1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Chromium OS cros_ec driver
4 *
5 * Copyright (c) 2012 The Chromium OS Authors.
6 */
7
8 /*
9 * This is the interface to the Chrome OS EC. It provides keyboard functions,
10 * power control and battery management. Quite a few other functions are
11 * provided to enable the EC software to be updated, talk to the EC's I2C bus
12 * and store a small amount of data in a memory which persists while the EC
13 * is not reset.
14 */
15
16 #define LOG_CATEGORY UCLASS_CROS_EC
17
18 #include <common.h>
19 #include <command.h>
20 #include <dm.h>
21 #include <flash.h>
22 #include <i2c.h>
23 #include <cros_ec.h>
24 #include <fdtdec.h>
25 #include <log.h>
26 #include <malloc.h>
27 #include <spi.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <asm/io.h>
31 #include <asm-generic/gpio.h>
32 #include <dm/device-internal.h>
33 #include <dm/of_extra.h>
34 #include <dm/uclass-internal.h>
35
36 #ifdef DEBUG_TRACE
37 #define debug_trace(fmt, b...) debug(fmt, #b)
38 #else
39 #define debug_trace(fmt, b...)
40 #endif
41
42 enum {
43 /* Timeout waiting for a flash erase command to complete */
44 CROS_EC_CMD_TIMEOUT_MS = 5000,
45 /* Timeout waiting for a synchronous hash to be recomputed */
46 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
47
48 /* Wait 10 ms between attempts to check if EC's hash is ready */
49 CROS_EC_HASH_CHECK_DELAY_MS = 10,
50
51 };
52
53 #define INVALID_HCMD 0xFF
54
55 /*
56 * Map UHEPI masks to non UHEPI commands in order to support old EC FW
57 * which does not support UHEPI command.
58 */
59 static const struct {
60 u8 set_cmd;
61 u8 clear_cmd;
62 u8 get_cmd;
63 } event_map[] = {
64 [EC_HOST_EVENT_MAIN] = {
65 INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR,
66 INVALID_HCMD,
67 },
68 [EC_HOST_EVENT_B] = {
69 INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B,
70 EC_CMD_HOST_EVENT_GET_B,
71 },
72 [EC_HOST_EVENT_SCI_MASK] = {
73 EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD,
74 EC_CMD_HOST_EVENT_GET_SCI_MASK,
75 },
76 [EC_HOST_EVENT_SMI_MASK] = {
77 EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD,
78 EC_CMD_HOST_EVENT_GET_SMI_MASK,
79 },
80 [EC_HOST_EVENT_ALWAYS_REPORT_MASK] = {
81 INVALID_HCMD, INVALID_HCMD, INVALID_HCMD,
82 },
83 [EC_HOST_EVENT_ACTIVE_WAKE_MASK] = {
84 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
85 EC_CMD_HOST_EVENT_GET_WAKE_MASK,
86 },
87 [EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = {
88 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
89 EC_CMD_HOST_EVENT_GET_WAKE_MASK,
90 },
91 [EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = {
92 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
93 EC_CMD_HOST_EVENT_GET_WAKE_MASK,
94 },
95 [EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = {
96 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
97 EC_CMD_HOST_EVENT_GET_WAKE_MASK,
98 },
99 };
100
cros_ec_dump_data(const char * name,int cmd,const uint8_t * data,int len)101 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
102 {
103 #ifdef DEBUG
104 int i;
105
106 printf("%s: ", name);
107 if (cmd != -1)
108 printf("cmd=%#x: ", cmd);
109 for (i = 0; i < len; i++)
110 printf("%02x ", data[i]);
111 printf("\n");
112 #endif
113 }
114
115 /*
116 * Calculate a simple 8-bit checksum of a data block
117 *
118 * @param data Data block to checksum
119 * @param size Size of data block in bytes
120 * @return checksum value (0 to 255)
121 */
cros_ec_calc_checksum(const uint8_t * data,int size)122 int cros_ec_calc_checksum(const uint8_t *data, int size)
123 {
124 int csum, i;
125
126 for (i = csum = 0; i < size; i++)
127 csum += data[i];
128 return csum & 0xff;
129 }
130
131 /**
132 * Create a request packet for protocol version 3.
133 *
134 * The packet is stored in the device's internal output buffer.
135 *
136 * @param dev CROS-EC device
137 * @param cmd Command to send (EC_CMD_...)
138 * @param cmd_version Version of command to send (EC_VER_...)
139 * @param dout Output data (may be NULL If dout_len=0)
140 * @param dout_len Size of output data in bytes
141 * @return packet size in bytes, or <0 if error.
142 */
create_proto3_request(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len)143 static int create_proto3_request(struct cros_ec_dev *cdev,
144 int cmd, int cmd_version,
145 const void *dout, int dout_len)
146 {
147 struct ec_host_request *rq = (struct ec_host_request *)cdev->dout;
148 int out_bytes = dout_len + sizeof(*rq);
149
150 /* Fail if output size is too big */
151 if (out_bytes > (int)sizeof(cdev->dout)) {
152 debug("%s: Cannot send %d bytes\n", __func__, dout_len);
153 return -EC_RES_REQUEST_TRUNCATED;
154 }
155
156 /* Fill in request packet */
157 rq->struct_version = EC_HOST_REQUEST_VERSION;
158 rq->checksum = 0;
159 rq->command = cmd;
160 rq->command_version = cmd_version;
161 rq->reserved = 0;
162 rq->data_len = dout_len;
163
164 /* Copy data after header */
165 memcpy(rq + 1, dout, dout_len);
166
167 /* Write checksum field so the entire packet sums to 0 */
168 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes));
169
170 cros_ec_dump_data("out", cmd, cdev->dout, out_bytes);
171
172 /* Return size of request packet */
173 return out_bytes;
174 }
175
176 /**
177 * Prepare the device to receive a protocol version 3 response.
178 *
179 * @param dev CROS-EC device
180 * @param din_len Maximum size of response in bytes
181 * @return maximum expected number of bytes in response, or <0 if error.
182 */
prepare_proto3_response_buffer(struct cros_ec_dev * cdev,int din_len)183 static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len)
184 {
185 int in_bytes = din_len + sizeof(struct ec_host_response);
186
187 /* Fail if input size is too big */
188 if (in_bytes > (int)sizeof(cdev->din)) {
189 debug("%s: Cannot receive %d bytes\n", __func__, din_len);
190 return -EC_RES_RESPONSE_TOO_BIG;
191 }
192
193 /* Return expected size of response packet */
194 return in_bytes;
195 }
196
197 /**
198 * Handle a protocol version 3 response packet.
199 *
200 * The packet must already be stored in the device's internal input buffer.
201 *
202 * @param dev CROS-EC device
203 * @param dinp Returns pointer to response data
204 * @param din_len Maximum size of response in bytes
205 * @return number of bytes of response data, or <0 if error. Note that error
206 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
207 * overlap!)
208 */
handle_proto3_response(struct cros_ec_dev * dev,uint8_t ** dinp,int din_len)209 static int handle_proto3_response(struct cros_ec_dev *dev,
210 uint8_t **dinp, int din_len)
211 {
212 struct ec_host_response *rs = (struct ec_host_response *)dev->din;
213 int in_bytes;
214 int csum;
215
216 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
217
218 /* Check input data */
219 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
220 debug("%s: EC response version mismatch\n", __func__);
221 return -EC_RES_INVALID_RESPONSE;
222 }
223
224 if (rs->reserved) {
225 debug("%s: EC response reserved != 0\n", __func__);
226 return -EC_RES_INVALID_RESPONSE;
227 }
228
229 if (rs->data_len > din_len) {
230 debug("%s: EC returned too much data\n", __func__);
231 return -EC_RES_RESPONSE_TOO_BIG;
232 }
233
234 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
235
236 /* Update in_bytes to actual data size */
237 in_bytes = sizeof(*rs) + rs->data_len;
238
239 /* Verify checksum */
240 csum = cros_ec_calc_checksum(dev->din, in_bytes);
241 if (csum) {
242 debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
243 csum);
244 return -EC_RES_INVALID_CHECKSUM;
245 }
246
247 /* Return error result, if any */
248 if (rs->result)
249 return -(int)rs->result;
250
251 /* If we're still here, set response data pointer and return length */
252 *dinp = (uint8_t *)(rs + 1);
253
254 return rs->data_len;
255 }
256
send_command_proto3(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)257 static int send_command_proto3(struct cros_ec_dev *cdev,
258 int cmd, int cmd_version,
259 const void *dout, int dout_len,
260 uint8_t **dinp, int din_len)
261 {
262 struct dm_cros_ec_ops *ops;
263 int out_bytes, in_bytes;
264 int rv;
265
266 /* Create request packet */
267 out_bytes = create_proto3_request(cdev, cmd, cmd_version,
268 dout, dout_len);
269 if (out_bytes < 0)
270 return out_bytes;
271
272 /* Prepare response buffer */
273 in_bytes = prepare_proto3_response_buffer(cdev, din_len);
274 if (in_bytes < 0)
275 return in_bytes;
276
277 ops = dm_cros_ec_get_ops(cdev->dev);
278 rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) :
279 -ENOSYS;
280 if (rv < 0)
281 return rv;
282
283 /* Process the response */
284 return handle_proto3_response(cdev, dinp, din_len);
285 }
286
send_command(struct cros_ec_dev * dev,uint cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)287 static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version,
288 const void *dout, int dout_len,
289 uint8_t **dinp, int din_len)
290 {
291 struct dm_cros_ec_ops *ops;
292 int ret = -1;
293
294 /* Handle protocol version 3 support */
295 if (dev->protocol_version == 3) {
296 return send_command_proto3(dev, cmd, cmd_version,
297 dout, dout_len, dinp, din_len);
298 }
299
300 ops = dm_cros_ec_get_ops(dev->dev);
301 ret = ops->command(dev->dev, cmd, cmd_version,
302 (const uint8_t *)dout, dout_len, dinp, din_len);
303
304 return ret;
305 }
306
307 /**
308 * Send a command to the CROS-EC device and return the reply.
309 *
310 * The device's internal input/output buffers are used.
311 *
312 * @param dev CROS-EC device
313 * @param cmd Command to send (EC_CMD_...)
314 * @param cmd_version Version of command to send (EC_VER_...)
315 * @param dout Output data (may be NULL If dout_len=0)
316 * @param dout_len Size of output data in bytes
317 * @param dinp Response data (may be NULL If din_len=0).
318 * If not NULL, it will be updated to point to the data
319 * and will always be double word aligned (64-bits)
320 * @param din_len Maximum size of response in bytes
321 * @return number of bytes in response, or -ve on error
322 */
ec_command_inptr(struct udevice * dev,uint cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)323 static int ec_command_inptr(struct udevice *dev, uint cmd,
324 int cmd_version, const void *dout, int dout_len,
325 uint8_t **dinp, int din_len)
326 {
327 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
328 uint8_t *din = NULL;
329 int len;
330
331 len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din,
332 din_len);
333
334 /* If the command doesn't complete, wait a while */
335 if (len == -EC_RES_IN_PROGRESS) {
336 struct ec_response_get_comms_status *resp = NULL;
337 ulong start;
338
339 /* Wait for command to complete */
340 start = get_timer(0);
341 do {
342 int ret;
343
344 mdelay(50); /* Insert some reasonable delay */
345 ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0,
346 NULL, 0,
347 (uint8_t **)&resp, sizeof(*resp));
348 if (ret < 0)
349 return ret;
350
351 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
352 debug("%s: Command %#02x timeout\n",
353 __func__, cmd);
354 return -EC_RES_TIMEOUT;
355 }
356 } while (resp->flags & EC_COMMS_STATUS_PROCESSING);
357
358 /* OK it completed, so read the status response */
359 /* not sure why it was 0 for the last argument */
360 len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0,
361 &din, din_len);
362 }
363
364 debug("%s: len=%d, din=%p\n", __func__, len, din);
365 if (dinp) {
366 /* If we have any data to return, it must be 64bit-aligned */
367 assert(len <= 0 || !((uintptr_t)din & 7));
368 *dinp = din;
369 }
370
371 return len;
372 }
373
374 /**
375 * Send a command to the CROS-EC device and return the reply.
376 *
377 * The device's internal input/output buffers are used.
378 *
379 * @param dev CROS-EC device
380 * @param cmd Command to send (EC_CMD_...)
381 * @param cmd_version Version of command to send (EC_VER_...)
382 * @param dout Output data (may be NULL If dout_len=0)
383 * @param dout_len Size of output data in bytes
384 * @param din Response data (may be NULL If din_len=0).
385 * It not NULL, it is a place for ec_command() to copy the
386 * data to.
387 * @param din_len Maximum size of response in bytes
388 * @return number of bytes in response, or -ve on error
389 */
ec_command(struct udevice * dev,uint cmd,int cmd_version,const void * dout,int dout_len,void * din,int din_len)390 static int ec_command(struct udevice *dev, uint cmd, int cmd_version,
391 const void *dout, int dout_len,
392 void *din, int din_len)
393 {
394 uint8_t *in_buffer;
395 int len;
396
397 assert((din_len == 0) || din);
398 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
399 &in_buffer, din_len);
400 if (len > 0) {
401 /*
402 * If we were asked to put it somewhere, do so, otherwise just
403 * disregard the result.
404 */
405 if (din && in_buffer) {
406 assert(len <= din_len);
407 if (len > din_len)
408 return -ENOSPC;
409 memmove(din, in_buffer, len);
410 }
411 }
412 return len;
413 }
414
cros_ec_scan_keyboard(struct udevice * dev,struct mbkp_keyscan * scan)415 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan)
416 {
417 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
418 sizeof(scan->data)) != sizeof(scan->data))
419 return -1;
420
421 return 0;
422 }
423
cros_ec_get_next_event(struct udevice * dev,struct ec_response_get_next_event * event)424 int cros_ec_get_next_event(struct udevice *dev,
425 struct ec_response_get_next_event *event)
426 {
427 int ret;
428
429 ret = ec_command(dev, EC_CMD_GET_NEXT_EVENT, 0, NULL, 0,
430 event, sizeof(*event));
431 if (ret < 0)
432 return ret;
433 else if (ret != sizeof(*event))
434 return -EC_RES_INVALID_RESPONSE;
435
436 return 0;
437 }
438
cros_ec_read_id(struct udevice * dev,char * id,int maxlen)439 int cros_ec_read_id(struct udevice *dev, char *id, int maxlen)
440 {
441 struct ec_response_get_version *r;
442 int ret;
443
444 ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
445 (uint8_t **)&r, sizeof(*r));
446 if (ret != sizeof(*r)) {
447 log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r));
448 return -1;
449 }
450
451 if (maxlen > (int)sizeof(r->version_string_ro))
452 maxlen = sizeof(r->version_string_ro);
453
454 switch (r->current_image) {
455 case EC_IMAGE_RO:
456 memcpy(id, r->version_string_ro, maxlen);
457 break;
458 case EC_IMAGE_RW:
459 memcpy(id, r->version_string_rw, maxlen);
460 break;
461 default:
462 log_err("Invalid EC image %d\n", r->current_image);
463 return -1;
464 }
465
466 id[maxlen - 1] = '\0';
467 return 0;
468 }
469
cros_ec_read_version(struct udevice * dev,struct ec_response_get_version ** versionp)470 int cros_ec_read_version(struct udevice *dev,
471 struct ec_response_get_version **versionp)
472 {
473 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
474 (uint8_t **)versionp, sizeof(**versionp))
475 != sizeof(**versionp))
476 return -1;
477
478 return 0;
479 }
480
cros_ec_read_build_info(struct udevice * dev,char ** strp)481 int cros_ec_read_build_info(struct udevice *dev, char **strp)
482 {
483 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
484 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
485 return -1;
486
487 return 0;
488 }
489
cros_ec_read_current_image(struct udevice * dev,enum ec_current_image * image)490 int cros_ec_read_current_image(struct udevice *dev,
491 enum ec_current_image *image)
492 {
493 struct ec_response_get_version *r;
494
495 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
496 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
497 return -1;
498
499 *image = r->current_image;
500 return 0;
501 }
502
cros_ec_wait_on_hash_done(struct udevice * dev,struct ec_params_vboot_hash * p,struct ec_response_vboot_hash * hash)503 static int cros_ec_wait_on_hash_done(struct udevice *dev,
504 struct ec_params_vboot_hash *p,
505 struct ec_response_vboot_hash *hash)
506 {
507 ulong start;
508
509 start = get_timer(0);
510 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
511 mdelay(CROS_EC_HASH_CHECK_DELAY_MS);
512
513 p->cmd = EC_VBOOT_HASH_GET;
514
515 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, p, sizeof(*p), hash,
516 sizeof(*hash)) < 0)
517 return -1;
518
519 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
520 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
521 return -EC_RES_TIMEOUT;
522 }
523 }
524 return 0;
525 }
526
cros_ec_read_hash(struct udevice * dev,uint hash_offset,struct ec_response_vboot_hash * hash)527 int cros_ec_read_hash(struct udevice *dev, uint hash_offset,
528 struct ec_response_vboot_hash *hash)
529 {
530 struct ec_params_vboot_hash p;
531 int rv;
532
533 p.cmd = EC_VBOOT_HASH_GET;
534 p.offset = hash_offset;
535 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
536 hash, sizeof(*hash)) < 0)
537 return -1;
538
539 /* If the EC is busy calculating the hash, fidget until it's done. */
540 rv = cros_ec_wait_on_hash_done(dev, &p, hash);
541 if (rv)
542 return rv;
543
544 /* If the hash is valid, we're done. Otherwise, we have to kick it off
545 * again and wait for it to complete. Note that we explicitly assume
546 * that hashing zero bytes is always wrong, even though that would
547 * produce a valid hash value. */
548 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
549 return 0;
550
551 debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
552 __func__, hash->status, hash->size);
553
554 p.cmd = EC_VBOOT_HASH_START;
555 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
556 p.nonce_size = 0;
557 p.offset = hash_offset;
558
559 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
560 hash, sizeof(*hash)) < 0)
561 return -1;
562
563 rv = cros_ec_wait_on_hash_done(dev, &p, hash);
564 if (rv)
565 return rv;
566 if (hash->status != EC_VBOOT_HASH_STATUS_DONE) {
567 log_err("Hash did not complete, status=%d\n", hash->status);
568 return -EIO;
569 }
570
571 debug("%s: hash done\n", __func__);
572
573 return 0;
574 }
575
cros_ec_invalidate_hash(struct udevice * dev)576 static int cros_ec_invalidate_hash(struct udevice *dev)
577 {
578 struct ec_params_vboot_hash p;
579 struct ec_response_vboot_hash *hash;
580
581 /* We don't have an explict command for the EC to discard its current
582 * hash value, so we'll just tell it to calculate one that we know is
583 * wrong (we claim that hashing zero bytes is always invalid).
584 */
585 p.cmd = EC_VBOOT_HASH_RECALC;
586 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
587 p.nonce_size = 0;
588 p.offset = 0;
589 p.size = 0;
590
591 debug("%s:\n", __func__);
592
593 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
594 (uint8_t **)&hash, sizeof(*hash)) < 0)
595 return -1;
596
597 /* No need to wait for it to finish */
598 return 0;
599 }
600
cros_ec_hello(struct udevice * dev,uint * handshakep)601 int cros_ec_hello(struct udevice *dev, uint *handshakep)
602 {
603 struct ec_params_hello req;
604 struct ec_response_hello *resp;
605
606 req.in_data = 0x12345678;
607 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
608 (uint8_t **)&resp, sizeof(*resp)) < 0)
609 return -EIO;
610 if (resp->out_data != req.in_data + 0x01020304) {
611 printf("Received invalid handshake %x\n", resp->out_data);
612 if (handshakep)
613 *handshakep = req.in_data;
614 return -ENOTSYNC;
615 }
616
617 return 0;
618 }
619
cros_ec_reboot(struct udevice * dev,enum ec_reboot_cmd cmd,uint8_t flags)620 int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags)
621 {
622 struct ec_params_reboot_ec p;
623
624 p.cmd = cmd;
625 p.flags = flags;
626
627 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
628 < 0)
629 return -1;
630
631 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
632 ulong start;
633
634 /*
635 * EC reboot will take place immediately so delay to allow it
636 * to complete. Note that some reboot types (EC_REBOOT_COLD)
637 * will reboot the AP as well, in which case we won't actually
638 * get to this point.
639 */
640 mdelay(50);
641 start = get_timer(0);
642 while (cros_ec_hello(dev, NULL)) {
643 if (get_timer(start) > 3000) {
644 log_err("EC did not return from reboot\n");
645 return -ETIMEDOUT;
646 }
647 mdelay(5);
648 }
649 }
650
651 return 0;
652 }
653
cros_ec_interrupt_pending(struct udevice * dev)654 int cros_ec_interrupt_pending(struct udevice *dev)
655 {
656 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
657
658 /* no interrupt support : always poll */
659 if (!dm_gpio_is_valid(&cdev->ec_int))
660 return -ENOENT;
661
662 return dm_gpio_get_value(&cdev->ec_int);
663 }
664
cros_ec_info(struct udevice * dev,struct ec_response_mkbp_info * info)665 int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info)
666 {
667 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
668 sizeof(*info)) != sizeof(*info))
669 return -1;
670
671 return 0;
672 }
673
cros_ec_get_event_mask(struct udevice * dev,uint type,uint32_t * mask)674 int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask)
675 {
676 struct ec_response_host_event_mask rsp;
677 int ret;
678
679 ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp));
680 if (ret < 0)
681 return ret;
682 else if (ret != sizeof(rsp))
683 return -EINVAL;
684
685 *mask = rsp.mask;
686
687 return 0;
688 }
689
cros_ec_set_event_mask(struct udevice * dev,uint type,uint32_t mask)690 int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask)
691 {
692 struct ec_params_host_event_mask req;
693 int ret;
694
695 req.mask = mask;
696
697 ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0);
698 if (ret < 0)
699 return ret;
700
701 return 0;
702 }
703
cros_ec_get_host_events(struct udevice * dev,uint32_t * events_ptr)704 int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr)
705 {
706 struct ec_response_host_event_mask *resp;
707
708 /*
709 * Use the B copy of the event flags, because the main copy is already
710 * used by ACPI/SMI.
711 */
712 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
713 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
714 return -1;
715
716 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
717 return -1;
718
719 *events_ptr = resp->mask;
720 return 0;
721 }
722
cros_ec_clear_host_events(struct udevice * dev,uint32_t events)723 int cros_ec_clear_host_events(struct udevice *dev, uint32_t events)
724 {
725 struct ec_params_host_event_mask params;
726
727 params.mask = events;
728
729 /*
730 * Use the B copy of the event flags, so it affects the data returned
731 * by cros_ec_get_host_events().
732 */
733 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
734 ¶ms, sizeof(params), NULL, 0) < 0)
735 return -1;
736
737 return 0;
738 }
739
cros_ec_flash_protect(struct udevice * dev,uint32_t set_mask,uint32_t set_flags,struct ec_response_flash_protect * resp)740 int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask,
741 uint32_t set_flags,
742 struct ec_response_flash_protect *resp)
743 {
744 struct ec_params_flash_protect params;
745
746 params.mask = set_mask;
747 params.flags = set_flags;
748
749 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
750 ¶ms, sizeof(params),
751 resp, sizeof(*resp)) != sizeof(*resp))
752 return -1;
753
754 return 0;
755 }
756
cros_ec_entering_mode(struct udevice * dev,int mode)757 int cros_ec_entering_mode(struct udevice *dev, int mode)
758 {
759 int rc;
760
761 rc = ec_command(dev, EC_CMD_ENTERING_MODE, 0, &mode, sizeof(mode),
762 NULL, 0);
763 if (rc)
764 return -1;
765 return 0;
766 }
767
cros_ec_check_version(struct udevice * dev)768 static int cros_ec_check_version(struct udevice *dev)
769 {
770 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
771 struct ec_params_hello req;
772
773 struct dm_cros_ec_ops *ops;
774 int ret;
775
776 ops = dm_cros_ec_get_ops(dev);
777 if (ops->check_version) {
778 ret = ops->check_version(dev);
779 if (ret)
780 return ret;
781 }
782
783 /*
784 * TODO(sjg@chromium.org).
785 * There is a strange oddity here with the EC. We could just ignore
786 * the response, i.e. pass the last two parameters as NULL and 0.
787 * In this case we won't read back very many bytes from the EC.
788 * On the I2C bus the EC gets upset about this and will try to send
789 * the bytes anyway. This means that we will have to wait for that
790 * to complete before continuing with a new EC command.
791 *
792 * This problem is probably unique to the I2C bus.
793 *
794 * So for now, just read all the data anyway.
795 */
796
797 /* Try sending a version 3 packet */
798 cdev->protocol_version = 3;
799 req.in_data = 0;
800 ret = cros_ec_hello(dev, NULL);
801 if (!ret || ret == -ENOTSYNC)
802 return 0;
803
804 /* Try sending a version 2 packet */
805 cdev->protocol_version = 2;
806 ret = cros_ec_hello(dev, NULL);
807 if (!ret || ret == -ENOTSYNC)
808 return 0;
809
810 /*
811 * Fail if we're still here, since the EC doesn't understand any
812 * protcol version we speak. Version 1 interface without command
813 * version is no longer supported, and we don't know about any new
814 * protocol versions.
815 */
816 cdev->protocol_version = 0;
817 printf("%s: ERROR: old EC interface not supported\n", __func__);
818 return -1;
819 }
820
cros_ec_test(struct udevice * dev)821 int cros_ec_test(struct udevice *dev)
822 {
823 uint out_data;
824 int ret;
825
826 ret = cros_ec_hello(dev, &out_data);
827 if (ret == -ENOTSYNC) {
828 printf("Received invalid handshake %x\n", out_data);
829 return ret;
830 } else if (ret) {
831 printf("ec_command_inptr() returned error\n");
832 return ret;
833 }
834
835 return 0;
836 }
837
cros_ec_flash_offset(struct udevice * dev,enum ec_flash_region region,uint32_t * offset,uint32_t * size)838 int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region,
839 uint32_t *offset, uint32_t *size)
840 {
841 struct ec_params_flash_region_info p;
842 struct ec_response_flash_region_info *r;
843 int ret;
844
845 p.region = region;
846 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
847 EC_VER_FLASH_REGION_INFO,
848 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
849 if (ret != sizeof(*r))
850 return -1;
851
852 if (offset)
853 *offset = r->offset;
854 if (size)
855 *size = r->size;
856
857 return 0;
858 }
859
cros_ec_flash_erase(struct udevice * dev,uint32_t offset,uint32_t size)860 int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size)
861 {
862 struct ec_params_flash_erase p;
863
864 p.offset = offset;
865 p.size = size;
866 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
867 NULL, 0);
868 }
869
870 /**
871 * Write a single block to the flash
872 *
873 * Write a block of data to the EC flash. The size must not exceed the flash
874 * write block size which you can obtain from cros_ec_flash_write_burst_size().
875 *
876 * The offset starts at 0. You can obtain the region information from
877 * cros_ec_flash_offset() to find out where to write for a particular region.
878 *
879 * Attempting to write to the region where the EC is currently running from
880 * will result in an error.
881 *
882 * @param dev CROS-EC device
883 * @param data Pointer to data buffer to write
884 * @param offset Offset within flash to write to.
885 * @param size Number of bytes to write
886 * @return 0 if ok, -1 on error
887 */
cros_ec_flash_write_block(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)888 static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data,
889 uint32_t offset, uint32_t size)
890 {
891 struct ec_params_flash_write *p;
892 int ret;
893
894 p = malloc(sizeof(*p) + size);
895 if (!p)
896 return -ENOMEM;
897
898 p->offset = offset;
899 p->size = size;
900 assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE);
901 memcpy(p + 1, data, p->size);
902
903 ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
904 p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1;
905
906 free(p);
907
908 return ret;
909 }
910
911 /**
912 * Return optimal flash write burst size
913 */
cros_ec_flash_write_burst_size(struct udevice * dev)914 static int cros_ec_flash_write_burst_size(struct udevice *dev)
915 {
916 return EC_FLASH_WRITE_VER0_SIZE;
917 }
918
919 /**
920 * Check if a block of data is erased (all 0xff)
921 *
922 * This function is useful when dealing with flash, for checking whether a
923 * data block is erased and thus does not need to be programmed.
924 *
925 * @param data Pointer to data to check (must be word-aligned)
926 * @param size Number of bytes to check (must be word-aligned)
927 * @return 0 if erased, non-zero if any word is not erased
928 */
cros_ec_data_is_erased(const uint32_t * data,int size)929 static int cros_ec_data_is_erased(const uint32_t *data, int size)
930 {
931 assert(!(size & 3));
932 size /= sizeof(uint32_t);
933 for (; size > 0; size -= 4, data++)
934 if (*data != -1U)
935 return 0;
936
937 return 1;
938 }
939
940 /**
941 * Read back flash parameters
942 *
943 * This function reads back parameters of the flash as reported by the EC
944 *
945 * @param dev Pointer to device
946 * @param info Pointer to output flash info struct
947 */
cros_ec_read_flashinfo(struct udevice * dev,struct ec_response_flash_info * info)948 int cros_ec_read_flashinfo(struct udevice *dev,
949 struct ec_response_flash_info *info)
950 {
951 int ret;
952
953 ret = ec_command(dev, EC_CMD_FLASH_INFO, 0,
954 NULL, 0, info, sizeof(*info));
955 if (ret < 0)
956 return ret;
957
958 return ret < sizeof(*info) ? -1 : 0;
959 }
960
cros_ec_flash_write(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)961 int cros_ec_flash_write(struct udevice *dev, const uint8_t *data,
962 uint32_t offset, uint32_t size)
963 {
964 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
965 uint32_t burst = cros_ec_flash_write_burst_size(dev);
966 uint32_t end, off;
967 int ret;
968
969 if (!burst)
970 return -EINVAL;
971
972 /*
973 * TODO: round up to the nearest multiple of write size. Can get away
974 * without that on link right now because its write size is 4 bytes.
975 */
976 end = offset + size;
977 for (off = offset; off < end; off += burst, data += burst) {
978 uint32_t todo;
979
980 /* If the data is empty, there is no point in programming it */
981 todo = min(end - off, burst);
982 if (cdev->optimise_flash_write &&
983 cros_ec_data_is_erased((uint32_t *)data, todo))
984 continue;
985
986 ret = cros_ec_flash_write_block(dev, data, off, todo);
987 if (ret)
988 return ret;
989 }
990
991 return 0;
992 }
993
994 /**
995 * Run verification on a slot
996 *
997 * @param me CrosEc instance
998 * @param region Region to run verification on
999 * @return 0 if success or not applicable. Non-zero if verification failed.
1000 */
cros_ec_efs_verify(struct udevice * dev,enum ec_flash_region region)1001 int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region)
1002 {
1003 struct ec_params_efs_verify p;
1004 int rv;
1005
1006 log_info("EFS: EC is verifying updated image...\n");
1007 p.region = region;
1008
1009 rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0);
1010 if (rv >= 0) {
1011 log_info("EFS: Verification success\n");
1012 return 0;
1013 }
1014 if (rv == -EC_RES_INVALID_COMMAND) {
1015 log_info("EFS: EC doesn't support EFS_VERIFY command\n");
1016 return 0;
1017 }
1018 log_info("EFS: Verification failed\n");
1019
1020 return rv;
1021 }
1022
1023 /**
1024 * Read a single block from the flash
1025 *
1026 * Read a block of data from the EC flash. The size must not exceed the flash
1027 * write block size which you can obtain from cros_ec_flash_write_burst_size().
1028 *
1029 * The offset starts at 0. You can obtain the region information from
1030 * cros_ec_flash_offset() to find out where to read for a particular region.
1031 *
1032 * @param dev CROS-EC device
1033 * @param data Pointer to data buffer to read into
1034 * @param offset Offset within flash to read from
1035 * @param size Number of bytes to read
1036 * @return 0 if ok, -1 on error
1037 */
cros_ec_flash_read_block(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)1038 static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data,
1039 uint32_t offset, uint32_t size)
1040 {
1041 struct ec_params_flash_read p;
1042
1043 p.offset = offset;
1044 p.size = size;
1045
1046 return ec_command(dev, EC_CMD_FLASH_READ, 0,
1047 &p, sizeof(p), data, size) >= 0 ? 0 : -1;
1048 }
1049
cros_ec_flash_read(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)1050 int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset,
1051 uint32_t size)
1052 {
1053 uint32_t burst = cros_ec_flash_write_burst_size(dev);
1054 uint32_t end, off;
1055 int ret;
1056
1057 end = offset + size;
1058 for (off = offset; off < end; off += burst, data += burst) {
1059 ret = cros_ec_flash_read_block(dev, data, off,
1060 min(end - off, burst));
1061 if (ret)
1062 return ret;
1063 }
1064
1065 return 0;
1066 }
1067
cros_ec_flash_update_rw(struct udevice * dev,const uint8_t * image,int image_size)1068 int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image,
1069 int image_size)
1070 {
1071 uint32_t rw_offset, rw_size;
1072 int ret;
1073
1074 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset,
1075 &rw_size))
1076 return -1;
1077 if (image_size > (int)rw_size)
1078 return -1;
1079
1080 /* Invalidate the existing hash, just in case the AP reboots
1081 * unexpectedly during the update. If that happened, the EC RW firmware
1082 * would be invalid, but the EC would still have the original hash.
1083 */
1084 ret = cros_ec_invalidate_hash(dev);
1085 if (ret)
1086 return ret;
1087
1088 /*
1089 * Erase the entire RW section, so that the EC doesn't see any garbage
1090 * past the new image if it's smaller than the current image.
1091 *
1092 * TODO: could optimize this to erase just the current image, since
1093 * presumably everything past that is 0xff's. But would still need to
1094 * round up to the nearest multiple of erase size.
1095 */
1096 ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
1097 if (ret)
1098 return ret;
1099
1100 /* Write the image */
1101 ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
1102 if (ret)
1103 return ret;
1104
1105 return 0;
1106 }
1107
cros_ec_get_sku_id(struct udevice * dev)1108 int cros_ec_get_sku_id(struct udevice *dev)
1109 {
1110 struct ec_sku_id_info *r;
1111 int ret;
1112
1113 ret = ec_command_inptr(dev, EC_CMD_GET_SKU_ID, 0, NULL, 0,
1114 (uint8_t **)&r, sizeof(*r));
1115 if (ret != sizeof(*r))
1116 return -ret;
1117
1118 return r->sku_id;
1119 }
1120
cros_ec_read_nvdata(struct udevice * dev,uint8_t * block,int size)1121 int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size)
1122 {
1123 struct ec_params_vbnvcontext p;
1124 int len;
1125
1126 if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1127 return -EINVAL;
1128
1129 p.op = EC_VBNV_CONTEXT_OP_READ;
1130
1131 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1132 &p, sizeof(uint32_t) + size, block, size);
1133 if (len != size) {
1134 log_err("Expected %d bytes, got %d\n", size, len);
1135 return -EIO;
1136 }
1137
1138 return 0;
1139 }
1140
cros_ec_write_nvdata(struct udevice * dev,const uint8_t * block,int size)1141 int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size)
1142 {
1143 struct ec_params_vbnvcontext p;
1144 int len;
1145
1146 if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1147 return -EINVAL;
1148 p.op = EC_VBNV_CONTEXT_OP_WRITE;
1149 memcpy(p.block, block, size);
1150
1151 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1152 &p, sizeof(uint32_t) + size, NULL, 0);
1153 if (len < 0)
1154 return -1;
1155
1156 return 0;
1157 }
1158
cros_ec_battery_cutoff(struct udevice * dev,uint8_t flags)1159 int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags)
1160 {
1161 struct ec_params_battery_cutoff p;
1162 int len;
1163
1164 p.flags = flags;
1165 len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p),
1166 NULL, 0);
1167
1168 if (len < 0)
1169 return -1;
1170 return 0;
1171 }
1172
cros_ec_set_pwm_duty(struct udevice * dev,uint8_t index,uint16_t duty)1173 int cros_ec_set_pwm_duty(struct udevice *dev, uint8_t index, uint16_t duty)
1174 {
1175 struct ec_params_pwm_set_duty p;
1176 int ret;
1177
1178 p.duty = duty;
1179 p.pwm_type = EC_PWM_TYPE_GENERIC;
1180 p.index = index;
1181
1182 ret = ec_command(dev, EC_CMD_PWM_SET_DUTY, 0, &p, sizeof(p),
1183 NULL, 0);
1184 if (ret < 0)
1185 return ret;
1186
1187 return 0;
1188 }
1189
cros_ec_set_ldo(struct udevice * dev,uint8_t index,uint8_t state)1190 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state)
1191 {
1192 struct ec_params_ldo_set params;
1193
1194 params.index = index;
1195 params.state = state;
1196
1197 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params),
1198 NULL, 0))
1199 return -1;
1200
1201 return 0;
1202 }
1203
cros_ec_get_ldo(struct udevice * dev,uint8_t index,uint8_t * state)1204 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state)
1205 {
1206 struct ec_params_ldo_get params;
1207 struct ec_response_ldo_get *resp;
1208
1209 params.index = index;
1210
1211 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params),
1212 (uint8_t **)&resp, sizeof(*resp)) !=
1213 sizeof(*resp))
1214 return -1;
1215
1216 *state = resp->state;
1217
1218 return 0;
1219 }
1220
cros_ec_register(struct udevice * dev)1221 int cros_ec_register(struct udevice *dev)
1222 {
1223 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1224 char id[MSG_BYTES];
1225
1226 cdev->dev = dev;
1227 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
1228 GPIOD_IS_IN);
1229 cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write");
1230
1231 if (cros_ec_check_version(dev)) {
1232 debug("%s: Could not detect CROS-EC version\n", __func__);
1233 return -CROS_EC_ERR_CHECK_VERSION;
1234 }
1235
1236 if (cros_ec_read_id(dev, id, sizeof(id))) {
1237 debug("%s: Could not read KBC ID\n", __func__);
1238 return -CROS_EC_ERR_READ_ID;
1239 }
1240
1241 /* Remember this device for use by the cros_ec command */
1242 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
1243 cdev->protocol_version, id);
1244
1245 return 0;
1246 }
1247
cros_ec_decode_ec_flash(struct udevice * dev,struct fdt_cros_ec * config)1248 int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config)
1249 {
1250 ofnode flash_node, node;
1251
1252 flash_node = dev_read_subnode(dev, "flash");
1253 if (!ofnode_valid(flash_node)) {
1254 debug("Failed to find flash node\n");
1255 return -1;
1256 }
1257
1258 if (ofnode_read_fmap_entry(flash_node, &config->flash)) {
1259 debug("Failed to decode flash node in chrome-ec\n");
1260 return -1;
1261 }
1262
1263 config->flash_erase_value = ofnode_read_s32_default(flash_node,
1264 "erase-value", -1);
1265 ofnode_for_each_subnode(node, flash_node) {
1266 const char *name = ofnode_get_name(node);
1267 enum ec_flash_region region;
1268
1269 if (0 == strcmp(name, "ro")) {
1270 region = EC_FLASH_REGION_RO;
1271 } else if (0 == strcmp(name, "rw")) {
1272 region = EC_FLASH_REGION_ACTIVE;
1273 } else if (0 == strcmp(name, "wp-ro")) {
1274 region = EC_FLASH_REGION_WP_RO;
1275 } else {
1276 debug("Unknown EC flash region name '%s'\n", name);
1277 return -1;
1278 }
1279
1280 if (ofnode_read_fmap_entry(node, &config->region[region])) {
1281 debug("Failed to decode flash region in chrome-ec'\n");
1282 return -1;
1283 }
1284 }
1285
1286 return 0;
1287 }
1288
cros_ec_i2c_tunnel(struct udevice * dev,int port,struct i2c_msg * in,int nmsgs)1289 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in,
1290 int nmsgs)
1291 {
1292 union {
1293 struct ec_params_i2c_passthru p;
1294 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1295 } params;
1296 union {
1297 struct ec_response_i2c_passthru r;
1298 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1299 } response;
1300 struct ec_params_i2c_passthru *p = ¶ms.p;
1301 struct ec_response_i2c_passthru *r = &response.r;
1302 struct ec_params_i2c_passthru_msg *msg;
1303 uint8_t *pdata, *read_ptr = NULL;
1304 int read_len;
1305 int size;
1306 int rv;
1307 int i;
1308
1309 p->port = port;
1310
1311 p->num_msgs = nmsgs;
1312 size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1313
1314 /* Create a message to write the register address and optional data */
1315 pdata = (uint8_t *)p + size;
1316
1317 read_len = 0;
1318 for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
1319 bool is_read = in->flags & I2C_M_RD;
1320
1321 msg->addr_flags = in->addr;
1322 msg->len = in->len;
1323 if (is_read) {
1324 msg->addr_flags |= EC_I2C_FLAG_READ;
1325 read_len += in->len;
1326 read_ptr = in->buf;
1327 if (sizeof(*r) + read_len > sizeof(response)) {
1328 puts("Read length too big for buffer\n");
1329 return -1;
1330 }
1331 } else {
1332 if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
1333 puts("Params too large for buffer\n");
1334 return -1;
1335 }
1336 memcpy(pdata, in->buf, in->len);
1337 pdata += in->len;
1338 }
1339 }
1340
1341 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
1342 r, sizeof(*r) + read_len);
1343 if (rv < 0)
1344 return rv;
1345
1346 /* Parse response */
1347 if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1348 printf("Transfer failed with status=0x%x\n", r->i2c_status);
1349 return -1;
1350 }
1351
1352 if (rv < sizeof(*r) + read_len) {
1353 puts("Truncated read response\n");
1354 return -1;
1355 }
1356
1357 /* We only support a single read message for each transfer */
1358 if (read_len)
1359 memcpy(read_ptr, r->data, read_len);
1360
1361 return 0;
1362 }
1363
cros_ec_get_features(struct udevice * dev,u64 * featuresp)1364 int cros_ec_get_features(struct udevice *dev, u64 *featuresp)
1365 {
1366 struct ec_response_get_features r;
1367 int rv;
1368
1369 rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1370 if (rv != sizeof(r))
1371 return -EIO;
1372 *featuresp = r.flags[0] | (u64)r.flags[1] << 32;
1373
1374 return 0;
1375 }
1376
cros_ec_check_feature(struct udevice * dev,uint feature)1377 int cros_ec_check_feature(struct udevice *dev, uint feature)
1378 {
1379 struct ec_response_get_features r;
1380 int rv;
1381
1382 rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1383 if (rv != sizeof(r))
1384 return -EIO;
1385
1386 if (feature >= 8 * sizeof(r.flags))
1387 return -EINVAL;
1388
1389 return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature) ? true :
1390 false;
1391 }
1392
1393 /*
1394 * Query the EC for specified mask indicating enabled events.
1395 * The EC maintains separate event masks for SMI, SCI and WAKE.
1396 */
cros_ec_uhepi_cmd(struct udevice * dev,uint mask,uint action,uint64_t * value)1397 static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action,
1398 uint64_t *value)
1399 {
1400 int ret;
1401 struct ec_params_host_event req;
1402 struct ec_response_host_event rsp;
1403
1404 req.action = action;
1405 req.mask_type = mask;
1406 if (action != EC_HOST_EVENT_GET)
1407 req.value = *value;
1408 else
1409 *value = 0;
1410 ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp,
1411 sizeof(rsp));
1412
1413 if (action != EC_HOST_EVENT_GET)
1414 return ret;
1415 if (ret == 0)
1416 *value = rsp.value;
1417
1418 return ret;
1419 }
1420
cros_ec_handle_non_uhepi_cmd(struct udevice * dev,uint hcmd,uint action,uint64_t * value)1421 static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd,
1422 uint action, uint64_t *value)
1423 {
1424 int ret = -1;
1425 struct ec_params_host_event_mask req;
1426 struct ec_response_host_event_mask rsp;
1427
1428 if (hcmd == INVALID_HCMD)
1429 return ret;
1430
1431 if (action != EC_HOST_EVENT_GET)
1432 req.mask = (uint32_t)*value;
1433 else
1434 *value = 0;
1435
1436 ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp));
1437 if (action != EC_HOST_EVENT_GET)
1438 return ret;
1439 if (ret == 0)
1440 *value = rsp.mask;
1441
1442 return ret;
1443 }
1444
cros_ec_is_uhepi_supported(struct udevice * dev)1445 bool cros_ec_is_uhepi_supported(struct udevice *dev)
1446 {
1447 #define UHEPI_SUPPORTED 1
1448 #define UHEPI_NOT_SUPPORTED 2
1449 static int uhepi_support;
1450
1451 if (!uhepi_support) {
1452 uhepi_support = cros_ec_check_feature(dev,
1453 EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED :
1454 UHEPI_NOT_SUPPORTED;
1455 log_debug("Chrome EC: UHEPI %s\n",
1456 uhepi_support == UHEPI_SUPPORTED ? "supported" :
1457 "not supported");
1458 }
1459 return uhepi_support == UHEPI_SUPPORTED;
1460 }
1461
cros_ec_get_mask(struct udevice * dev,uint type)1462 static int cros_ec_get_mask(struct udevice *dev, uint type)
1463 {
1464 u64 value = 0;
1465
1466 if (cros_ec_is_uhepi_supported(dev)) {
1467 cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value);
1468 } else {
1469 assert(type < ARRAY_SIZE(event_map));
1470 cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd,
1471 EC_HOST_EVENT_GET, &value);
1472 }
1473 return value;
1474 }
1475
cros_ec_clear_mask(struct udevice * dev,uint type,u64 mask)1476 static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask)
1477 {
1478 if (cros_ec_is_uhepi_supported(dev))
1479 return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask);
1480
1481 assert(type < ARRAY_SIZE(event_map));
1482
1483 return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd,
1484 EC_HOST_EVENT_CLEAR, &mask);
1485 }
1486
cros_ec_get_events_b(struct udevice * dev)1487 uint64_t cros_ec_get_events_b(struct udevice *dev)
1488 {
1489 return cros_ec_get_mask(dev, EC_HOST_EVENT_B);
1490 }
1491
cros_ec_clear_events_b(struct udevice * dev,uint64_t mask)1492 int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask)
1493 {
1494 log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask);
1495
1496 return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask);
1497 }
1498
cros_ec_read_limit_power(struct udevice * dev,int * limit_powerp)1499 int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp)
1500 {
1501 struct ec_params_charge_state p;
1502 struct ec_response_charge_state r;
1503 int ret;
1504
1505 p.cmd = CHARGE_STATE_CMD_GET_PARAM;
1506 p.get_param.param = CS_PARAM_LIMIT_POWER;
1507 ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p),
1508 &r, sizeof(r));
1509
1510 /*
1511 * If our EC doesn't support the LIMIT_POWER parameter, assume that
1512 * LIMIT_POWER is not requested.
1513 */
1514 if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) {
1515 log_warning("PARAM_LIMIT_POWER not supported by EC\n");
1516 return -ENOSYS;
1517 }
1518
1519 if (ret != sizeof(r.get_param))
1520 return -EINVAL;
1521
1522 *limit_powerp = r.get_param.value;
1523 return 0;
1524 }
1525
cros_ec_config_powerbtn(struct udevice * dev,uint32_t flags)1526 int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags)
1527 {
1528 struct ec_params_config_power_button params;
1529 int ret;
1530
1531 params.flags = flags;
1532 ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0,
1533 ¶ms, sizeof(params), NULL, 0);
1534 if (ret < 0)
1535 return ret;
1536
1537 return 0;
1538 }
1539
cros_ec_get_lid_shutdown_mask(struct udevice * dev)1540 int cros_ec_get_lid_shutdown_mask(struct udevice *dev)
1541 {
1542 u32 mask;
1543 int ret;
1544
1545 ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1546 &mask);
1547 if (ret < 0)
1548 return ret;
1549
1550 return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED));
1551 }
1552
cros_ec_set_lid_shutdown_mask(struct udevice * dev,int enable)1553 int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable)
1554 {
1555 u32 mask;
1556 int ret;
1557
1558 ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1559 &mask);
1560 if (ret < 0)
1561 return ret;
1562
1563 /* Set lid close event state in the EC SMI event mask */
1564 if (enable)
1565 mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1566 else
1567 mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1568
1569 ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask);
1570 if (ret < 0)
1571 return ret;
1572
1573 printf("EC: %sabled lid close event\n", enable ? "en" : "dis");
1574 return 0;
1575 }
1576
cros_ec_vstore_supported(struct udevice * dev)1577 int cros_ec_vstore_supported(struct udevice *dev)
1578 {
1579 return cros_ec_check_feature(dev, EC_FEATURE_VSTORE);
1580 }
1581
cros_ec_vstore_info(struct udevice * dev,u32 * lockedp)1582 int cros_ec_vstore_info(struct udevice *dev, u32 *lockedp)
1583 {
1584 struct ec_response_vstore_info *resp;
1585
1586 if (ec_command_inptr(dev, EC_CMD_VSTORE_INFO, 0, NULL, 0,
1587 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1588 return -EIO;
1589
1590 if (lockedp)
1591 *lockedp = resp->slot_locked;
1592
1593 return resp->slot_count;
1594 }
1595
1596 /*
1597 * cros_ec_vstore_read - Read data from EC vstore slot
1598 *
1599 * @slot: vstore slot to read from
1600 * @data: buffer to store read data, must be EC_VSTORE_SLOT_SIZE bytes
1601 */
cros_ec_vstore_read(struct udevice * dev,int slot,uint8_t * data)1602 int cros_ec_vstore_read(struct udevice *dev, int slot, uint8_t *data)
1603 {
1604 struct ec_params_vstore_read req;
1605 struct ec_response_vstore_read *resp;
1606
1607 req.slot = slot;
1608 if (ec_command_inptr(dev, EC_CMD_VSTORE_READ, 0, &req, sizeof(req),
1609 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1610 return -EIO;
1611
1612 if (!data || req.slot >= EC_VSTORE_SLOT_MAX)
1613 return -EINVAL;
1614
1615 memcpy(data, resp->data, sizeof(resp->data));
1616
1617 return 0;
1618 }
1619
1620 /*
1621 * cros_ec_vstore_write - Save data into EC vstore slot
1622 *
1623 * @slot: vstore slot to write into
1624 * @data: data to write
1625 * @size: size of data in bytes
1626 *
1627 * Maximum size of data is EC_VSTORE_SLOT_SIZE. It is the callers
1628 * responsibility to check the number of implemented slots by
1629 * querying the vstore info.
1630 */
cros_ec_vstore_write(struct udevice * dev,int slot,const uint8_t * data,size_t size)1631 int cros_ec_vstore_write(struct udevice *dev, int slot, const uint8_t *data,
1632 size_t size)
1633 {
1634 struct ec_params_vstore_write req;
1635
1636 if (slot >= EC_VSTORE_SLOT_MAX || size > EC_VSTORE_SLOT_SIZE)
1637 return -EINVAL;
1638
1639 req.slot = slot;
1640 memcpy(req.data, data, size);
1641
1642 if (ec_command(dev, EC_CMD_VSTORE_WRITE, 0, &req, sizeof(req), NULL, 0))
1643 return -EIO;
1644
1645 return 0;
1646 }
1647
cros_ec_get_switches(struct udevice * dev)1648 int cros_ec_get_switches(struct udevice *dev)
1649 {
1650 struct dm_cros_ec_ops *ops;
1651 int ret;
1652
1653 ops = dm_cros_ec_get_ops(dev);
1654 if (!ops->get_switches)
1655 return -ENOSYS;
1656
1657 ret = ops->get_switches(dev);
1658 if (ret < 0)
1659 return log_msg_ret("get", ret);
1660
1661 return ret;
1662 }
1663
1664 UCLASS_DRIVER(cros_ec) = {
1665 .id = UCLASS_CROS_EC,
1666 .name = "cros-ec",
1667 .per_device_auto = sizeof(struct cros_ec_dev),
1668 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
1669 .post_bind = dm_scan_fdt_dev,
1670 #endif
1671 .flags = DM_UC_FLAG_ALLOC_PRIV_DMA,
1672 };
1673