copy_znode(c, znode);
271 	if (IS_ERR(zn))
272 		return zn;
273 
274 	if (zbr->len) {
275 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
276 		if (unlikely(err))
277 			return ERR_PTR(err);
278 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
279 	} else
280 		err = 0;
281 
282 	zbr->znode = zn;
283 	zbr->lnum = 0;
284 	zbr->offs = 0;
285 	zbr->len = 0;
286 
287 	if (unlikely(err))
288 		return ERR_PTR(err);
289 	return zn;
290 }
291 
292 /**
293  * lnc_add - add a leaf node to the leaf node cache.
294  * @c: UBIFS file-system description object
295  * @zbr: zbranch of leaf node
296  * @node: leaf node
297  *
298  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
299  * purpose of the leaf node cache is to save re-reading the same leaf node over
300  * and over again. Most things are cached by VFS, however the file system must
301  * cache directory entries for readdir and for resolving hash collisions. The
302  * present implementation of the leaf node cache is extremely simple, and
303  * allows for error returns that are not used but that may be needed if a more
304  * complex implementation is created.
305  *
306  * Note, this function does not add the @node object to LNC directly, but
307  * allocates a copy of the object and adds the copy to LNC. The reason for this
308  * is that @node has been allocated outside of the TNC subsystem and will be
309  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
310  * may be changed at any time, e.g. freed by the shrinker.
311  */
lnc_add(struct ubifs_info * c,struct ubifs_zbranch * zbr,const void * node)312 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
313 		   const void *node)
314 {
315 	int err;
316 	void *lnc_node;
317 	const struct ubifs_dent_node *dent = node;
318 
319 	ubifs_assert(!zbr->leaf);
320 	ubifs_assert(zbr->len != 0);
321 	ubifs_assert(is_hash_key(c, &zbr->key));
322 
323 	err = ubifs_validate_entry(c, dent);
324 	if (err) {
325 		dump_stack();
326 		ubifs_dump_node(c, dent);
327 		return err;
328 	}
329 
330 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
331 	if (!lnc_node)
332 		/* We don't have to have the cache, so no error */
333 		return 0;
334 
335 	zbr->leaf = lnc_node;
336 	return 0;
337 }
338 
339  /**
340  * lnc_add_directly - add a leaf node to the leaf-node-cache.
341  * @c: UBIFS file-system description object
342  * @zbr: zbranch of leaf node
343  * @node: leaf node
344  *
345  * This function is similar to 'lnc_add()', but it does not create a copy of
346  * @node but inserts @node to TNC directly.
347  */
lnc_add_directly(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)348 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
349 			    void *node)
350 {
351 	int err;
352 
353 	ubifs_assert(!zbr->leaf);
354 	ubifs_assert(zbr->len != 0);
355 
356 	err = ubifs_validate_entry(c, node);
357 	if (err) {
358 		dump_stack();
359 		ubifs_dump_node(c, node);
360 		return err;
361 	}
362 
363 	zbr->leaf = node;
364 	return 0;
365 }
366 
367 /**
368  * lnc_free - remove a leaf node from the leaf node cache.
369  * @zbr: zbranch of leaf node
370  * @node: leaf node
371  */
lnc_free(struct ubifs_zbranch * zbr)372 static void lnc_free(struct ubifs_zbranch *zbr)
373 {
374 	if (!zbr->leaf)
375 		return;
376 	kfree(zbr->leaf);
377 	zbr->leaf = NULL;
378 }
379 
380 /**
381  * tnc_read_node_nm - read a "hashed" leaf node.
382  * @c: UBIFS file-system description object
383  * @zbr: key and position of the node
384  * @node: node is returned here
385  *
386  * This function reads a "hashed" node defined by @zbr from the leaf node cache
387  * (in it is there) or from the hash media, in which case the node is also
388  * added to LNC. Returns zero in case of success or a negative negative error
389  * code in case of failure.
390  */
tnc_read_node_nm(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)391 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
392 			    void *node)
393 {
394 	int err;
395 
396 	ubifs_assert(is_hash_key(c, &zbr->key));
397 
398 	if (zbr->leaf) {
399 		/* Read from the leaf node cache */
400 		ubifs_assert(zbr->len != 0);
401 		memcpy(node, zbr->leaf, zbr->len);
402 		return 0;
403 	}
404 
405 	err = ubifs_tnc_read_node(c, zbr, node);
406 	if (err)
407 		return err;
408 
409 	/* Add the node to the leaf node cache */
410 	err = lnc_add(c, zbr, node);
411 	return err;
412 }
413 
414 /**
415  * try_read_node - read a node if it is a node.
416  * @c: UBIFS file-system description object
417  * @buf: buffer to read to
418  * @type: node type
419  * @len: node length (not aligned)
420  * @lnum: LEB number of node to read
421  * @offs: offset of node to read
422  *
423  * This function tries to read a node of known type and length, checks it and
424  * stores it in @buf. This function returns %1 if a node is present and %0 if
425  * a node is not present. A negative error code is returned for I/O errors.
426  * This function performs that same function as ubifs_read_node except that
427  * it does not require that there is actually a node present and instead
428  * the return code indicates if a node was read.
429  *
430  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
431  * is true (it is controlled by corresponding mount option). However, if
432  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
433  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
434  * because during mounting or re-mounting from R/O mode to R/W mode we may read
435  * journal nodes (when replying the journal or doing the recovery) and the
436  * journal nodes may potentially be corrupted, so checking is required.
437  */
try_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)438 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
439 			 int len, int lnum, int offs)
440 {
441 	int err, node_len;
442 	struct ubifs_ch *ch = buf;
443 	uint32_t crc, node_crc;
444 
445 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
446 
447 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
448 	if (err) {
449 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
450 			  type, lnum, offs, err);
451 		return err;
452 	}
453 
454 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
455 		return 0;
456 
457 	if (ch->node_type != type)
458 		return 0;
459 
460 	node_len = le32_to_cpu(ch->len);
461 	if (node_len != len)
462 		return 0;
463 
464 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
465 	    !c->remounting_rw)
466 		return 1;
467 
468 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
469 	node_crc = le32_to_cpu(ch->crc);
470 	if (crc != node_crc)
471 		return 0;
472 
473 	return 1;
474 }
475 
476 /**
477  * fallible_read_node - try to read a leaf node.
478  * @c: UBIFS file-system description object
479  * @key:  key of node to read
480  * @zbr:  position of node
481  * @node: node returned
482  *
483  * This function tries to read a node and returns %1 if the node is read, %0
484  * if the node is not present, and a negative error code in the case of error.
485  */
fallible_read_node(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_zbranch * zbr,void * node)486 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
487 			      struct ubifs_zbranch *zbr, void *node)
488 {
489 	int ret;
490 
491 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
492 
493 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
494 			    zbr->offs);
495 	if (ret == 1) {
496 		union ubifs_key node_key;
497 		struct ubifs_dent_node *dent = node;
498 
499 		/* All nodes have key in the same place */
500 		key_read(c, &dent->key, &node_key);
501 		if (keys_cmp(c, key, &node_key) != 0)
502 			ret = 0;
503 	}
504 	if (ret == 0 && c->replaying)
505 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
506 			zbr->lnum, zbr->offs, zbr->len);
507 	return ret;
508 }
509 
510 /**
511  * matches_name - determine if a direntry or xattr entry matches a given name.
512  * @c: UBIFS file-system description object
513  * @zbr: zbranch of dent
514  * @nm: name to match
515  *
516  * This function checks if xentry/direntry referred by zbranch @zbr matches name
517  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
518  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
519  * of failure, a negative error code is returned.
520  */
matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct qstr * nm)521 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
522 			const struct qstr *nm)
523 {
524 	struct ubifs_dent_node *dent;
525 	int nlen, err;
526 
527 	/* If possible, match against the dent in the leaf node cache */
528 	if (!zbr->leaf) {
529 		dent = kmalloc(zbr->len, GFP_NOFS);
530 		if (!dent)
531 			return -ENOMEM;
532 
533 		err = ubifs_tnc_read_node(c, zbr, dent);
534 		if (err)
535 			goto out_free;
536 
537 		/* Add the node to the leaf node cache */
538 		err = lnc_add_directly(c, zbr, dent);
539 		if (err)
540 			goto out_free;
541 	} else
542 		dent = zbr->leaf;
543 
544 	nlen = le16_to_cpu(dent->nlen);
545 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
546 	if (err == 0) {
547 		if (nlen == nm->len)
548 			return NAME_MATCHES;
549 		else if (nlen < nm->len)
550 			return NAME_LESS;
551 		else
552 			return NAME_GREATER;
553 	} else if (err < 0)
554 		return NAME_LESS;
555 	else
556 		return NAME_GREATER;
557 
558 out_free:
559 	kfree(dent);
560 	return err;
561 }
562 
563 /**
564  * get_znode - get a TNC znode that may not be loaded yet.
565  * @c: UBIFS file-system description object
566  * @znode: parent znode
567  * @n: znode branch slot number
568  *
569  * This function returns the znode or a negative error code.
570  */
get_znode(struct ubifs_info * c,struct ubifs_znode * znode,int n)571 static struct ubifs_znode *get_znode(struct ubifs_info *c,
572 				     struct ubifs_znode *znode, int n)
573 {
574 	struct ubifs_zbranch *zbr;
575 
576 	zbr = &znode->zbranch[n];
577 	if (zbr->znode)
578 		znode = zbr->znode;
579 	else
580 		znode = ubifs_load_znode(c, zbr, znode, n);
581 	return znode;
582 }
583 
584 /**
585  * tnc_next - find next TNC entry.
586  * @c: UBIFS file-system description object
587  * @zn: znode is passed and returned here
588  * @n: znode branch slot number is passed and returned here
589  *
590  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
591  * no next entry, or a negative error code otherwise.
592  */
tnc_next(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)593 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
594 {
595 	struct ubifs_znode *znode = *zn;
596 	int nn = *n;
597 
598 	nn += 1;
599 	if (nn < znode->child_cnt) {
600 		*n = nn;
601 		return 0;
602 	}
603 	while (1) {
604 		struct ubifs_znode *zp;
605 
606 		zp = znode->parent;
607 		if (!zp)
608 			return -ENOENT;
609 		nn = znode->iip + 1;
610 		znode = zp;
611 		if (nn < znode->child_cnt) {
612 			znode = get_znode(c, znode, nn);
613 			if (IS_ERR(znode))
614 				return PTR_ERR(znode);
615 			while (znode->level != 0) {
616 				znode = get_znode(c, znode, 0);
617 				if (IS_ERR(znode))
618 					return PTR_ERR(znode);
619 			}
620 			nn = 0;
621 			break;
622 		}
623 	}
624 	*zn = znode;
625 	*n = nn;
626 	return 0;
627 }
628 
629 /**
630  * tnc_prev - find previous TNC entry.
631  * @c: UBIFS file-system description object
632  * @zn: znode is returned here
633  * @n: znode branch slot number is passed and returned here
634  *
635  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
636  * there is no next entry, or a negative error code otherwise.
637  */
tnc_prev(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)638 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
639 {
640 	struct ubifs_znode *znode = *zn;
641 	int nn = *n;
642 
643 	if (nn > 0) {
644 		*n = nn - 1;
645 		return 0;
646 	}
647 	while (1) {
648 		struct ubifs_znode *zp;
649 
650 		zp = znode->parent;
651 		if (!zp)
652 			return -ENOENT;
653 		nn = znode->iip - 1;
654 		znode = zp;
655 		if (nn >= 0) {
656 			znode = get_znode(c, znode, nn);
657 			if (IS_ERR(znode))
658 				return PTR_ERR(znode);
659 			while (znode->level != 0) {
660 				nn = znode->child_cnt - 1;
661 				znode = get_znode(c, znode, nn);
662 				if (IS_ERR(znode))
663 					return PTR_ERR(znode);
664 			}
665 			nn = znode->child_cnt - 1;
666 			break;
667 		}
668 	}
669 	*zn = znode;
670 	*n = nn;
671 	return 0;
672 }
673 
674 /**
675  * resolve_collision - resolve a collision.
676  * @c: UBIFS file-system description object
677  * @key: key of a directory or extended attribute entry
678  * @zn: znode is returned here
679  * @n: zbranch number is passed and returned here
680  * @nm: name of the entry
681  *
682  * This function is called for "hashed" keys to make sure that the found key
683  * really corresponds to the looked up node (directory or extended attribute
684  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
685  * %0 is returned if @nm is not found and @zn and @n are set to the previous
686  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
687  * This means that @n may be set to %-1 if the leftmost key in @zn is the
688  * previous one. A negative error code is returned on failures.
689  */
resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct qstr * nm)690 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
691 			     struct ubifs_znode **zn, int *n,
692 			     const struct qstr *nm)
693 {
694 	int err;
695 
696 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
697 	if (unlikely(err < 0))
698 		return err;
699 	if (err == NAME_MATCHES)
700 		return 1;
701 
702 	if (err == NAME_GREATER) {
703 		/* Look left */
704 		while (1) {
705 			err = tnc_prev(c, zn, n);
706 			if (err == -ENOENT) {
707 				ubifs_assert(*n == 0);
708 				*n = -1;
709 				return 0;
710 			}
711 			if (err < 0)
712 				return err;
713 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
714 				/*
715 				 * We have found the branch after which we would
716 				 * like to insert, but inserting in this znode
717 				 * may still be wrong. Consider the following 3
718 				 * znodes, in the case where we are resolving a
719 				 * collision with Key2.
720 				 *
721 				 *                  znode zp
722 				 *            ----------------------
723 				 * level 1     |  Key0  |  Key1  |
724 				 *            -----------------------
725 				 *                 |            |
726 				 *       znode za  |            |  znode zb
727 				 *          ------------      ------------
728 				 * level 0  |  Key0  |        |  Key2  |
729 				 *          ------------      ------------
730 				 *
731 				 * The lookup finds Key2 in znode zb. Lets say
732 				 * there is no match and the name is greater so
733 				 * we look left. When we find Key0, we end up
734 				 * here. If we return now, we will insert into
735 				 * znode za at slot n = 1.  But that is invalid
736 				 * according to the parent's keys.  Key2 must
737 				 * be inserted into znode zb.
738 				 *
739 				 * Note, this problem is not relevant for the
740 				 * case when we go right, because
741 				 * 'tnc_insert()' would correct the parent key.
742 				 */
743 				if (*n == (*zn)->child_cnt - 1) {
744 					err = tnc_next(c, zn, n);
745 					if (err) {
746 						/* Should be impossible */
747 						ubifs_assert(0);
748 						if (err == -ENOENT)
749 							err = -EINVAL;
750 						return err;
751 					}
752 					ubifs_assert(*n == 0);
753 					*n = -1;
754 				}
755 				return 0;
756 			}
757 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
758 			if (err < 0)
759 				return err;
760 			if (err == NAME_LESS)
761 				return 0;
762 			if (err == NAME_MATCHES)
763 				return 1;
764 			ubifs_assert(err == NAME_GREATER);
765 		}
766 	} else {
767 		int nn = *n;
768 		struct ubifs_znode *znode = *zn;
769 
770 		/* Look right */
771 		while (1) {
772 			err = tnc_next(c, &znode, &nn);
773 			if (err == -ENOENT)
774 				return 0;
775 			if (err < 0)
776 				return err;
777 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
778 				return 0;
779 			err = matches_name(c, &znode->zbranch[nn], nm);
780 			if (err < 0)
781 				return err;
782 			if (err == NAME_GREATER)
783 				return 0;
784 			*zn = znode;
785 			*n = nn;
786 			if (err == NAME_MATCHES)
787 				return 1;
788 			ubifs_assert(err == NAME_LESS);
789 		}
790 	}
791 }
792 
793 /**
794  * fallible_matches_name - determine if a dent matches a given name.
795  * @c: UBIFS file-system description object
796  * @zbr: zbranch of dent
797  * @nm: name to match
798  *
799  * This is a "fallible" version of 'matches_name()' function which does not
800  * panic if the direntry/xentry referred by @zbr does not exist on the media.
801  *
802  * This function checks if xentry/direntry referred by zbranch @zbr matches name
803  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
804  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
805  * if xentry/direntry referred by @zbr does not exist on the media. A negative
806  * error code is returned in case of failure.
807  */
fallible_matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct qstr * nm)808 static int fallible_matches_name(struct ubifs_info *c,
809 				 struct ubifs_zbranch *zbr,
810 				 const struct qstr *nm)
811 {
812 	struct ubifs_dent_node *dent;
813 	int nlen, err;
814 
815 	/* If possible, match against the dent in the leaf node cache */
816 	if (!zbr->leaf) {
817 		dent = kmalloc(zbr->len, GFP_NOFS);
818 		if (!dent)
819 			return -ENOMEM;
820 
821 		err = fallible_read_node(c, &zbr->key, zbr, dent);
822 		if (err < 0)
823 			goto out_free;
824 		if (err == 0) {
825 			/* The node was not present */
826 			err = NOT_ON_MEDIA;
827 			goto out_free;
828 		}
829 		ubifs_assert(err == 1);
830 
831 		err = lnc_add_directly(c, zbr, dent);
832 		if (err)
833 			goto out_free;
834 	} else
835 		dent = zbr->leaf;
836 
837 	nlen = le16_to_cpu(dent->nlen);
838 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
839 	if (err == 0) {
840 		if (nlen == nm->len)
841 			return NAME_MATCHES;
842 		else if (nlen < nm->len)
843 			return NAME_LESS;
844 		else
845 			return NAME_GREATER;
846 	} else if (err < 0)
847 		return NAME_LESS;
848 	else
849 		return NAME_GREATER;
850 
851 out_free:
852 	kfree(dent);
853 	return err;
854 }
855 
856 /**
857  * fallible_resolve_collision - resolve a collision even if nodes are missing.
858  * @c: UBIFS file-system description object
859  * @key: key
860  * @zn: znode is returned here
861  * @n: branch number is passed and returned here
862  * @nm: name of directory entry
863  * @adding: indicates caller is adding a key to the TNC
864  *
865  * This is a "fallible" version of the 'resolve_collision()' function which
866  * does not panic if one of the nodes referred to by TNC does not exist on the
867  * media. This may happen when replaying the journal if a deleted node was
868  * Garbage-collected and the commit was not done. A branch that refers to a node
869  * that is not present is called a dangling branch. The following are the return
870  * codes for this function:
871  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
872  *    branch;
873  *  o if we are @adding and @nm was not found, %0 is returned;
874  *  o if we are not @adding and @nm was not found, but a dangling branch was
875  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
876  *  o a negative error code is returned in case of failure.
877  */
fallible_resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct qstr * nm,int adding)878 static int fallible_resolve_collision(struct ubifs_info *c,
879 				      const union ubifs_key *key,
880 				      struct ubifs_znode **zn, int *n,
881 				      const struct qstr *nm, int adding)
882 {
883 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
884 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
885 
886 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
887 	if (unlikely(cmp < 0))
888 		return cmp;
889 	if (cmp == NAME_MATCHES)
890 		return 1;
891 	if (cmp == NOT_ON_MEDIA) {
892 		o_znode = znode;
893 		o_n = nn;
894 		/*
895 		 * We are unlucky and hit a dangling branch straight away.
896 		 * Now we do not really know where to go to find the needed
897 		 * branch - to the left or to the right. Well, let's try left.
898 		 */
899 		unsure = 1;
900 	} else if (!adding)
901 		unsure = 1; /* Remove a dangling branch wherever it is */
902 
903 	if (cmp == NAME_GREATER || unsure) {
904 		/* Look left */
905 		while (1) {
906 			err = tnc_prev(c, zn, n);
907 			if (err == -ENOENT) {
908 				ubifs_assert(*n == 0);
909 				*n = -1;
910 				break;
911 			}
912 			if (err < 0)
913 				return err;
914 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
915 				/* See comments in 'resolve_collision()' */
916 				if (*n == (*zn)->child_cnt - 1) {
917 					err = tnc_next(c, zn, n);
918 					if (err) {
919 						/* Should be impossible */
920 						ubifs_assert(0);
921 						if (err == -ENOENT)
922 							err = -EINVAL;
923 						return err;
924 					}
925 					ubifs_assert(*n == 0);
926 					*n = -1;
927 				}
928 				break;
929 			}
930 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
931 			if (err < 0)
932 				return err;
933 			if (err == NAME_MATCHES)
934 				return 1;
935 			if (err == NOT_ON_MEDIA) {
936 				o_znode = *zn;
937 				o_n = *n;
938 				continue;
939 			}
940 			if (!adding)
941 				continue;
942 			if (err == NAME_LESS)
943 				break;
944 			else
945 				unsure = 0;
946 		}
947 	}
948 
949 	if (cmp == NAME_LESS || unsure) {
950 		/* Look right */
951 		*zn = znode;
952 		*n = nn;
953 		while (1) {
954 			err = tnc_next(c, &znode, &nn);
955 			if (err == -ENOENT)
956 				break;
957 			if (err < 0)
958 				return err;
959 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
960 				break;
961 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
962 			if (err < 0)
963 				return err;
964 			if (err == NAME_GREATER)
965 				break;
966 			*zn = znode;
967 			*n = nn;
968 			if (err == NAME_MATCHES)
969 				return 1;
970 			if (err == NOT_ON_MEDIA) {
971 				o_znode = znode;
972 				o_n = nn;
973 			}
974 		}
975 	}
976 
977 	/* Never match a dangling branch when adding */
978 	if (adding || !o_znode)
979 		return 0;
980 
981 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
982 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
983 		o_znode->zbranch[o_n].len);
984 	*zn = o_znode;
985 	*n = o_n;
986 	return 1;
987 }
988 
989 /**
990  * matches_position - determine if a zbranch matches a given position.
991  * @zbr: zbranch of dent
992  * @lnum: LEB number of dent to match
993  * @offs: offset of dent to match
994  *
995  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
996  */
matches_position(struct ubifs_zbranch * zbr,int lnum,int offs)997 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
998 {
999 	if (zbr->lnum == lnum && zbr->offs == offs)
1000 		return 1;
1001 	else
1002 		return 0;
1003 }
1004 
1005 /**
1006  * resolve_collision_directly - resolve a collision directly.
1007  * @c: UBIFS file-system description object
1008  * @key: key of directory entry
1009  * @zn: znode is passed and returned here
1010  * @n: zbranch number is passed and returned here
1011  * @lnum: LEB number of dent node to match
1012  * @offs: offset of dent node to match
1013  *
1014  * This function is used for "hashed" keys to make sure the found directory or
1015  * extended attribute entry node is what was looked for. It is used when the
1016  * flash address of the right node is known (@lnum:@offs) which makes it much
1017  * easier to resolve collisions (no need to read entries and match full
1018  * names). This function returns %1 and sets @zn and @n if the collision is
1019  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1020  * previous directory entry. Otherwise a negative error code is returned.
1021  */
resolve_collision_directly(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,int lnum,int offs)1022 static int resolve_collision_directly(struct ubifs_info *c,
1023 				      const union ubifs_key *key,
1024 				      struct ubifs_znode **zn, int *n,
1025 				      int lnum, int offs)
1026 {
1027 	struct ubifs_znode *znode;
1028 	int nn, err;
1029 
1030 	znode = *zn;
1031 	nn = *n;
1032 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1033 		return 1;
1034 
1035 	/* Look left */
1036 	while (1) {
1037 		err = tnc_prev(c, &znode, &nn);
1038 		if (err == -ENOENT)
1039 			break;
1040 		if (err < 0)
1041 			return err;
1042 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1043 			break;
1044 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1045 			*zn = znode;
1046 			*n = nn;
1047 			return 1;
1048 		}
1049 	}
1050 
1051 	/* Look right */
1052 	znode = *zn;
1053 	nn = *n;
1054 	while (1) {
1055 		err = tnc_next(c, &znode, &nn);
1056 		if (err == -ENOENT)
1057 			return 0;
1058 		if (err < 0)
1059 			return err;
1060 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 			return 0;
1062 		*zn = znode;
1063 		*n = nn;
1064 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1065 			return 1;
1066 	}
1067 }
1068 
1069 /**
1070  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1071  * @c: UBIFS file-system description object
1072  * @znode: znode to dirty
1073  *
1074  * If we do not have a unique key that resides in a znode, then we cannot
1075  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1076  * This function records the path back to the last dirty ancestor, and then
1077  * dirties the znodes on that path.
1078  */
dirty_cow_bottom_up(struct ubifs_info * c,struct ubifs_znode * znode)1079 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1080 					       struct ubifs_znode *znode)
1081 {
1082 	struct ubifs_znode *zp;
1083 	int *path = c->bottom_up_buf, p = 0;
1084 
1085 	ubifs_assert(c->zroot.znode);
1086 	ubifs_assert(znode);
1087 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1088 		kfree(c->bottom_up_buf);
1089 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1090 					   GFP_NOFS);
1091 		if (!c->bottom_up_buf)
1092 			return ERR_PTR(-ENOMEM);
1093 		path = c->bottom_up_buf;
1094 	}
1095 	if (c->zroot.znode->level) {
1096 		/* Go up until parent is dirty */
1097 		while (1) {
1098 			int n;
1099 
1100 			zp = znode->parent;
1101 			if (!zp)
1102 				break;
1103 			n = znode->iip;
1104 			ubifs_assert(p < c->zroot.znode->level);
1105 			path[p++] = n;
1106 			if (!zp->cnext && ubifs_zn_dirty(znode))
1107 				break;
1108 			znode = zp;
1109 		}
1110 	}
1111 
1112 	/* Come back down, dirtying as we go */
1113 	while (1) {
1114 		struct ubifs_zbranch *zbr;
1115 
1116 		zp = znode->parent;
1117 		if (zp) {
1118 			ubifs_assert(path[p - 1] >= 0);
1119 			ubifs_assert(path[p - 1] < zp->child_cnt);
1120 			zbr = &zp->zbranch[path[--p]];
1121 			znode = dirty_cow_znode(c, zbr);
1122 		} else {
1123 			ubifs_assert(znode == c->zroot.znode);
1124 			znode = dirty_cow_znode(c, &c->zroot);
1125 		}
1126 		if (IS_ERR(znode) || !p)
1127 			break;
1128 		ubifs_assert(path[p - 1] >= 0);
1129 		ubifs_assert(path[p - 1] < znode->child_cnt);
1130 		znode = znode->zbranch[path[p - 1]].znode;
1131 	}
1132 
1133 	return znode;
1134 }
1135 
1136 /**
1137  * ubifs_lookup_level0 - search for zero-level znode.
1138  * @c: UBIFS file-system description object
1139  * @key:  key to lookup
1140  * @zn: znode is returned here
1141  * @n: znode branch slot number is returned here
1142  *
1143  * This function looks up the TNC tree and search for zero-level znode which
1144  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1145  * cases:
1146  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1147  *     is returned and slot number of the matched branch is stored in @n;
1148  *   o not exact match, which means that zero-level znode does not contain
1149  *     @key, then %0 is returned and slot number of the closest branch is stored
1150  *     in @n;
1151  *   o @key is so small that it is even less than the lowest key of the
1152  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1153  *
1154  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1155  * function reads corresponding indexing nodes and inserts them to TNC. In
1156  * case of failure, a negative error code is returned.
1157  */
ubifs_lookup_level0(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1158 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1159 			struct ubifs_znode **zn, int *n)
1160 {
1161 	int err, exact;
1162 	struct ubifs_znode *znode;
1163 	unsigned long time = get_seconds();
1164 
1165 	dbg_tnck(key, "search key ");
1166 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1167 
1168 	znode = c->zroot.znode;
1169 	if (unlikely(!znode)) {
1170 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1171 		if (IS_ERR(znode))
1172 			return PTR_ERR(znode);
1173 	}
1174 
1175 	znode->time = time;
1176 
1177 	while (1) {
1178 		struct ubifs_zbranch *zbr;
1179 
1180 		exact = ubifs_search_zbranch(c, znode, key, n);
1181 
1182 		if (znode->level == 0)
1183 			break;
1184 
1185 		if (*n < 0)
1186 			*n = 0;
1187 		zbr = &znode->zbranch[*n];
1188 
1189 		if (zbr->znode) {
1190 			znode->time = time;
1191 			znode = zbr->znode;
1192 			continue;
1193 		}
1194 
1195 		/* znode is not in TNC cache, load it from the media */
1196 		znode = ubifs_load_znode(c, zbr, znode, *n);
1197 		if (IS_ERR(znode))
1198 			return PTR_ERR(znode);
1199 	}
1200 
1201 	*zn = znode;
1202 	if (exact || !is_hash_key(c, key) || *n != -1) {
1203 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1204 		return exact;
1205 	}
1206 
1207 	/*
1208 	 * Here is a tricky place. We have not found the key and this is a
1209 	 * "hashed" key, which may collide. The rest of the code deals with
1210 	 * situations like this:
1211 	 *
1212 	 *                  | 3 | 5 |
1213 	 *                  /       \
1214 	 *          | 3 | 5 |      | 6 | 7 | (x)
1215 	 *
1216 	 * Or more a complex example:
1217 	 *
1218 	 *                | 1 | 5 |
1219 	 *                /       \
1220 	 *       | 1 | 3 |         | 5 | 8 |
1221 	 *              \           /
1222 	 *          | 5 | 5 |   | 6 | 7 | (x)
1223 	 *
1224 	 * In the examples, if we are looking for key "5", we may reach nodes
1225 	 * marked with "(x)". In this case what we have do is to look at the
1226 	 * left and see if there is "5" key there. If there is, we have to
1227 	 * return it.
1228 	 *
1229 	 * Note, this whole situation is possible because we allow to have
1230 	 * elements which are equivalent to the next key in the parent in the
1231 	 * children of current znode. For example, this happens if we split a
1232 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1233 	 * like this:
1234 	 *                      | 3 | 5 |
1235 	 *                       /     \
1236 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1237 	 *                              ^
1238 	 * And this becomes what is at the first "picture" after key "5" marked
1239 	 * with "^" is removed. What could be done is we could prohibit
1240 	 * splitting in the middle of the colliding sequence. Also, when
1241 	 * removing the leftmost key, we would have to correct the key of the
1242 	 * parent node, which would introduce additional complications. Namely,
1243 	 * if we changed the leftmost key of the parent znode, the garbage
1244 	 * collector would be unable to find it (GC is doing this when GC'ing
1245 	 * indexing LEBs). Although we already have an additional RB-tree where
1246 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1247 	 * after the commit. But anyway, this does not look easy to implement
1248 	 * so we did not try this.
1249 	 */
1250 	err = tnc_prev(c, &znode, n);
1251 	if (err == -ENOENT) {
1252 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1253 		*n = -1;
1254 		return 0;
1255 	}
1256 	if (unlikely(err < 0))
1257 		return err;
1258 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1259 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1260 		*n = -1;
1261 		return 0;
1262 	}
1263 
1264 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1265 	*zn = znode;
1266 	return 1;
1267 }
1268 
1269 /**
1270  * lookup_level0_dirty - search for zero-level znode dirtying.
1271  * @c: UBIFS file-system description object
1272  * @key:  key to lookup
1273  * @zn: znode is returned here
1274  * @n: znode branch slot number is returned here
1275  *
1276  * This function looks up the TNC tree and search for zero-level znode which
1277  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1278  * cases:
1279  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1280  *     is returned and slot number of the matched branch is stored in @n;
1281  *   o not exact match, which means that zero-level znode does not contain @key
1282  *     then %0 is returned and slot number of the closed branch is stored in
1283  *     @n;
1284  *   o @key is so small that it is even less than the lowest key of the
1285  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1286  *
1287  * Additionally all znodes in the path from the root to the located zero-level
1288  * znode are marked as dirty.
1289  *
1290  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1291  * function reads corresponding indexing nodes and inserts them to TNC. In
1292  * case of failure, a negative error code is returned.
1293  */
lookup_level0_dirty(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1294 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1295 			       struct ubifs_znode **zn, int *n)
1296 {
1297 	int err, exact;
1298 	struct ubifs_znode *znode;
1299 	unsigned long time = get_seconds();
1300 
1301 	dbg_tnck(key, "search and dirty key ");
1302 
1303 	znode = c->zroot.znode;
1304 	if (unlikely(!znode)) {
1305 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1306 		if (IS_ERR(znode))
1307 			return PTR_ERR(znode);
1308 	}
1309 
1310 	znode = dirty_cow_znode(c, &c->zroot);
1311 	if (IS_ERR(znode))
1312 		return PTR_ERR(znode);
1313 
1314 	znode->time = time;
1315 
1316 	while (1) {
1317 		struct ubifs_zbranch *zbr;
1318 
1319 		exact = ubifs_search_zbranch(c, znode, key, n);
1320 
1321 		if (znode->level == 0)
1322 			break;
1323 
1324 		if (*n < 0)
1325 			*n = 0;
1326 		zbr = &znode->zbranch[*n];
1327 
1328 		if (zbr->znode) {
1329 			znode->time = time;
1330 			znode = dirty_cow_znode(c, zbr);
1331 			if (IS_ERR(znode))
1332 				return PTR_ERR(znode);
1333 			continue;
1334 		}
1335 
1336 		/* znode is not in TNC cache, load it from the media */
1337 		znode = ubifs_load_znode(c, zbr, znode, *n);
1338 		if (IS_ERR(znode))
1339 			return PTR_ERR(znode);
1340 		znode = dirty_cow_znode(c, zbr);
1341 		if (IS_ERR(znode))
1342 			return PTR_ERR(znode);
1343 	}
1344 
1345 	*zn = znode;
1346 	if (exact || !is_hash_key(c, key) || *n != -1) {
1347 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1348 		return exact;
1349 	}
1350 
1351 	/*
1352 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1353 	 * code.
1354 	 */
1355 	err = tnc_prev(c, &znode, n);
1356 	if (err == -ENOENT) {
1357 		*n = -1;
1358 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1359 		return 0;
1360 	}
1361 	if (unlikely(err < 0))
1362 		return err;
1363 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1364 		*n = -1;
1365 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1366 		return 0;
1367 	}
1368 
1369 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1370 		znode = dirty_cow_bottom_up(c, znode);
1371 		if (IS_ERR(znode))
1372 			return PTR_ERR(znode);
1373 	}
1374 
1375 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1376 	*zn = znode;
1377 	return 1;
1378 }
1379 
1380 /**
1381  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1382  * @c: UBIFS file-system description object
1383  * @lnum: LEB number
1384  * @gc_seq1: garbage collection sequence number
1385  *
1386  * This function determines if @lnum may have been garbage collected since
1387  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1388  * %0 is returned.
1389  */
maybe_leb_gced(struct ubifs_info * c,int lnum,int gc_seq1)1390 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1391 {
1392 #ifndef __UBOOT__
1393 	int gc_seq2, gced_lnum;
1394 
1395 	gced_lnum = c->gced_lnum;
1396 	smp_rmb();
1397 	gc_seq2 = c->gc_seq;
1398 	/* Same seq means no GC */
1399 	if (gc_seq1 == gc_seq2)
1400 		return 0;
1401 	/* Different by more than 1 means we don't know */
1402 	if (gc_seq1 + 1 != gc_seq2)
1403 		return 1;
1404 	/*
1405 	 * We have seen the sequence number has increased by 1. Now we need to
1406 	 * be sure we read the right LEB number, so read it again.
1407 	 */
1408 	smp_rmb();
1409 	if (gced_lnum != c->gced_lnum)
1410 		return 1;
1411 	/* Finally we can check lnum */
1412 	if (gced_lnum == lnum)
1413 		return 1;
1414 #else
1415 	/* No garbage collection in the read-only U-Boot implementation */
1416 #endif
1417 	return 0;
1418 }
1419 
1420 /**
1421  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1422  * @c: UBIFS file-system description object
1423  * @key: node key to lookup
1424  * @node: the node is returned here
1425  * @lnum: LEB number is returned here
1426  * @offs: offset is returned here
1427  *
1428  * This function looks up and reads node with key @key. The caller has to make
1429  * sure the @node buffer is large enough to fit the node. Returns zero in case
1430  * of success, %-ENOENT if the node was not found, and a negative error code in
1431  * case of failure. The node location can be returned in @lnum and @offs.
1432  */
ubifs_tnc_locate(struct ubifs_info * c,const union ubifs_key * key,void * node,int * lnum,int * offs)1433 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1434 		     void *node, int *lnum, int *offs)
1435 {
1436 	int found, n, err, safely = 0, gc_seq1;
1437 	struct ubifs_znode *znode;
1438 	struct ubifs_zbranch zbr, *zt;
1439 
1440 again:
1441 	mutex_lock(&c->tnc_mutex);
1442 	found = ubifs_lookup_level0(c, key, &znode, &n);
1443 	if (!found) {
1444 		err = -ENOENT;
1445 		goto out;
1446 	} else if (found < 0) {
1447 		err = found;
1448 		goto out;
1449 	}
1450 	zt = &znode->zbranch[n];
1451 	if (lnum) {
1452 		*lnum = zt->lnum;
1453 		*offs = zt->offs;
1454 	}
1455 	if (is_hash_key(c, key)) {
1456 		/*
1457 		 * In this case the leaf node cache gets used, so we pass the
1458 		 * address of the zbranch and keep the mutex locked
1459 		 */
1460 		err = tnc_read_node_nm(c, zt, node);
1461 		goto out;
1462 	}
1463 	if (safely) {
1464 		err = ubifs_tnc_read_node(c, zt, node);
1465 		goto out;
1466 	}
1467 	/* Drop the TNC mutex prematurely and race with garbage collection */
1468 	zbr = znode->zbranch[n];
1469 	gc_seq1 = c->gc_seq;
1470 	mutex_unlock(&c->tnc_mutex);
1471 
1472 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1473 		/* We do not GC journal heads */
1474 		err = ubifs_tnc_read_node(c, &zbr, node);
1475 		return err;
1476 	}
1477 
1478 	err = fallible_read_node(c, key, &zbr, node);
1479 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1480 		/*
1481 		 * The node may have been GC'ed out from under us so try again
1482 		 * while keeping the TNC mutex locked.
1483 		 */
1484 		safely = 1;
1485 		goto again;
1486 	}
1487 	return 0;
1488 
1489 out:
1490 	mutex_unlock(&c->tnc_mutex);
1491 	return err;
1492 }
1493 
1494 /**
1495  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1496  * @c: UBIFS file-system description object
1497  * @bu: bulk-read parameters and results
1498  *
1499  * Lookup consecutive data node keys for the same inode that reside
1500  * consecutively in the same LEB. This function returns zero in case of success
1501  * and a negative error code in case of failure.
1502  *
1503  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1504  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1505  * maximum possible amount of nodes for bulk-read.
1506  */
ubifs_tnc_get_bu_keys(struct ubifs_info * c,struct bu_info * bu)1507 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1508 {
1509 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1510 	int uninitialized_var(len);
1511 	unsigned int block = key_block(c, &bu->key);
1512 	struct ubifs_znode *znode;
1513 
1514 	bu->cnt = 0;
1515 	bu->blk_cnt = 0;
1516 	bu->eof = 0;
1517 
1518 	mutex_lock(&c->tnc_mutex);
1519 	/* Find first key */
1520 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1521 	if (err < 0)
1522 		goto out;
1523 	if (err) {
1524 		/* Key found */
1525 		len = znode->zbranch[n].len;
1526 		/* The buffer must be big enough for at least 1 node */
1527 		if (len > bu->buf_len) {
1528 			err = -EINVAL;
1529 			goto out;
1530 		}
1531 		/* Add this key */
1532 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1533 		bu->blk_cnt += 1;
1534 		lnum = znode->zbranch[n].lnum;
1535 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1536 	}
1537 	while (1) {
1538 		struct ubifs_zbranch *zbr;
1539 		union ubifs_key *key;
1540 		unsigned int next_block;
1541 
1542 		/* Find next key */
1543 		err = tnc_next(c, &znode, &n);
1544 		if (err)
1545 			goto out;
1546 		zbr = &znode->zbranch[n];
1547 		key = &zbr->key;
1548 		/* See if there is another data key for this file */
1549 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1550 		    key_type(c, key) != UBIFS_DATA_KEY) {
1551 			err = -ENOENT;
1552 			goto out;
1553 		}
1554 		if (lnum < 0) {
1555 			/* First key found */
1556 			lnum = zbr->lnum;
1557 			offs = ALIGN(zbr->offs + zbr->len, 8);
1558 			len = zbr->len;
1559 			if (len > bu->buf_len) {
1560 				err = -EINVAL;
1561 				goto out;
1562 			}
1563 		} else {
1564 			/*
1565 			 * The data nodes must be in consecutive positions in
1566 			 * the same LEB.
1567 			 */
1568 			if (zbr->lnum != lnum || zbr->offs != offs)
1569 				goto out;
1570 			offs += ALIGN(zbr->len, 8);
1571 			len = ALIGN(len, 8) + zbr->len;
1572 			/* Must not exceed buffer length */
1573 			if (len > bu->buf_len)
1574 				goto out;
1575 		}
1576 		/* Allow for holes */
1577 		next_block = key_block(c, key);
1578 		bu->blk_cnt += (next_block - block - 1);
1579 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1580 			goto out;
1581 		block = next_block;
1582 		/* Add this key */
1583 		bu->zbranch[bu->cnt++] = *zbr;
1584 		bu->blk_cnt += 1;
1585 		/* See if we have room for more */
1586 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1587 			goto out;
1588 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1589 			goto out;
1590 	}
1591 out:
1592 	if (err == -ENOENT) {
1593 		bu->eof = 1;
1594 		err = 0;
1595 	}
1596 	bu->gc_seq = c->gc_seq;
1597 	mutex_unlock(&c->tnc_mutex);
1598 	if (err)
1599 		return err;
1600 	/*
1601 	 * An enormous hole could cause bulk-read to encompass too many
1602 	 * page cache pages, so limit the number here.
1603 	 */
1604 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1605 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1606 	/*
1607 	 * Ensure that bulk-read covers a whole number of page cache
1608 	 * pages.
1609 	 */
1610 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1611 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1612 		return 0;
1613 	if (bu->eof) {
1614 		/* At the end of file we can round up */
1615 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1616 		return 0;
1617 	}
1618 	/* Exclude data nodes that do not make up a whole page cache page */
1619 	block = key_block(c, &bu->key) + bu->blk_cnt;
1620 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1621 	while (bu->cnt) {
1622 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1623 			break;
1624 		bu->cnt -= 1;
1625 	}
1626 	return 0;
1627 }
1628 
1629 /**
1630  * read_wbuf - bulk-read from a LEB with a wbuf.
1631  * @wbuf: wbuf that may overlap the read
1632  * @buf: buffer into which to read
1633  * @len: read length
1634  * @lnum: LEB number from which to read
1635  * @offs: offset from which to read
1636  *
1637  * This functions returns %0 on success or a negative error code on failure.
1638  */
read_wbuf(struct ubifs_wbuf * wbuf,void * buf,int len,int lnum,int offs)1639 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1640 		     int offs)
1641 {
1642 	const struct ubifs_info *c = wbuf->c;
1643 	int rlen, overlap;
1644 
1645 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1646 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1647 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1648 	ubifs_assert(offs + len <= c->leb_size);
1649 
1650 	spin_lock(&wbuf->lock);
1651 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1652 	if (!overlap) {
1653 		/* We may safely unlock the write-buffer and read the data */
1654 		spin_unlock(&wbuf->lock);
1655 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1656 	}
1657 
1658 	/* Don't read under wbuf */
1659 	rlen = wbuf->offs - offs;
1660 	if (rlen < 0)
1661 		rlen = 0;
1662 
1663 	/* Copy the rest from the write-buffer */
1664 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1665 	spin_unlock(&wbuf->lock);
1666 
1667 	if (rlen > 0)
1668 		/* Read everything that goes before write-buffer */
1669 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1670 
1671 	return 0;
1672 }
1673 
1674 /**
1675  * validate_data_node - validate data nodes for bulk-read.
1676  * @c: UBIFS file-system description object
1677  * @buf: buffer containing data node to validate
1678  * @zbr: zbranch of data node to validate
1679  *
1680  * This functions returns %0 on success or a negative error code on failure.
1681  */
validate_data_node(struct ubifs_info * c,void * buf,struct ubifs_zbranch * zbr)1682 static int validate_data_node(struct ubifs_info *c, void *buf,
1683 			      struct ubifs_zbranch *zbr)
1684 {
1685 	union ubifs_key key1;
1686 	struct ubifs_ch *ch = buf;
1687 	int err, len;
1688 
1689 	if (ch->node_type != UBIFS_DATA_NODE) {
1690 		ubifs_err(c, "bad node type (%d but expected %d)",
1691 			  ch->node_type, UBIFS_DATA_NODE);
1692 		goto out_err;
1693 	}
1694 
1695 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1696 	if (err) {
1697 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1698 		goto out;
1699 	}
1700 
1701 	len = le32_to_cpu(ch->len);
1702 	if (len != zbr->len) {
1703 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1704 		goto out_err;
1705 	}
1706 
1707 	/* Make sure the key of the read node is correct */
1708 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1709 	if (!keys_eq(c, &zbr->key, &key1)) {
1710 		ubifs_err(c, "bad key in node at LEB %d:%d",
1711 			  zbr->lnum, zbr->offs);
1712 		dbg_tnck(&zbr->key, "looked for key ");
1713 		dbg_tnck(&key1, "found node's key ");
1714 		goto out_err;
1715 	}
1716 
1717 	return 0;
1718 
1719 out_err:
1720 	err = -EINVAL;
1721 out:
1722 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1723 	ubifs_dump_node(c, buf);
1724 	dump_stack();
1725 	return err;
1726 }
1727 
1728 /**
1729  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1730  * @c: UBIFS file-system description object
1731  * @bu: bulk-read parameters and results
1732  *
1733  * This functions reads and validates the data nodes that were identified by the
1734  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1735  * -EAGAIN to indicate a race with GC, or another negative error code on
1736  * failure.
1737  */
ubifs_tnc_bulk_read(struct ubifs_info * c,struct bu_info * bu)1738 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1739 {
1740 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1741 	struct ubifs_wbuf *wbuf;
1742 	void *buf;
1743 
1744 	len = bu->zbranch[bu->cnt - 1].offs;
1745 	len += bu->zbranch[bu->cnt - 1].len - offs;
1746 	if (len > bu->buf_len) {
1747 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1748 		return -EINVAL;
1749 	}
1750 
1751 	/* Do the read */
1752 	wbuf = ubifs_get_wbuf(c, lnum);
1753 	if (wbuf)
1754 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1755 	else
1756 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1757 
1758 	/* Check for a race with GC */
1759 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1760 		return -EAGAIN;
1761 
1762 	if (err && err != -EBADMSG) {
1763 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1764 			  lnum, offs, err);
1765 		dump_stack();
1766 		dbg_tnck(&bu->key, "key ");
1767 		return err;
1768 	}
1769 
1770 	/* Validate the nodes read */
1771 	buf = bu->buf;
1772 	for (i = 0; i < bu->cnt; i++) {
1773 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1774 		if (err)
1775 			return err;
1776 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 /**
1783  * do_lookup_nm- look up a "hashed" node.
1784  * @c: UBIFS file-system description object
1785  * @key: node key to lookup
1786  * @node: the node is returned here
1787  * @nm: node name
1788  *
1789  * This function look up and reads a node which contains name hash in the key.
1790  * Since the hash may have collisions, there may be many nodes with the same
1791  * key, so we have to sequentially look to all of them until the needed one is
1792  * found. This function returns zero in case of success, %-ENOENT if the node
1793  * was not found, and a negative error code in case of failure.
1794  */
do_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct qstr * nm)1795 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1796 			void *node, const struct qstr *nm)
1797 {
1798 	int found, n, err;
1799 	struct ubifs_znode *znode;
1800 
1801 	dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1802 	mutex_lock(&c->tnc_mutex);
1803 	found = ubifs_lookup_level0(c, key, &znode, &n);
1804 	if (!found) {
1805 		err = -ENOENT;
1806 		goto out_unlock;
1807 	} else if (found < 0) {
1808 		err = found;
1809 		goto out_unlock;
1810 	}
1811 
1812 	ubifs_assert(n >= 0);
1813 
1814 	err = resolve_collision(c, key, &znode, &n, nm);
1815 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1816 	if (unlikely(err < 0))
1817 		goto out_unlock;
1818 	if (err == 0) {
1819 		err = -ENOENT;
1820 		goto out_unlock;
1821 	}
1822 
1823 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1824 
1825 out_unlock:
1826 	mutex_unlock(&c->tnc_mutex);
1827 	return err;
1828 }
1829 
1830 /**
1831  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1832  * @c: UBIFS file-system description object
1833  * @key: node key to lookup
1834  * @node: the node is returned here
1835  * @nm: node name
1836  *
1837  * This function look up and reads a node which contains name hash in the key.
1838  * Since the hash may have collisions, there may be many nodes with the same
1839  * key, so we have to sequentially look to all of them until the needed one is
1840  * found. This function returns zero in case of success, %-ENOENT if the node
1841  * was not found, and a negative error code in case of failure.
1842  */
ubifs_tnc_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct qstr * nm)1843 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1844 			void *node, const struct qstr *nm)
1845 {
1846 	int err, len;
1847 	const struct ubifs_dent_node *dent = node;
1848 
1849 	/*
1850 	 * We assume that in most of the cases there are no name collisions and
1851 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1852 	 */
1853 	err = ubifs_tnc_lookup(c, key, node);
1854 	if (err)
1855 		return err;
1856 
1857 	len = le16_to_cpu(dent->nlen);
1858 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1859 		return 0;
1860 
1861 	/*
1862 	 * Unluckily, there are hash collisions and we have to iterate over
1863 	 * them look at each direntry with colliding name hash sequentially.
1864 	 */
1865 	return do_lookup_nm(c, key, node, nm);
1866 }
1867 
1868 /**
1869  * correct_parent_keys - correct parent znodes' keys.
1870  * @c: UBIFS file-system description object
1871  * @znode: znode to correct parent znodes for
1872  *
1873  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1874  * zbranch changes, keys of parent znodes have to be corrected. This helper
1875  * function is called in such situations and corrects the keys if needed.
1876  */
correct_parent_keys(const struct ubifs_info * c,struct ubifs_znode * znode)1877 static void correct_parent_keys(const struct ubifs_info *c,
1878 				struct ubifs_znode *znode)
1879 {
1880 	union ubifs_key *key, *key1;
1881 
1882 	ubifs_assert(znode->parent);
1883 	ubifs_assert(znode->iip == 0);
1884 
1885 	key = &znode->zbranch[0].key;
1886 	key1 = &znode->parent->zbranch[0].key;
1887 
1888 	while (keys_cmp(c, key, key1) < 0) {
1889 		key_copy(c, key, key1);
1890 		znode = znode->parent;
1891 		znode->alt = 1;
1892 		if (!znode->parent || znode->iip)
1893 			break;
1894 		key1 = &znode->parent->zbranch[0].key;
1895 	}
1896 }
1897 
1898 /**
1899  * insert_zbranch - insert a zbranch into a znode.
1900  * @znode: znode into which to insert
1901  * @zbr: zbranch to insert
1902  * @n: slot number to insert to
1903  *
1904  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1905  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1906  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1907  * slot, zbranches starting from @n have to be moved right.
1908  */
insert_zbranch(struct ubifs_znode * znode,const struct ubifs_zbranch * zbr,int n)1909 static void insert_zbranch(struct ubifs_znode *znode,
1910 			   const struct ubifs_zbranch *zbr, int n)
1911 {
1912 	int i;
1913 
1914 	ubifs_assert(ubifs_zn_dirty(znode));
1915 
1916 	if (znode->level) {
1917 		for (i = znode->child_cnt; i > n; i--) {
1918 			znode->zbranch[i] = znode->zbranch[i - 1];
1919 			if (znode->zbranch[i].znode)
1920 				znode->zbranch[i].znode->iip = i;
1921 		}
1922 		if (zbr->znode)
1923 			zbr->znode->iip = n;
1924 	} else
1925 		for (i = znode->child_cnt; i > n; i--)
1926 			znode->zbranch[i] = znode->zbranch[i - 1];
1927 
1928 	znode->zbranch[n] = *zbr;
1929 	znode->child_cnt += 1;
1930 
1931 	/*
1932 	 * After inserting at slot zero, the lower bound of the key range of
1933 	 * this znode may have changed. If this znode is subsequently split
1934 	 * then the upper bound of the key range may change, and furthermore
1935 	 * it could change to be lower than the original lower bound. If that
1936 	 * happens, then it will no longer be possible to find this znode in the
1937 	 * TNC using the key from the index node on flash. That is bad because
1938 	 * if it is not found, we will assume it is obsolete and may overwrite
1939 	 * it. Then if there is an unclean unmount, we will start using the
1940 	 * old index which will be broken.
1941 	 *
1942 	 * So we first mark znodes that have insertions at slot zero, and then
1943 	 * if they are split we add their lnum/offs to the old_idx tree.
1944 	 */
1945 	if (n == 0)
1946 		znode->alt = 1;
1947 }
1948 
1949 /**
1950  * tnc_insert - insert a node into TNC.
1951  * @c: UBIFS file-system description object
1952  * @znode: znode to insert into
1953  * @zbr: branch to insert
1954  * @n: slot number to insert new zbranch to
1955  *
1956  * This function inserts a new node described by @zbr into znode @znode. If
1957  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1958  * are splat as well if needed. Returns zero in case of success or a negative
1959  * error code in case of failure.
1960  */
tnc_insert(struct ubifs_info * c,struct ubifs_znode * znode,struct ubifs_zbranch * zbr,int n)1961 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1962 		      struct ubifs_zbranch *zbr, int n)
1963 {
1964 	struct ubifs_znode *zn, *zi, *zp;
1965 	int i, keep, move, appending = 0;
1966 	union ubifs_key *key = &zbr->key, *key1;
1967 
1968 	ubifs_assert(n >= 0 && n <= c->fanout);
1969 
1970 	/* Implement naive insert for now */
1971 again:
1972 	zp = znode->parent;
1973 	if (znode->child_cnt < c->fanout) {
1974 		ubifs_assert(n != c->fanout);
1975 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1976 
1977 		insert_zbranch(znode, zbr, n);
1978 
1979 		/* Ensure parent's key is correct */
1980 		if (n == 0 && zp && znode->iip == 0)
1981 			correct_parent_keys(c, znode);
1982 
1983 		return 0;
1984 	}
1985 
1986 	/*
1987 	 * Unfortunately, @znode does not have more empty slots and we have to
1988 	 * split it.
1989 	 */
1990 	dbg_tnck(key, "splitting level %d, key ", znode->level);
1991 
1992 	if (znode->alt)
1993 		/*
1994 		 * We can no longer be sure of finding this znode by key, so we
1995 		 * record it in the old_idx tree.
1996 		 */
1997 		ins_clr_old_idx_znode(c, znode);
1998 
1999 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2000 	if (!zn)
2001 		return -ENOMEM;
2002 	zn->parent = zp;
2003 	zn->level = znode->level;
2004 
2005 	/* Decide where to split */
2006 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2007 		/* Try not to split consecutive data keys */
2008 		if (n == c->fanout) {
2009 			key1 = &znode->zbranch[n - 1].key;
2010 			if (key_inum(c, key1) == key_inum(c, key) &&
2011 			    key_type(c, key1) == UBIFS_DATA_KEY)
2012 				appending = 1;
2013 		} else
2014 			goto check_split;
2015 	} else if (appending && n != c->fanout) {
2016 		/* Try not to split consecutive data keys */
2017 		appending = 0;
2018 check_split:
2019 		if (n >= (c->fanout + 1) / 2) {
2020 			key1 = &znode->zbranch[0].key;
2021 			if (key_inum(c, key1) == key_inum(c, key) &&
2022 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2023 				key1 = &znode->zbranch[n].key;
2024 				if (key_inum(c, key1) != key_inum(c, key) ||
2025 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2026 					keep = n;
2027 					move = c->fanout - keep;
2028 					zi = znode;
2029 					goto do_split;
2030 				}
2031 			}
2032 		}
2033 	}
2034 
2035 	if (appending) {
2036 		keep = c->fanout;
2037 		move = 0;
2038 	} else {
2039 		keep = (c->fanout + 1) / 2;
2040 		move = c->fanout - keep;
2041 	}
2042 
2043 	/*
2044 	 * Although we don't at present, we could look at the neighbors and see
2045 	 * if we can move some zbranches there.
2046 	 */
2047 
2048 	if (n < keep) {
2049 		/* Insert into existing znode */
2050 		zi = znode;
2051 		move += 1;
2052 		keep -= 1;
2053 	} else {
2054 		/* Insert into new znode */
2055 		zi = zn;
2056 		n -= keep;
2057 		/* Re-parent */
2058 		if (zn->level != 0)
2059 			zbr->znode->parent = zn;
2060 	}
2061 
2062 do_split:
2063 
2064 	__set_bit(DIRTY_ZNODE, &zn->flags);
2065 	atomic_long_inc(&c->dirty_zn_cnt);
2066 
2067 	zn->child_cnt = move;
2068 	znode->child_cnt = keep;
2069 
2070 	dbg_tnc("moving %d, keeping %d", move, keep);
2071 
2072 	/* Move zbranch */
2073 	for (i = 0; i < move; i++) {
2074 		zn->zbranch[i] = znode->zbranch[keep + i];
2075 		/* Re-parent */
2076 		if (zn->level != 0)
2077 			if (zn->zbranch[i].znode) {
2078 				zn->zbranch[i].znode->parent = zn;
2079 				zn->zbranch[i].znode->iip = i;
2080 			}
2081 	}
2082 
2083 	/* Insert new key and branch */
2084 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2085 
2086 	insert_zbranch(zi, zbr, n);
2087 
2088 	/* Insert new znode (produced by spitting) into the parent */
2089 	if (zp) {
2090 		if (n == 0 && zi == znode && znode->iip == 0)
2091 			correct_parent_keys(c, znode);
2092 
2093 		/* Locate insertion point */
2094 		n = znode->iip + 1;
2095 
2096 		/* Tail recursion */
2097 		zbr->key = zn->zbranch[0].key;
2098 		zbr->znode = zn;
2099 		zbr->lnum = 0;
2100 		zbr->offs = 0;
2101 		zbr->len = 0;
2102 		znode = zp;
2103 
2104 		goto again;
2105 	}
2106 
2107 	/* We have to split root znode */
2108 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2109 
2110 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2111 	if (!zi)
2112 		return -ENOMEM;
2113 
2114 	zi->child_cnt = 2;
2115 	zi->level = znode->level + 1;
2116 
2117 	__set_bit(DIRTY_ZNODE, &zi->flags);
2118 	atomic_long_inc(&c->dirty_zn_cnt);
2119 
2120 	zi->zbranch[0].key = znode->zbranch[0].key;
2121 	zi->zbranch[0].znode = znode;
2122 	zi->zbranch[0].lnum = c->zroot.lnum;
2123 	zi->zbranch[0].offs = c->zroot.offs;
2124 	zi->zbranch[0].len = c->zroot.len;
2125 	zi->zbranch[1].key = zn->zbranch[0].key;
2126 	zi->zbranch[1].znode = zn;
2127 
2128 	c->zroot.lnum = 0;
2129 	c->zroot.offs = 0;
2130 	c->zroot.len = 0;
2131 	c->zroot.znode = zi;
2132 
2133 	zn->parent = zi;
2134 	zn->iip = 1;
2135 	znode->parent = zi;
2136 	znode->iip = 0;
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * ubifs_tnc_add - add a node to TNC.
2143  * @c: UBIFS file-system description object
2144  * @key: key to add
2145  * @lnum: LEB number of node
2146  * @offs: node offset
2147  * @len: node length
2148  *
2149  * This function adds a node with key @key to TNC. The node may be new or it may
2150  * obsolete some existing one. Returns %0 on success or negative error code on
2151  * failure.
2152  */
ubifs_tnc_add(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len)2153 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2154 		  int offs, int len)
2155 {
2156 	int found, n, err = 0;
2157 	struct ubifs_znode *znode;
2158 
2159 	mutex_lock(&c->tnc_mutex);
2160 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2161 	found = lookup_level0_dirty(c, key, &znode, &n);
2162 	if (!found) {
2163 		struct ubifs_zbranch zbr;
2164 
2165 		zbr.znode = NULL;
2166 		zbr.lnum = lnum;
2167 		zbr.offs = offs;
2168 		zbr.len = len;
2169 		key_copy(c, key, &zbr.key);
2170 		err = tnc_insert(c, znode, &zbr, n + 1);
2171 	} else if (found == 1) {
2172 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2173 
2174 		lnc_free(zbr);
2175 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2176 		zbr->lnum = lnum;
2177 		zbr->offs = offs;
2178 		zbr->len = len;
2179 	} else
2180 		err = found;
2181 	if (!err)
2182 		err = dbg_check_tnc(c, 0);
2183 	mutex_unlock(&c->tnc_mutex);
2184 
2185 	return err;
2186 }
2187 
2188 /**
2189  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2190  * @c: UBIFS file-system description object
2191  * @key: key to add
2192  * @old_lnum: LEB number of old node
2193  * @old_offs: old node offset
2194  * @lnum: LEB number of node
2195  * @offs: node offset
2196  * @len: node length
2197  *
2198  * This function replaces a node with key @key in the TNC only if the old node
2199  * is found.  This function is called by garbage collection when node are moved.
2200  * Returns %0 on success or negative error code on failure.
2201  */
ubifs_tnc_replace(struct ubifs_info * c,const union ubifs_key * key,int old_lnum,int old_offs,int lnum,int offs,int len)2202 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2203 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2204 {
2205 	int found, n, err = 0;
2206 	struct ubifs_znode *znode;
2207 
2208 	mutex_lock(&c->tnc_mutex);
2209 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2210 		 old_offs, lnum, offs, len);
2211 	found = lookup_level0_dirty(c, key, &znode, &n);
2212 	if (found < 0) {
2213 		err = found;
2214 		goto out_unlock;
2215 	}
2216 
2217 	if (found == 1) {
2218 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2219 
2220 		found = 0;
2221 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2222 			lnc_free(zbr);
2223 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2224 			if (err)
2225 				goto out_unlock;
2226 			zbr->lnum = lnum;
2227 			zbr->offs = offs;
2228 			zbr->len = len;
2229 			found = 1;
2230 		} else if (is_hash_key(c, key)) {
2231 			found = resolve_collision_directly(c, key, &znode, &n,
2232 							   old_lnum, old_offs);
2233 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2234 				found, znode, n, old_lnum, old_offs);
2235 			if (found < 0) {
2236 				err = found;
2237 				goto out_unlock;
2238 			}
2239 
2240 			if (found) {
2241 				/* Ensure the znode is dirtied */
2242 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2243 					znode = dirty_cow_bottom_up(c, znode);
2244 					if (IS_ERR(znode)) {
2245 						err = PTR_ERR(znode);
2246 						goto out_unlock;
2247 					}
2248 				}
2249 				zbr = &znode->zbranch[n];
2250 				lnc_free(zbr);
2251 				err = ubifs_add_dirt(c, zbr->lnum,
2252 						     zbr->len);
2253 				if (err)
2254 					goto out_unlock;
2255 				zbr->lnum = lnum;
2256 				zbr->offs = offs;
2257 				zbr->len = len;
2258 			}
2259 		}
2260 	}
2261 
2262 	if (!found)
2263 		err = ubifs_add_dirt(c, lnum, len);
2264 
2265 	if (!err)
2266 		err = dbg_check_tnc(c, 0);
2267 
2268 out_unlock:
2269 	mutex_unlock(&c->tnc_mutex);
2270 	return err;
2271 }
2272 
2273 /**
2274  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2275  * @c: UBIFS file-system description object
2276  * @key: key to add
2277  * @lnum: LEB number of node
2278  * @offs: node offset
2279  * @len: node length
2280  * @nm: node name
2281  *
2282  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2283  * may have collisions, like directory entry keys.
2284  */
ubifs_tnc_add_nm(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len,const struct qstr * nm)2285 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2286 		     int lnum, int offs, int len, const struct qstr *nm)
2287 {
2288 	int found, n, err = 0;
2289 	struct ubifs_znode *znode;
2290 
2291 	mutex_lock(&c->tnc_mutex);
2292 	dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2293 		 lnum, offs, nm->len, nm->name);
2294 	found = lookup_level0_dirty(c, key, &znode, &n);
2295 	if (found < 0) {
2296 		err = found;
2297 		goto out_unlock;
2298 	}
2299 
2300 	if (found == 1) {
2301 		if (c->replaying)
2302 			found = fallible_resolve_collision(c, key, &znode, &n,
2303 							   nm, 1);
2304 		else
2305 			found = resolve_collision(c, key, &znode, &n, nm);
2306 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2307 		if (found < 0) {
2308 			err = found;
2309 			goto out_unlock;
2310 		}
2311 
2312 		/* Ensure the znode is dirtied */
2313 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2314 			znode = dirty_cow_bottom_up(c, znode);
2315 			if (IS_ERR(znode)) {
2316 				err = PTR_ERR(znode);
2317 				goto out_unlock;
2318 			}
2319 		}
2320 
2321 		if (found == 1) {
2322 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2323 
2324 			lnc_free(zbr);
2325 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2326 			zbr->lnum = lnum;
2327 			zbr->offs = offs;
2328 			zbr->len = len;
2329 			goto out_unlock;
2330 		}
2331 	}
2332 
2333 	if (!found) {
2334 		struct ubifs_zbranch zbr;
2335 
2336 		zbr.znode = NULL;
2337 		zbr.lnum = lnum;
2338 		zbr.offs = offs;
2339 		zbr.len = len;
2340 		key_copy(c, key, &zbr.key);
2341 		err = tnc_insert(c, znode, &zbr, n + 1);
2342 		if (err)
2343 			goto out_unlock;
2344 		if (c->replaying) {
2345 			/*
2346 			 * We did not find it in the index so there may be a
2347 			 * dangling branch still in the index. So we remove it
2348 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2349 			 * an unmatchable name.
2350 			 */
2351 			struct qstr noname = { .name = "" };
2352 
2353 			err = dbg_check_tnc(c, 0);
2354 			mutex_unlock(&c->tnc_mutex);
2355 			if (err)
2356 				return err;
2357 			return ubifs_tnc_remove_nm(c, key, &noname);
2358 		}
2359 	}
2360 
2361 out_unlock:
2362 	if (!err)
2363 		err = dbg_check_tnc(c, 0);
2364 	mutex_unlock(&c->tnc_mutex);
2365 	return err;
2366 }
2367 
2368 /**
2369  * tnc_delete - delete a znode form TNC.
2370  * @c: UBIFS file-system description object
2371  * @znode: znode to delete from
2372  * @n: zbranch slot number to delete
2373  *
2374  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2375  * case of success and a negative error code in case of failure.
2376  */
tnc_delete(struct ubifs_info * c,struct ubifs_znode * znode,int n)2377 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2378 {
2379 	struct ubifs_zbranch *zbr;
2380 	struct ubifs_znode *zp;
2381 	int i, err;
2382 
2383 	/* Delete without merge for now */
2384 	ubifs_assert(znode->level == 0);
2385 	ubifs_assert(n >= 0 && n < c->fanout);
2386 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2387 
2388 	zbr = &znode->zbranch[n];
2389 	lnc_free(zbr);
2390 
2391 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2392 	if (err) {
2393 		ubifs_dump_znode(c, znode);
2394 		return err;
2395 	}
2396 
2397 	/* We do not "gap" zbranch slots */
2398 	for (i = n; i < znode->child_cnt - 1; i++)
2399 		znode->zbranch[i] = znode->zbranch[i + 1];
2400 	znode->child_cnt -= 1;
2401 
2402 	if (znode->child_cnt > 0)
2403 		return 0;
2404 
2405 	/*
2406 	 * This was the last zbranch, we have to delete this znode from the
2407 	 * parent.
2408 	 */
2409 
2410 	do {
2411 		ubifs_assert(!ubifs_zn_obsolete(znode));
2412 		ubifs_assert(ubifs_zn_dirty(znode));
2413 
2414 		zp = znode->parent;
2415 		n = znode->iip;
2416 
2417 		atomic_long_dec(&c->dirty_zn_cnt);
2418 
2419 		err = insert_old_idx_znode(c, znode);
2420 		if (err)
2421 			return err;
2422 
2423 		if (znode->cnext) {
2424 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2425 			atomic_long_inc(&c->clean_zn_cnt);
2426 			atomic_long_inc(&ubifs_clean_zn_cnt);
2427 		} else
2428 			kfree(znode);
2429 		znode = zp;
2430 	} while (znode->child_cnt == 1); /* while removing last child */
2431 
2432 	/* Remove from znode, entry n - 1 */
2433 	znode->child_cnt -= 1;
2434 	ubifs_assert(znode->level != 0);
2435 	for (i = n; i < znode->child_cnt; i++) {
2436 		znode->zbranch[i] = znode->zbranch[i + 1];
2437 		if (znode->zbranch[i].znode)
2438 			znode->zbranch[i].znode->iip = i;
2439 	}
2440 
2441 	/*
2442 	 * If this is the root and it has only 1 child then
2443 	 * collapse the tree.
2444 	 */
2445 	if (!znode->parent) {
2446 		while (znode->child_cnt == 1 && znode->level != 0) {
2447 			zp = znode;
2448 			zbr = &znode->zbranch[0];
2449 			znode = get_znode(c, znode, 0);
2450 			if (IS_ERR(znode))
2451 				return PTR_ERR(znode);
2452 			znode = dirty_cow_znode(c, zbr);
2453 			if (IS_ERR(znode))
2454 				return PTR_ERR(znode);
2455 			znode->parent = NULL;
2456 			znode->iip = 0;
2457 			if (c->zroot.len) {
2458 				err = insert_old_idx(c, c->zroot.lnum,
2459 						     c->zroot.offs);
2460 				if (err)
2461 					return err;
2462 			}
2463 			c->zroot.lnum = zbr->lnum;
2464 			c->zroot.offs = zbr->offs;
2465 			c->zroot.len = zbr->len;
2466 			c->zroot.znode = znode;
2467 			ubifs_assert(!ubifs_zn_obsolete(zp));
2468 			ubifs_assert(ubifs_zn_dirty(zp));
2469 			atomic_long_dec(&c->dirty_zn_cnt);
2470 
2471 			if (zp->cnext) {
2472 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2473 				atomic_long_inc(&c->clean_zn_cnt);
2474 				atomic_long_inc(&ubifs_clean_zn_cnt);
2475 			} else
2476 				kfree(zp);
2477 		}
2478 	}
2479 
2480 	return 0;
2481 }
2482 
2483 /**
2484  * ubifs_tnc_remove - remove an index entry of a node.
2485  * @c: UBIFS file-system description object
2486  * @key: key of node
2487  *
2488  * Returns %0 on success or negative error code on failure.
2489  */
ubifs_tnc_remove(struct ubifs_info * c,const union ubifs_key * key)2490 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2491 {
2492 	int found, n, err = 0;
2493 	struct ubifs_znode *znode;
2494 
2495 	mutex_lock(&c->tnc_mutex);
2496 	dbg_tnck(key, "key ");
2497 	found = lookup_level0_dirty(c, key, &znode, &n);
2498 	if (found < 0) {
2499 		err = found;
2500 		goto out_unlock;
2501 	}
2502 	if (found == 1)
2503 		err = tnc_delete(c, znode, n);
2504 	if (!err)
2505 		err = dbg_check_tnc(c, 0);
2506 
2507 out_unlock:
2508 	mutex_unlock(&c->tnc_mutex);
2509 	return err;
2510 }
2511 
2512 /**
2513  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2514  * @c: UBIFS file-system description object
2515  * @key: key of node
2516  * @nm: directory entry name
2517  *
2518  * Returns %0 on success or negative error code on failure.
2519  */
ubifs_tnc_remove_nm(struct ubifs_info * c,const union ubifs_key * key,const struct qstr * nm)2520 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2521 			const struct qstr *nm)
2522 {
2523 	int n, err;
2524 	struct ubifs_znode *znode;
2525 
2526 	mutex_lock(&c->tnc_mutex);
2527 	dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2528 	err = lookup_level0_dirty(c, key, &znode, &n);
2529 	if (err < 0)
2530 		goto out_unlock;
2531 
2532 	if (err) {
2533 		if (c->replaying)
2534 			err = fallible_resolve_collision(c, key, &znode, &n,
2535 							 nm, 0);
2536 		else
2537 			err = resolve_collision(c, key, &znode, &n, nm);
2538 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2539 		if (err < 0)
2540 			goto out_unlock;
2541 		if (err) {
2542 			/* Ensure the znode is dirtied */
2543 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2544 				znode = dirty_cow_bottom_up(c, znode);
2545 				if (IS_ERR(znode)) {
2546 					err = PTR_ERR(znode);
2547 					goto out_unlock;
2548 				}
2549 			}
2550 			err = tnc_delete(c, znode, n);
2551 		}
2552 	}
2553 
2554 out_unlock:
2555 	if (!err)
2556 		err = dbg_check_tnc(c, 0);
2557 	mutex_unlock(&c->tnc_mutex);
2558 	return err;
2559 }
2560 
2561 /**
2562  * key_in_range - determine if a key falls within a range of keys.
2563  * @c: UBIFS file-system description object
2564  * @key: key to check
2565  * @from_key: lowest key in range
2566  * @to_key: highest key in range
2567  *
2568  * This function returns %1 if the key is in range and %0 otherwise.
2569  */
key_in_range(struct ubifs_info * c,union ubifs_key * key,union ubifs_key * from_key,union ubifs_key * to_key)2570 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2571 			union ubifs_key *from_key, union ubifs_key *to_key)
2572 {
2573 	if (keys_cmp(c, key, from_key) < 0)
2574 		return 0;
2575 	if (keys_cmp(c, key, to_key) > 0)
2576 		return 0;
2577 	return 1;
2578 }
2579 
2580 /**
2581  * ubifs_tnc_remove_range - remove index entries in range.
2582  * @c: UBIFS file-system description object
2583  * @from_key: lowest key to remove
2584  * @to_key: highest key to remove
2585  *
2586  * This function removes index entries starting at @from_key and ending at
2587  * @to_key.  This function returns zero in case of success and a negative error
2588  * code in case of failure.
2589  */
ubifs_tnc_remove_range(struct ubifs_info * c,union ubifs_key * from_key,union ubifs_key * to_key)2590 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2591 			   union ubifs_key *to_key)
2592 {
2593 	int i, n, k, err = 0;
2594 	struct ubifs_znode *znode;
2595 	union ubifs_key *key;
2596 
2597 	mutex_lock(&c->tnc_mutex);
2598 	while (1) {
2599 		/* Find first level 0 znode that contains keys to remove */
2600 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2601 		if (err < 0)
2602 			goto out_unlock;
2603 
2604 		if (err)
2605 			key = from_key;
2606 		else {
2607 			err = tnc_next(c, &znode, &n);
2608 			if (err == -ENOENT) {
2609 				err = 0;
2610 				goto out_unlock;
2611 			}
2612 			if (err < 0)
2613 				goto out_unlock;
2614 			key = &znode->zbranch[n].key;
2615 			if (!key_in_range(c, key, from_key, to_key)) {
2616 				err = 0;
2617 				goto out_unlock;
2618 			}
2619 		}
2620 
2621 		/* Ensure the znode is dirtied */
2622 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2623 			znode = dirty_cow_bottom_up(c, znode);
2624 			if (IS_ERR(znode)) {
2625 				err = PTR_ERR(znode);
2626 				goto out_unlock;
2627 			}
2628 		}
2629 
2630 		/* Remove all keys in range except the first */
2631 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2632 			key = &znode->zbranch[i].key;
2633 			if (!key_in_range(c, key, from_key, to_key))
2634 				break;
2635 			lnc_free(&znode->zbranch[i]);
2636 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2637 					     znode->zbranch[i].len);
2638 			if (err) {
2639 				ubifs_dump_znode(c, znode);
2640 				goto out_unlock;
2641 			}
2642 			dbg_tnck(key, "removing key ");
2643 		}
2644 		if (k) {
2645 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2646 				znode->zbranch[i - k] = znode->zbranch[i];
2647 			znode->child_cnt -= k;
2648 		}
2649 
2650 		/* Now delete the first */
2651 		err = tnc_delete(c, znode, n);
2652 		if (err)
2653 			goto out_unlock;
2654 	}
2655 
2656 out_unlock:
2657 	if (!err)
2658 		err = dbg_check_tnc(c, 0);
2659 	mutex_unlock(&c->tnc_mutex);
2660 	return err;
2661 }
2662 
2663 /**
2664  * ubifs_tnc_remove_ino - remove an inode from TNC.
2665  * @c: UBIFS file-system description object
2666  * @inum: inode number to remove
2667  *
2668  * This function remove inode @inum and all the extended attributes associated
2669  * with the anode from TNC and returns zero in case of success or a negative
2670  * error code in case of failure.
2671  */
ubifs_tnc_remove_ino(struct ubifs_info * c,ino_t inum)2672 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2673 {
2674 	union ubifs_key key1, key2;
2675 	struct ubifs_dent_node *xent, *pxent = NULL;
2676 	struct qstr nm = { .name = NULL };
2677 
2678 	dbg_tnc("ino %lu", (unsigned long)inum);
2679 
2680 	/*
2681 	 * Walk all extended attribute entries and remove them together with
2682 	 * corresponding extended attribute inodes.
2683 	 */
2684 	lowest_xent_key(c, &key1, inum);
2685 	while (1) {
2686 		ino_t xattr_inum;
2687 		int err;
2688 
2689 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2690 		if (IS_ERR(xent)) {
2691 			err = PTR_ERR(xent);
2692 			if (err == -ENOENT)
2693 				break;
2694 			return err;
2695 		}
2696 
2697 		xattr_inum = le64_to_cpu(xent->inum);
2698 		dbg_tnc("xent '%s', ino %lu", xent->name,
2699 			(unsigned long)xattr_inum);
2700 
2701 		nm.name = xent->name;
2702 		nm.len = le16_to_cpu(xent->nlen);
2703 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2704 		if (err) {
2705 			kfree(xent);
2706 			return err;
2707 		}
2708 
2709 		lowest_ino_key(c, &key1, xattr_inum);
2710 		highest_ino_key(c, &key2, xattr_inum);
2711 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2712 		if (err) {
2713 			kfree(xent);
2714 			return err;
2715 		}
2716 
2717 		kfree(pxent);
2718 		pxent = xent;
2719 		key_read(c, &xent->key, &key1);
2720 	}
2721 
2722 	kfree(pxent);
2723 	lowest_ino_key(c, &key1, inum);
2724 	highest_ino_key(c, &key2, inum);
2725 
2726 	return ubifs_tnc_remove_range(c, &key1, &key2);
2727 }
2728 
2729 /**
2730  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2731  * @c: UBIFS file-system description object
2732  * @key: key of last entry
2733  * @nm: name of last entry found or %NULL
2734  *
2735  * This function finds and reads the next directory or extended attribute entry
2736  * after the given key (@key) if there is one. @nm is used to resolve
2737  * collisions.
2738  *
2739  * If the name of the current entry is not known and only the key is known,
2740  * @nm->name has to be %NULL. In this case the semantics of this function is a
2741  * little bit different and it returns the entry corresponding to this key, not
2742  * the next one. If the key was not found, the closest "right" entry is
2743  * returned.
2744  *
2745  * If the fist entry has to be found, @key has to contain the lowest possible
2746  * key value for this inode and @name has to be %NULL.
2747  *
2748  * This function returns the found directory or extended attribute entry node
2749  * in case of success, %-ENOENT is returned if no entry was found, and a
2750  * negative error code is returned in case of failure.
2751  */
ubifs_tnc_next_ent(struct ubifs_info * c,union ubifs_key * key,const struct qstr * nm)2752 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2753 					   union ubifs_key *key,
2754 					   const struct qstr *nm)
2755 {
2756 	int n, err, type = key_type(c, key);
2757 	struct ubifs_znode *znode;
2758 	struct ubifs_dent_node *dent;
2759 	struct ubifs_zbranch *zbr;
2760 	union ubifs_key *dkey;
2761 
2762 	dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2763 	ubifs_assert(is_hash_key(c, key));
2764 
2765 	mutex_lock(&c->tnc_mutex);
2766 	err = ubifs_lookup_level0(c, key, &znode, &n);
2767 	if (unlikely(err < 0))
2768 		goto out_unlock;
2769 
2770 	if (nm->name) {
2771 		if (err) {
2772 			/* Handle collisions */
2773 			err = resolve_collision(c, key, &znode, &n, nm);
2774 			dbg_tnc("rc returned %d, znode %p, n %d",
2775 				err, znode, n);
2776 			if (unlikely(err < 0))
2777 				goto out_unlock;
2778 		}
2779 
2780 		/* Now find next entry */
2781 		err = tnc_next(c, &znode, &n);
2782 		if (unlikely(err))
2783 			goto out_unlock;
2784 	} else {
2785 		/*
2786 		 * The full name of the entry was not given, in which case the
2787 		 * behavior of this function is a little different and it
2788 		 * returns current entry, not the next one.
2789 		 */
2790 		if (!err) {
2791 			/*
2792 			 * However, the given key does not exist in the TNC
2793 			 * tree and @znode/@n variables contain the closest
2794 			 * "preceding" element. Switch to the next one.
2795 			 */
2796 			err = tnc_next(c, &znode, &n);
2797 			if (err)
2798 				goto out_unlock;
2799 		}
2800 	}
2801 
2802 	zbr = &znode->zbranch[n];
2803 	dent = kmalloc(zbr->len, GFP_NOFS);
2804 	if (unlikely(!dent)) {
2805 		err = -ENOMEM;
2806 		goto out_unlock;
2807 	}
2808 
2809 	/*
2810 	 * The above 'tnc_next()' call could lead us to the next inode, check
2811 	 * this.
2812 	 */
2813 	dkey = &zbr->key;
2814 	if (key_inum(c, dkey) != key_inum(c, key) ||
2815 	    key_type(c, dkey) != type) {
2816 		err = -ENOENT;
2817 		goto out_free;
2818 	}
2819 
2820 	err = tnc_read_node_nm(c, zbr, dent);
2821 	if (unlikely(err))
2822 		goto out_free;
2823 
2824 	mutex_unlock(&c->tnc_mutex);
2825 	return dent;
2826 
2827 out_free:
2828 	kfree(dent);
2829 out_unlock:
2830 	mutex_unlock(&c->tnc_mutex);
2831 	return ERR_PTR(err);
2832 }
2833 
2834 /**
2835  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2836  * @c: UBIFS file-system description object
2837  *
2838  * Destroy left-over obsolete znodes from a failed commit.
2839  */
tnc_destroy_cnext(struct ubifs_info * c)2840 static void tnc_destroy_cnext(struct ubifs_info *c)
2841 {
2842 	struct ubifs_znode *cnext;
2843 
2844 	if (!c->cnext)
2845 		return;
2846 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2847 	cnext = c->cnext;
2848 	do {
2849 		struct ubifs_znode *znode = cnext;
2850 
2851 		cnext = cnext->cnext;
2852 		if (ubifs_zn_obsolete(znode))
2853 			kfree(znode);
2854 	} while (cnext && cnext != c->cnext);
2855 }
2856 
2857 /**
2858  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2859  * @c: UBIFS file-system description object
2860  */
ubifs_tnc_close(struct ubifs_info * c)2861 void ubifs_tnc_close(struct ubifs_info *c)
2862 {
2863 	tnc_destroy_cnext(c);
2864 	if (c->zroot.znode) {
2865 		long n, freed;
2866 
2867 		n = atomic_long_read(&c->clean_zn_cnt);
2868 		freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2869 		ubifs_assert(freed == n);
2870 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2871 	}
2872 	kfree(c->gap_lebs);
2873 	kfree(c->ilebs);
2874 	destroy_old_idx(c);
2875 }
2876 
2877 /**
2878  * left_znode - get the znode to the left.
2879  * @c: UBIFS file-system description object
2880  * @znode: znode
2881  *
2882  * This function returns a pointer to the znode to the left of @znode or NULL if
2883  * there is not one. A negative error code is returned on failure.
2884  */
left_znode(struct ubifs_info * c,struct ubifs_znode * znode)2885 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2886 				      struct ubifs_znode *znode)
2887 {
2888 	int level = znode->level;
2889 
2890 	while (1) {
2891 		int n = znode->iip - 1;
2892 
2893 		/* Go up until we can go left */
2894 		znode = znode->parent;
2895 		if (!znode)
2896 			return NULL;
2897 		if (n >= 0) {
2898 			/* Now go down the rightmost branch to 'level' */
2899 			znode = get_znode(c, znode, n);
2900 			if (IS_ERR(znode))
2901 				return znode;
2902 			while (znode->level != level) {
2903 				n = znode->child_cnt - 1;
2904 				znode = get_znode(c, znode, n);
2905 				if (IS_ERR(znode))
2906 					return znode;
2907 			}
2908 			break;
2909 		}
2910 	}
2911 	return znode;
2912 }
2913 
2914 /**
2915  * right_znode - get the znode to the right.
2916  * @c: UBIFS file-system description object
2917  * @znode: znode
2918  *
2919  * This function returns a pointer to the znode to the right of @znode or NULL
2920  * if there is not one. A negative error code is returned on failure.
2921  */
right_znode(struct ubifs_info * c,struct ubifs_znode * znode)2922 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2923 				       struct ubifs_znode *znode)
2924 {
2925 	int level = znode->level;
2926 
2927 	while (1) {
2928 		int n = znode->iip + 1;
2929 
2930 		/* Go up until we can go right */
2931 		znode = znode->parent;
2932 		if (!znode)
2933 			return NULL;
2934 		if (n < znode->child_cnt) {
2935 			/* Now go down the leftmost branch to 'level' */
2936 			znode = get_znode(c, znode, n);
2937 			if (IS_ERR(znode))
2938 				return znode;
2939 			while (znode->level != level) {
2940 				znode = get_znode(c, znode, 0);
2941 				if (IS_ERR(znode))
2942 					return znode;
2943 			}
2944 			break;
2945 		}
2946 	}
2947 	return znode;
2948 }
2949 
2950 /**
2951  * lookup_znode - find a particular indexing node from TNC.
2952  * @c: UBIFS file-system description object
2953  * @key: index node key to lookup
2954  * @level: index node level
2955  * @lnum: index node LEB number
2956  * @offs: index node offset
2957  *
2958  * This function searches an indexing node by its first key @key and its
2959  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2960  * nodes it traverses to TNC. This function is called for indexing nodes which
2961  * were found on the media by scanning, for example when garbage-collecting or
2962  * when doing in-the-gaps commit. This means that the indexing node which is
2963  * looked for does not have to have exactly the same leftmost key @key, because
2964  * the leftmost key may have been changed, in which case TNC will contain a
2965  * dirty znode which still refers the same @lnum:@offs. This function is clever
2966  * enough to recognize such indexing nodes.
2967  *
2968  * Note, if a znode was deleted or changed too much, then this function will
2969  * not find it. For situations like this UBIFS has the old index RB-tree
2970  * (indexed by @lnum:@offs).
2971  *
2972  * This function returns a pointer to the znode found or %NULL if it is not
2973  * found. A negative error code is returned on failure.
2974  */
lookup_znode(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)2975 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2976 					union ubifs_key *key, int level,
2977 					int lnum, int offs)
2978 {
2979 	struct ubifs_znode *znode, *zn;
2980 	int n, nn;
2981 
2982 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2983 
2984 	/*
2985 	 * The arguments have probably been read off flash, so don't assume
2986 	 * they are valid.
2987 	 */
2988 	if (level < 0)
2989 		return ERR_PTR(-EINVAL);
2990 
2991 	/* Get the root znode */
2992 	znode = c->zroot.znode;
2993 	if (!znode) {
2994 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2995 		if (IS_ERR(znode))
2996 			return znode;
2997 	}
2998 	/* Check if it is the one we are looking for */
2999 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3000 		return znode;
3001 	/* Descend to the parent level i.e. (level + 1) */
3002 	if (level >= znode->level)
3003 		return NULL;
3004 	while (1) {
3005 		ubifs_search_zbranch(c, znode, key, &n);
3006 		if (n < 0) {
3007 			/*
3008 			 * We reached a znode where the leftmost key is greater
3009 			 * than the key we are searching for. This is the same
3010 			 * situation as the one described in a huge comment at
3011 			 * the end of the 'ubifs_lookup_level0()' function. And
3012 			 * for exactly the same reasons we have to try to look
3013 			 * left before giving up.
3014 			 */
3015 			znode = left_znode(c, znode);
3016 			if (!znode)
3017 				return NULL;
3018 			if (IS_ERR(znode))
3019 				return znode;
3020 			ubifs_search_zbranch(c, znode, key, &n);
3021 			ubifs_assert(n >= 0);
3022 		}
3023 		if (znode->level == level + 1)
3024 			break;
3025 		znode = get_znode(c, znode, n);
3026 		if (IS_ERR(znode))
3027 			return znode;
3028 	}
3029 	/* Check if the child is the one we are looking for */
3030 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3031 		return get_znode(c, znode, n);
3032 	/* If the key is unique, there is nowhere else to look */
3033 	if (!is_hash_key(c, key))
3034 		return NULL;
3035 	/*
3036 	 * The key is not unique and so may be also in the znodes to either
3037 	 * side.
3038 	 */
3039 	zn = znode;
3040 	nn = n;
3041 	/* Look left */
3042 	while (1) {
3043 		/* Move one branch to the left */
3044 		if (n)
3045 			n -= 1;
3046 		else {
3047 			znode = left_znode(c, znode);
3048 			if (!znode)
3049 				break;
3050 			if (IS_ERR(znode))
3051 				return znode;
3052 			n = znode->child_cnt - 1;
3053 		}
3054 		/* Check it */
3055 		if (znode->zbranch[n].lnum == lnum &&
3056 		    znode->zbranch[n].offs == offs)
3057 			return get_znode(c, znode, n);
3058 		/* Stop if the key is less than the one we are looking for */
3059 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3060 			break;
3061 	}
3062 	/* Back to the middle */
3063 	znode = zn;
3064 	n = nn;
3065 	/* Look right */
3066 	while (1) {
3067 		/* Move one branch to the right */
3068 		if (++n >= znode->child_cnt) {
3069 			znode = right_znode(c, znode);
3070 			if (!znode)
3071 				break;
3072 			if (IS_ERR(znode))
3073 				return znode;
3074 			n = 0;
3075 		}
3076 		/* Check it */
3077 		if (znode->zbranch[n].lnum == lnum &&
3078 		    znode->zbranch[n].offs == offs)
3079 			return get_znode(c, znode, n);
3080 		/* Stop if the key is greater than the one we are looking for */
3081 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3082 			break;
3083 	}
3084 	return NULL;
3085 }
3086 
3087 /**
3088  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3089  * @c: UBIFS file-system description object
3090  * @key: key of index node
3091  * @level: index node level
3092  * @lnum: LEB number of index node
3093  * @offs: offset of index node
3094  *
3095  * This function returns %0 if the index node is not referred to in the TNC, %1
3096  * if the index node is referred to in the TNC and the corresponding znode is
3097  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3098  * znode is clean, and a negative error code in case of failure.
3099  *
3100  * Note, the @key argument has to be the key of the first child. Also note,
3101  * this function relies on the fact that 0:0 is never a valid LEB number and
3102  * offset for a main-area node.
3103  */
is_idx_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3104 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3105 		       int lnum, int offs)
3106 {
3107 	struct ubifs_znode *znode;
3108 
3109 	znode = lookup_znode(c, key, level, lnum, offs);
3110 	if (!znode)
3111 		return 0;
3112 	if (IS_ERR(znode))
3113 		return PTR_ERR(znode);
3114 
3115 	return ubifs_zn_dirty(znode) ? 1 : 2;
3116 }
3117 
3118 /**
3119  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3120  * @c: UBIFS file-system description object
3121  * @key: node key
3122  * @lnum: node LEB number
3123  * @offs: node offset
3124  *
3125  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3126  * not, and a negative error code in case of failure.
3127  *
3128  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3129  * and offset for a main-area node.
3130  */
is_leaf_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int lnum,int offs)3131 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3132 			       int lnum, int offs)
3133 {
3134 	struct ubifs_zbranch *zbr;
3135 	struct ubifs_znode *znode, *zn;
3136 	int n, found, err, nn;
3137 	const int unique = !is_hash_key(c, key);
3138 
3139 	found = ubifs_lookup_level0(c, key, &znode, &n);
3140 	if (found < 0)
3141 		return found; /* Error code */
3142 	if (!found)
3143 		return 0;
3144 	zbr = &znode->zbranch[n];
3145 	if (lnum == zbr->lnum && offs == zbr->offs)
3146 		return 1; /* Found it */
3147 	if (unique)
3148 		return 0;
3149 	/*
3150 	 * Because the key is not unique, we have to look left
3151 	 * and right as well
3152 	 */
3153 	zn = znode;
3154 	nn = n;
3155 	/* Look left */
3156 	while (1) {
3157 		err = tnc_prev(c, &znode, &n);
3158 		if (err == -ENOENT)
3159 			break;
3160 		if (err)
3161 			return err;
3162 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3163 			break;
3164 		zbr = &znode->zbranch[n];
3165 		if (lnum == zbr->lnum && offs == zbr->offs)
3166 			return 1; /* Found it */
3167 	}
3168 	/* Look right */
3169 	znode = zn;
3170 	n = nn;
3171 	while (1) {
3172 		err = tnc_next(c, &znode, &n);
3173 		if (err) {
3174 			if (err == -ENOENT)
3175 				return 0;
3176 			return err;
3177 		}
3178 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3179 			break;
3180 		zbr = &znode->zbranch[n];
3181 		if (lnum == zbr->lnum && offs == zbr->offs)
3182 			return 1; /* Found it */
3183 	}
3184 	return 0;
3185 }
3186 
3187 /**
3188  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3189  * @c: UBIFS file-system description object
3190  * @key: node key
3191  * @level: index node level (if it is an index node)
3192  * @lnum: node LEB number
3193  * @offs: node offset
3194  * @is_idx: non-zero if the node is an index node
3195  *
3196  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3197  * negative error code in case of failure. For index nodes, @key has to be the
3198  * key of the first child. An index node is considered to be in the TNC only if
3199  * the corresponding znode is clean or has not been loaded.
3200  */
ubifs_tnc_has_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs,int is_idx)3201 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3202 		       int lnum, int offs, int is_idx)
3203 {
3204 	int err;
3205 
3206 	mutex_lock(&c->tnc_mutex);
3207 	if (is_idx) {
3208 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3209 		if (err < 0)
3210 			goto out_unlock;
3211 		if (err == 1)
3212 			/* The index node was found but it was dirty */
3213 			err = 0;
3214 		else if (err == 2)
3215 			/* The index node was found and it was clean */
3216 			err = 1;
3217 		else
3218 			BUG_ON(err != 0);
3219 	} else
3220 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3221 
3222 out_unlock:
3223 	mutex_unlock(&c->tnc_mutex);
3224 	return err;
3225 }
3226 
3227 /**
3228  * ubifs_dirty_idx_node - dirty an index node.
3229  * @c: UBIFS file-system description object
3230  * @key: index node key
3231  * @level: index node level
3232  * @lnum: index node LEB number
3233  * @offs: index node offset
3234  *
3235  * This function loads and dirties an index node so that it can be garbage
3236  * collected. The @key argument has to be the key of the first child. This
3237  * function relies on the fact that 0:0 is never a valid LEB number and offset
3238  * for a main-area node. Returns %0 on success and a negative error code on
3239  * failure.
3240  */
ubifs_dirty_idx_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3241 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3242 			 int lnum, int offs)
3243 {
3244 	struct ubifs_znode *znode;
3245 	int err = 0;
3246 
3247 	mutex_lock(&c->tnc_mutex);
3248 	znode = lookup_znode(c, key, level, lnum, offs);
3249 	if (!znode)
3250 		goto out_unlock;
3251 	if (IS_ERR(znode)) {
3252 		err = PTR_ERR(znode);
3253 		goto out_unlock;
3254 	}
3255 	znode = dirty_cow_bottom_up(c, znode);
3256 	if (IS_ERR(znode)) {
3257 		err = PTR_ERR(znode);
3258 		goto out_unlock;
3259 	}
3260 
3261 out_unlock:
3262 	mutex_unlock(&c->tnc_mutex);
3263 	return err;
3264 }
3265 
3266 /**
3267  * dbg_check_inode_size - check if inode size is correct.
3268  * @c: UBIFS file-system description object
3269  * @inum: inode number
3270  * @size: inode size
3271  *
3272  * This function makes sure that the inode size (@size) is correct and it does
3273  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3274  * if it has a data page beyond @size, and other negative error code in case of
3275  * other errors.
3276  */
dbg_check_inode_size(struct ubifs_info * c,const struct inode * inode,loff_t size)3277 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3278 			 loff_t size)
3279 {
3280 	int err, n;
3281 	union ubifs_key from_key, to_key, *key;
3282 	struct ubifs_znode *znode;
3283 	unsigned int block;
3284 
3285 	if (!S_ISREG(inode->i_mode))
3286 		return 0;
3287 	if (!dbg_is_chk_gen(c))
3288 		return 0;
3289 
3290 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3291 	data_key_init(c, &from_key, inode->i_ino, block);
3292 	highest_data_key(c, &to_key, inode->i_ino);
3293 
3294 	mutex_lock(&c->tnc_mutex);
3295 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3296 	if (err < 0)
3297 		goto out_unlock;
3298 
3299 	if (err) {
3300 		key = &from_key;
3301 		goto out_dump;
3302 	}
3303 
3304 	err = tnc_next(c, &znode, &n);
3305 	if (err == -ENOENT) {
3306 		err = 0;
3307 		goto out_unlock;
3308 	}
3309 	if (err < 0)
3310 		goto out_unlock;
3311 
3312 	ubifs_assert(err == 0);
3313 	key = &znode->zbranch[n].key;
3314 	if (!key_in_range(c, key, &from_key, &to_key))
3315 		goto out_unlock;
3316 
3317 out_dump:
3318 	block = key_block(c, key);
3319 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3320 		  (unsigned long)inode->i_ino, size,
3321 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3322 	mutex_unlock(&c->tnc_mutex);
3323 	ubifs_dump_inode(c, inode);
3324 	dump_stack();
3325 	return -EINVAL;
3326 
3327 out_unlock:
3328 	mutex_unlock(&c->tnc_mutex);
3329 	return err;
3330 }
3331