1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2014 Samsung Electronics
4  * Przemyslaw Marczak <p.marczak@samsung.com>
5  */
6 
7 #include <common.h>
8 #include <log.h>
9 #include <asm/arch/pinmux.h>
10 #include <asm/arch/power.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch/gpio.h>
13 #include <asm/global_data.h>
14 #include <asm/gpio.h>
15 #include <asm/arch/cpu.h>
16 #include <dm.h>
17 #include <env.h>
18 #include <power/pmic.h>
19 #include <power/regulator.h>
20 #include <power/max77686_pmic.h>
21 #include <errno.h>
22 #include <mmc.h>
23 #include <usb.h>
24 #include <usb/dwc2_udc.h>
25 #include <samsung/misc.h>
26 #include "setup.h"
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
30 #ifdef CONFIG_BOARD_TYPES
31 /* Odroid board types */
32 enum {
33 	ODROID_TYPE_U3,
34 	ODROID_TYPE_X2,
35 	ODROID_TYPES,
36 };
37 
set_board_type(void)38 void set_board_type(void)
39 {
40 	/* Set GPA1 pin 1 to HI - enable XCL205 output */
41 	writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
42 	writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
43 	writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
44 	writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
45 
46 	/* Set GPC1 pin 2 to IN - check XCL205 output state */
47 	writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
48 	writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
49 
50 	/* XCL205 - needs some latch time */
51 	sdelay(200000);
52 
53 	/* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
54 	if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
55 		gd->board_type = ODROID_TYPE_X2;
56 	else
57 		gd->board_type = ODROID_TYPE_U3;
58 }
59 
set_board_revision(void)60 void set_board_revision(void)
61 {
62 	/*
63 	 * Revision already set by set_board_type() because it can be
64 	 * executed early.
65 	 */
66 }
67 
get_board_type(void)68 const char *get_board_type(void)
69 {
70 	const char *board_type[] = {"u3", "x2"};
71 
72 	return board_type[gd->board_type];
73 }
74 #endif
75 
76 #ifdef CONFIG_SET_DFU_ALT_INFO
get_dfu_alt_system(char * interface,char * devstr)77 char *get_dfu_alt_system(char *interface, char *devstr)
78 {
79 	return env_get("dfu_alt_system");
80 }
81 
get_dfu_alt_boot(char * interface,char * devstr)82 char *get_dfu_alt_boot(char *interface, char *devstr)
83 {
84 	struct mmc *mmc;
85 	char *alt_boot;
86 	int dev_num;
87 
88 	dev_num = simple_strtoul(devstr, NULL, 10);
89 
90 	mmc = find_mmc_device(dev_num);
91 	if (!mmc)
92 		return NULL;
93 
94 	if (mmc_init(mmc))
95 		return NULL;
96 
97 	alt_boot = IS_SD(mmc) ? CONFIG_DFU_ALT_BOOT_SD :
98 				CONFIG_DFU_ALT_BOOT_EMMC;
99 
100 	return alt_boot;
101 }
102 #endif
103 
board_clock_init(void)104 static void board_clock_init(void)
105 {
106 	unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
107 	struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
108 						samsung_get_base_clock();
109 
110 	/*
111 	 * CMU_CPU clocks src to MPLL
112 	 * Bit values:                 0  ; 1
113 	 * MUX_APLL_SEL:        FIN_PLL   ; FOUT_APLL
114 	 * MUX_CORE_SEL:        MOUT_APLL ; SCLK_MPLL
115 	 * MUX_HPM_SEL:         MOUT_APLL ; SCLK_MPLL_USER_C
116 	 * MUX_MPLL_USER_SEL_C: FIN_PLL   ; SCLK_MPLL
117 	*/
118 	clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
119 		      MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
120 	set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
121 	      MUX_MPLL_USER_SEL_C(1);
122 
123 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
124 
125 	/* Wait for mux change */
126 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
127 		continue;
128 
129 	/* Set APLL to 1000MHz */
130 	clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
131 	set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
132 
133 	clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
134 
135 	/* Wait for PLL to be locked */
136 	while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
137 		continue;
138 
139 	/* Set CMU_CPU clocks src to APLL */
140 	set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
141 	      MUX_MPLL_USER_SEL_C(1);
142 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
143 
144 	/* Wait for mux change */
145 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
146 		continue;
147 
148 	set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
149 	      PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
150 	      APLL_RATIO(0) | CORE2_RATIO(0);
151 	/*
152 	 * Set dividers for MOUTcore = 1000 MHz
153 	 * coreout =      MOUT / (ratio + 1) = 1000 MHz (0)
154 	 * corem0 =     armclk / (ratio + 1) = 333 MHz (2)
155 	 * corem1 =     armclk / (ratio + 1) = 166 MHz (5)
156 	 * periph =     armclk / (ratio + 1) = 1000 MHz (0)
157 	 * atbout =       MOUT / (ratio + 1) = 200 MHz (4)
158 	 * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
159 	 * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
160 	 * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
161 	*/
162 	clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
163 	      PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
164 	      APLL_RATIO(7) | CORE2_RATIO(7);
165 
166 	clrsetbits_le32(&clk->div_cpu0, clr, set);
167 
168 	/* Wait for divider ready status */
169 	while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
170 		continue;
171 
172 	/*
173 	 * For MOUThpm = 1000 MHz (MOUTapll)
174 	 * doutcopy = MOUThpm / (ratio + 1) = 200 (4)
175 	 * sclkhpm = doutcopy / (ratio + 1) = 200 (4)
176 	 * cores_out = armclk / (ratio + 1) = 200 (4)
177 	 */
178 	clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
179 	set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
180 
181 	clrsetbits_le32(&clk->div_cpu1, clr, set);
182 
183 	/* Wait for divider ready status */
184 	while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
185 		continue;
186 
187 	/*
188 	 * Set CMU_DMC clocks src to APLL
189 	 * Bit values:             0  ; 1
190 	 * MUX_C2C_SEL:      SCLKMPLL ; SCLKAPLL
191 	 * MUX_DMC_BUS_SEL:  SCLKMPLL ; SCLKAPLL
192 	 * MUX_DPHY_SEL:     SCLKMPLL ; SCLKAPLL
193 	 * MUX_MPLL_SEL:     FINPLL   ; MOUT_MPLL_FOUT
194 	 * MUX_PWI_SEL:      0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
195 	 * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
196 	 * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
197 	 * MUX_G2D_ACP_SEL:  OUT_ACP0 ; OUT_ACP1
198 	*/
199 	clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
200 		      MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
201 		      MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
202 		      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
203 	set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
204 	      MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
205 	      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
206 
207 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
208 
209 	/* Wait for mux change */
210 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
211 		continue;
212 
213 	/* Set MPLL to 800MHz */
214 	set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
215 
216 	clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
217 
218 	/* Wait for PLL to be locked */
219 	while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
220 		continue;
221 
222 	/* Switch back CMU_DMC mux */
223 	set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
224 	      MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
225 	      MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
226 
227 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
228 
229 	/* Wait for mux change */
230 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
231 		continue;
232 
233 	/* CLK_DIV_DMC0 */
234 	clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
235 	      DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
236 	/*
237 	 * For:
238 	 * MOUTdmc = 800 MHz
239 	 * MOUTdphy = 800 MHz
240 	 *
241 	 * aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
242 	 * pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
243 	 * sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
244 	 * sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
245 	 * aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
246 	 * aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
247 	 */
248 	set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
249 	      DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
250 
251 	clrsetbits_le32(&clk->div_dmc0, clr, set);
252 
253 	/* Wait for divider ready status */
254 	while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
255 		continue;
256 
257 	/* CLK_DIV_DMC1 */
258 	clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
259 	      C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
260 	/*
261 	 * For:
262 	 * MOUTg2d = 800 MHz
263 	 * MOUTc2c = 800 Mhz
264 	 * MOUTpwi = 108 MHz
265 	 *
266 	 * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
267 	 * sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
268 	 * aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
269 	 * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
270 	 */
271 	set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
272 	      C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
273 
274 	clrsetbits_le32(&clk->div_dmc1, clr, set);
275 
276 	/* Wait for divider ready status */
277 	while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
278 		continue;
279 
280 	/* CLK_SRC_PERIL0 */
281 	clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
282 	      UART3_SEL(15) | UART4_SEL(15);
283 	/*
284 	 * Set CLK_SRC_PERIL0 clocks src to MPLL
285 	 * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
286 	 *             5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
287 	 *             8(SCLK_VPLL)
288 	 *
289 	 * Set all to SCLK_MPLL_USER_T
290 	 */
291 	set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
292 	      UART4_SEL(6);
293 
294 	clrsetbits_le32(&clk->src_peril0, clr, set);
295 
296 	/* CLK_DIV_PERIL0 */
297 	clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
298 	      UART3_RATIO(15) | UART4_RATIO(15);
299 	/*
300 	 * For MOUTuart0-4: 800MHz
301 	 *
302 	 * SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
303 	*/
304 	set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
305 	      UART3_RATIO(7) | UART4_RATIO(7);
306 
307 	clrsetbits_le32(&clk->div_peril0, clr, set);
308 
309 	while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
310 		continue;
311 
312 	/* CLK_DIV_FSYS1 */
313 	clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
314 	      MMC1_PRE_RATIO(255);
315 	/*
316 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
317 	 *
318 	 * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
319 	 * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
320 	 * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
321 	 * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
322 	*/
323 	set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
324 	      MMC1_PRE_RATIO(1);
325 
326 	clrsetbits_le32(&clk->div_fsys1, clr, set);
327 
328 	/* Wait for divider ready status */
329 	while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
330 		continue;
331 
332 	/* CLK_DIV_FSYS2 */
333 	clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
334 	      MMC3_PRE_RATIO(255);
335 	/*
336 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
337 	 *
338 	 * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
339 	 * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
340 	 * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
341 	 * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
342 	*/
343 	set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
344 	      MMC3_PRE_RATIO(1);
345 
346 	clrsetbits_le32(&clk->div_fsys2, clr, set);
347 
348 	/* Wait for divider ready status */
349 	while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
350 		continue;
351 
352 	/* CLK_DIV_FSYS3 */
353 	clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
354 	/*
355 	 * For MOUTmmc4 = 800 MHz (MPLL)
356 	 *
357 	 * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
358 	 * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
359 	*/
360 	set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
361 
362 	clrsetbits_le32(&clk->div_fsys3, clr, set);
363 
364 	/* Wait for divider ready status */
365 	while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
366 		continue;
367 
368 	return;
369 }
370 
board_gpio_init(void)371 static void board_gpio_init(void)
372 {
373 	/* eMMC Reset Pin */
374 	gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
375 
376 	gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
377 	gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
378 	gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
379 
380 	/* Enable FAN (Odroid U3) */
381 	gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
382 
383 	gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
384 	gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
385 	gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
386 
387 	/* OTG Vbus output (Odroid U3+) */
388 	gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
389 
390 	gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
391 	gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
392 	gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
393 
394 	/* OTG INT (Odroid U3+) */
395 	gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
396 
397 	gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
398 	gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
399 	gpio_direction_input(EXYNOS4X12_GPIO_X31);
400 
401 	/* Blue LED (Odroid X2/U2/U3) */
402 	gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
403 
404 	gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
405 
406 #ifdef CONFIG_CMD_USB
407 	/* USB3503A Reference frequency */
408 	gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
409 
410 	/* USB3503A Connect */
411 	gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
412 
413 	/* USB3503A Reset */
414 	gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
415 #endif
416 }
417 
exynos_early_init_f(void)418 int exynos_early_init_f(void)
419 {
420 	board_clock_init();
421 
422 	return 0;
423 }
424 
exynos_init(void)425 int exynos_init(void)
426 {
427 	board_gpio_init();
428 
429 	return 0;
430 }
431 
exynos_power_init(void)432 int exynos_power_init(void)
433 {
434 	const char *mmc_regulators[] = {
435 		"VDDQ_EMMC_1.8V",
436 		"VDDQ_EMMC_2.8V",
437 		"TFLASH_2.8V",
438 		NULL,
439 	};
440 
441 	if (regulator_list_autoset(mmc_regulators, NULL, true))
442 		pr_err("Unable to init all mmc regulators\n");
443 
444 	return 0;
445 }
446 
447 #ifdef CONFIG_USB_GADGET
s5pc210_phy_control(int on)448 static int s5pc210_phy_control(int on)
449 {
450 	struct udevice *dev;
451 	int ret;
452 
453 	ret = regulator_get_by_platname("VDD_UOTG_3.0V", &dev);
454 	if (ret) {
455 		pr_err("Regulator get error: %d\n", ret);
456 		return ret;
457 	}
458 
459 	if (on)
460 		return regulator_set_mode(dev, OPMODE_ON);
461 	else
462 		return regulator_set_mode(dev, OPMODE_LPM);
463 }
464 
465 struct dwc2_plat_otg_data s5pc210_otg_data = {
466 	.phy_control	= s5pc210_phy_control,
467 	.regs_phy	= EXYNOS4X12_USBPHY_BASE,
468 	.regs_otg	= EXYNOS4X12_USBOTG_BASE,
469 	.usb_phy_ctrl	= EXYNOS4X12_USBPHY_CONTROL,
470 	.usb_flags	= PHY0_SLEEP,
471 };
472 #endif
473 
474 #if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
475 
set_usb3503_ref_clk(void)476 static void set_usb3503_ref_clk(void)
477 {
478 #ifdef CONFIG_BOARD_TYPES
479 	/*
480 	 * gpx3-0 chooses primary (low) or secondary (high) reference clock
481 	 * frequencies table.  The choice of clock is done through hard-wired
482 	 * REF_SEL pins.
483 	 * The Odroid Us have reference clock at 24 MHz (00 entry from secondary
484 	 * table) and Odroid Xs have it at 26 MHz (01 entry from primary table).
485 	 */
486 	if (gd->board_type == ODROID_TYPE_U3)
487 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
488 	else
489 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
490 #else
491 	/* Choose Odroid Xs frequency without board types */
492 	gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
493 #endif /* CONFIG_BOARD_TYPES */
494 }
495 
board_usb_init(int index,enum usb_init_type init)496 int board_usb_init(int index, enum usb_init_type init)
497 {
498 #ifdef CONFIG_CMD_USB
499 	struct udevice *dev;
500 	int ret;
501 
502 	set_usb3503_ref_clk();
503 
504 	/* Disconnect, Reset, Connect */
505 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
506 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
507 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
508 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
509 
510 	/* Power off and on BUCK8 for LAN9730 */
511 	debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
512 
513 	ret = regulator_get_by_platname("VCC_P3V3_2.85V", &dev);
514 	if (ret) {
515 		pr_err("Regulator get error: %d\n", ret);
516 		return ret;
517 	}
518 
519 	ret = regulator_set_enable(dev, true);
520 	if (ret) {
521 		pr_err("Regulator %s enable setting error: %d\n", dev->name, ret);
522 		return ret;
523 	}
524 
525 	ret = regulator_set_value(dev, 750000);
526 	if (ret) {
527 		pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
528 		return ret;
529 	}
530 
531 	ret = regulator_set_value(dev, 3300000);
532 	if (ret) {
533 		pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
534 		return ret;
535 	}
536 #endif
537 	debug("USB_udc_probe\n");
538 	return dwc2_udc_probe(&s5pc210_otg_data);
539 }
540 #endif
541