1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2011
4  * eInfochips Ltd. <www.einfochips.com>
5  * Written-by: Ajay Bhargav <contact@8051projects.net>
6  *
7  * (C) Copyright 2010
8  * Marvell Semiconductor <www.marvell.com>
9  * Contributor: Mahavir Jain <mjain@marvell.com>
10  */
11 
12 #include <common.h>
13 #include <log.h>
14 #include <net.h>
15 #include <malloc.h>
16 #include <miiphy.h>
17 #include <netdev.h>
18 #include <asm/types.h>
19 #include <asm/byteorder.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/mii.h>
23 #include <asm/io.h>
24 #include <asm/arch/armada100.h>
25 #include "armada100_fec.h"
26 
27 #define  PHY_ADR_REQ     0xFF	/* Magic number to read/write PHY address */
28 
29 #ifdef DEBUG
eth_dump_regs(struct eth_device * dev)30 static int eth_dump_regs(struct eth_device *dev)
31 {
32 	struct armdfec_device *darmdfec = to_darmdfec(dev);
33 	struct armdfec_reg *regs = darmdfec->regs;
34 	unsigned int i = 0;
35 
36 	printf("\noffset: phy_adr, value: 0x%x\n", readl(&regs->phyadr));
37 	printf("offset: smi, value: 0x%x\n", readl(&regs->smi));
38 	for (i = 0x400; i <= 0x4e4; i += 4)
39 		printf("offset: 0x%x, value: 0x%x\n",
40 			i, readl(ARMD1_FEC_BASE + i));
41 	return 0;
42 }
43 #endif
44 
armdfec_phy_timeout(u32 * reg,u32 flag,int cond)45 static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond)
46 {
47 	u32 timeout = PHY_WAIT_ITERATIONS;
48 	u32 reg_val;
49 
50 	while (--timeout) {
51 		reg_val = readl(reg);
52 		if (cond && (reg_val & flag))
53 			break;
54 		else if (!cond && !(reg_val & flag))
55 			break;
56 		udelay(PHY_WAIT_MICRO_SECONDS);
57 	}
58 	return !timeout;
59 }
60 
smi_reg_read(struct mii_dev * bus,int phy_addr,int devad,int phy_reg)61 static int smi_reg_read(struct mii_dev *bus, int phy_addr, int devad,
62 			int phy_reg)
63 {
64 	u16 value = 0;
65 	struct eth_device *dev = eth_get_dev_by_name(bus->name);
66 	struct armdfec_device *darmdfec = to_darmdfec(dev);
67 	struct armdfec_reg *regs = darmdfec->regs;
68 	u32 val;
69 
70 	if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
71 		val = readl(&regs->phyadr);
72 		value = val & 0x1f;
73 		return value;
74 	}
75 
76 	/* check parameters */
77 	if (phy_addr > PHY_MASK) {
78 		printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n",
79 				__func__, phy_addr);
80 		return -EINVAL;
81 	}
82 	if (phy_reg > PHY_MASK) {
83 		printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n",
84 				__func__, phy_reg);
85 		return -EINVAL;
86 	}
87 
88 	/* wait for the SMI register to become available */
89 	if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, false)) {
90 		printf("ARMD100 FEC: (%s) PHY busy timeout\n",	__func__);
91 		return -1;
92 	}
93 
94 	writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, &regs->smi);
95 
96 	/* now wait for the data to be valid */
97 	if (armdfec_phy_timeout(&regs->smi, SMI_R_VALID, true)) {
98 		val = readl(&regs->smi);
99 		printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n",
100 				__func__, val);
101 		return -1;
102 	}
103 	val = readl(&regs->smi);
104 	value = val & 0xffff;
105 
106 	return value;
107 }
108 
smi_reg_write(struct mii_dev * bus,int phy_addr,int devad,int phy_reg,u16 value)109 static int smi_reg_write(struct mii_dev *bus, int phy_addr, int devad,
110 			 int phy_reg, u16 value)
111 {
112 	struct eth_device *dev = eth_get_dev_by_name(bus->name);
113 	struct armdfec_device *darmdfec = to_darmdfec(dev);
114 	struct armdfec_reg *regs = darmdfec->regs;
115 
116 	if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
117 		clrsetbits_le32(&regs->phyadr, 0x1f, value & 0x1f);
118 		return 0;
119 	}
120 
121 	/* check parameters */
122 	if (phy_addr > PHY_MASK) {
123 		printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__);
124 		return -EINVAL;
125 	}
126 	if (phy_reg > PHY_MASK) {
127 		printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__);
128 		return -EINVAL;
129 	}
130 
131 	/* wait for the SMI register to become available */
132 	if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, false)) {
133 		printf("ARMD100 FEC: (%s) PHY busy timeout\n",	__func__);
134 		return -1;
135 	}
136 
137 	writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff),
138 			&regs->smi);
139 	return 0;
140 }
141 
142 /*
143  * Abort any transmit and receive operations and put DMA
144  * in idle state. AT and AR bits are cleared upon entering
145  * in IDLE state. So poll those bits to verify operation.
146  */
abortdma(struct eth_device * dev)147 static void abortdma(struct eth_device *dev)
148 {
149 	struct armdfec_device *darmdfec = to_darmdfec(dev);
150 	struct armdfec_reg *regs = darmdfec->regs;
151 	int delay;
152 	int maxretries = 40;
153 	u32 tmp;
154 
155 	while (--maxretries) {
156 		writel(SDMA_CMD_AR | SDMA_CMD_AT, &regs->sdma_cmd);
157 		udelay(100);
158 
159 		delay = 10;
160 		while (--delay) {
161 			tmp = readl(&regs->sdma_cmd);
162 			if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT)))
163 				break;
164 			udelay(10);
165 		}
166 		if (delay)
167 			break;
168 	}
169 
170 	if (!maxretries)
171 		printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__);
172 }
173 
nibble_swapping_32_bit(u32 x)174 static inline u32 nibble_swapping_32_bit(u32 x)
175 {
176 	return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4);
177 }
178 
nibble_swapping_16_bit(u32 x)179 static inline u32 nibble_swapping_16_bit(u32 x)
180 {
181 	return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4);
182 }
183 
flip_4_bits(u32 x)184 static inline u32 flip_4_bits(u32 x)
185 {
186 	return ((x & 0x01) << 3) | ((x & 0x002) << 1)
187 		| ((x & 0x04) >> 1) | ((x & 0x008) >> 3);
188 }
189 
190 /*
191  * This function will calculate the hash function of the address.
192  * depends on the hash mode and hash size.
193  * Inputs
194  * mach             - the 2 most significant bytes of the MAC address.
195  * macl             - the 4 least significant bytes of the MAC address.
196  * Outputs
197  * return the calculated entry.
198  */
hash_function(u32 mach,u32 macl)199 static u32 hash_function(u32 mach, u32 macl)
200 {
201 	u32 hashresult;
202 	u32 addrh;
203 	u32 addrl;
204 	u32 addr0;
205 	u32 addr1;
206 	u32 addr2;
207 	u32 addr3;
208 	u32 addrhswapped;
209 	u32 addrlswapped;
210 
211 	addrh = nibble_swapping_16_bit(mach);
212 	addrl = nibble_swapping_32_bit(macl);
213 
214 	addrhswapped = flip_4_bits(addrh & 0xf)
215 		+ ((flip_4_bits((addrh >> 4) & 0xf)) << 4)
216 		+ ((flip_4_bits((addrh >> 8) & 0xf)) << 8)
217 		+ ((flip_4_bits((addrh >> 12) & 0xf)) << 12);
218 
219 	addrlswapped = flip_4_bits(addrl & 0xf)
220 		+ ((flip_4_bits((addrl >> 4) & 0xf)) << 4)
221 		+ ((flip_4_bits((addrl >> 8) & 0xf)) << 8)
222 		+ ((flip_4_bits((addrl >> 12) & 0xf)) << 12)
223 		+ ((flip_4_bits((addrl >> 16) & 0xf)) << 16)
224 		+ ((flip_4_bits((addrl >> 20) & 0xf)) << 20)
225 		+ ((flip_4_bits((addrl >> 24) & 0xf)) << 24)
226 		+ ((flip_4_bits((addrl >> 28) & 0xf)) << 28);
227 
228 	addrh = addrhswapped;
229 	addrl = addrlswapped;
230 
231 	addr0 = (addrl >> 2) & 0x03f;
232 	addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2);
233 	addr2 = (addrl >> 15) & 0x1ff;
234 	addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8);
235 
236 	hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
237 	hashresult = hashresult & 0x07ff;
238 	return hashresult;
239 }
240 
241 /*
242  * This function will add an entry to the address table.
243  * depends on the hash mode and hash size that was initialized.
244  * Inputs
245  * mach - the 2 most significant bytes of the MAC address.
246  * macl - the 4 least significant bytes of the MAC address.
247  * skip - if 1, skip this address.
248  * rd   - the RD field in the address table.
249  * Outputs
250  * address table entry is added.
251  * 0 if success.
252  * -ENOSPC if table full
253  */
add_del_hash_entry(struct armdfec_device * darmdfec,u32 mach,u32 macl,u32 rd,u32 skip,int del)254 static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach,
255 			      u32 macl, u32 rd, u32 skip, int del)
256 {
257 	struct addr_table_entry_t *entry, *start;
258 	u32 newhi;
259 	u32 newlo;
260 	u32 i;
261 
262 	newlo = (((mach >> 4) & 0xf) << 15)
263 		| (((mach >> 0) & 0xf) << 11)
264 		| (((mach >> 12) & 0xf) << 7)
265 		| (((mach >> 8) & 0xf) << 3)
266 		| (((macl >> 20) & 0x1) << 31)
267 		| (((macl >> 16) & 0xf) << 27)
268 		| (((macl >> 28) & 0xf) << 23)
269 		| (((macl >> 24) & 0xf) << 19)
270 		| (skip << HTESKIP) | (rd << HTERDBIT)
271 		| HTEVALID;
272 
273 	newhi = (((macl >> 4) & 0xf) << 15)
274 		| (((macl >> 0) & 0xf) << 11)
275 		| (((macl >> 12) & 0xf) << 7)
276 		| (((macl >> 8) & 0xf) << 3)
277 		| (((macl >> 21) & 0x7) << 0);
278 
279 	/*
280 	 * Pick the appropriate table, start scanning for free/reusable
281 	 * entries at the index obtained by hashing the specified MAC address
282 	 */
283 	start = (struct addr_table_entry_t *)(darmdfec->htpr);
284 	entry = start + hash_function(mach, macl);
285 	for (i = 0; i < HOP_NUMBER; i++) {
286 		if (!(entry->lo & HTEVALID)) {
287 			break;
288 		} else {
289 			/* if same address put in same position */
290 			if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8))
291 					&& (entry->hi == newhi))
292 				break;
293 		}
294 		if (entry == start + 0x7ff)
295 			entry = start;
296 		else
297 			entry++;
298 	}
299 
300 	if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) &&
301 		(entry->hi != newhi) && del)
302 		return 0;
303 
304 	if (i == HOP_NUMBER) {
305 		if (!del) {
306 			printf("ARMD100 FEC: (%s) table section is full\n",
307 					__func__);
308 			return -ENOSPC;
309 		} else {
310 			return 0;
311 		}
312 	}
313 
314 	/*
315 	 * Update the selected entry
316 	 */
317 	if (del) {
318 		entry->hi = 0;
319 		entry->lo = 0;
320 	} else {
321 		entry->hi = newhi;
322 		entry->lo = newlo;
323 	}
324 
325 	return 0;
326 }
327 
328 /*
329  *  Create an addressTable entry from MAC address info
330  *  found in the specifed net_device struct
331  *
332  *  Input : pointer to ethernet interface network device structure
333  *  Output : N/A
334  */
update_hash_table_mac_address(struct armdfec_device * darmdfec,u8 * oaddr,u8 * addr)335 static void update_hash_table_mac_address(struct armdfec_device *darmdfec,
336 					  u8 *oaddr, u8 *addr)
337 {
338 	u32 mach;
339 	u32 macl;
340 
341 	/* Delete old entry */
342 	if (oaddr) {
343 		mach = (oaddr[0] << 8) | oaddr[1];
344 		macl = (oaddr[2] << 24) | (oaddr[3] << 16) |
345 			(oaddr[4] << 8) | oaddr[5];
346 		add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE);
347 	}
348 
349 	/* Add new entry */
350 	mach = (addr[0] << 8) | addr[1];
351 	macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
352 	add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD);
353 }
354 
355 /* Address Table Initialization */
init_hashtable(struct eth_device * dev)356 static void init_hashtable(struct eth_device *dev)
357 {
358 	struct armdfec_device *darmdfec = to_darmdfec(dev);
359 	struct armdfec_reg *regs = darmdfec->regs;
360 	memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE);
361 	writel((u32)darmdfec->htpr, &regs->htpr);
362 }
363 
364 /*
365  * This detects PHY chip from address 0-31 by reading PHY status
366  * registers. PHY chip can be connected at any of this address.
367  */
ethernet_phy_detect(struct eth_device * dev)368 static int ethernet_phy_detect(struct eth_device *dev)
369 {
370 	u32 val;
371 	u16 tmp, mii_status;
372 	u8 addr;
373 
374 	for (addr = 0; addr < 32; addr++) {
375 		if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status)	!= 0)
376 			/* try next phy */
377 			continue;
378 
379 		/* invalid MII status. More validation required here... */
380 		if (mii_status == 0 || mii_status == 0xffff)
381 			/* try next phy */
382 			continue;
383 
384 		if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0)
385 			/* try next phy */
386 			continue;
387 
388 		val = tmp << 16;
389 		if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0)
390 			/* try next phy */
391 			continue;
392 
393 		val |= tmp;
394 
395 		if ((val & 0xfffffff0) != 0)
396 			return addr;
397 	}
398 	return -1;
399 }
400 
armdfec_init_rx_desc_ring(struct armdfec_device * darmdfec)401 static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec)
402 {
403 	struct rx_desc *p_rx_desc;
404 	int i;
405 
406 	/* initialize the Rx descriptors ring */
407 	p_rx_desc = darmdfec->p_rxdesc;
408 	for (i = 0; i < RINGSZ; i++) {
409 		p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
410 		p_rx_desc->buf_size = PKTSIZE_ALIGN;
411 		p_rx_desc->byte_cnt = 0;
412 		p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN;
413 		if (i == (RINGSZ - 1)) {
414 			p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc;
415 		} else {
416 			p_rx_desc->nxtdesc_p = (struct rx_desc *)
417 			    ((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE);
418 			p_rx_desc = p_rx_desc->nxtdesc_p;
419 		}
420 	}
421 	darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc;
422 }
423 
armdfec_init(struct eth_device * dev,struct bd_info * bd)424 static int armdfec_init(struct eth_device *dev, struct bd_info *bd)
425 {
426 	struct armdfec_device *darmdfec = to_darmdfec(dev);
427 	struct armdfec_reg *regs = darmdfec->regs;
428 	int phy_adr;
429 	u32 temp;
430 
431 	armdfec_init_rx_desc_ring(darmdfec);
432 
433 	/* Disable interrupts */
434 	writel(0, &regs->im);
435 	writel(0, &regs->ic);
436 	/* Write to ICR to clear interrupts. */
437 	writel(0, &regs->iwc);
438 
439 	/*
440 	 * Abort any transmit and receive operations and put DMA
441 	 * in idle state.
442 	 */
443 	abortdma(dev);
444 
445 	/* Initialize address hash table */
446 	init_hashtable(dev);
447 
448 	/* SDMA configuration */
449 	writel(SDCR_BSZ8 |	/* Burst size = 32 bytes */
450 		SDCR_RIFB |	/* Rx interrupt on frame */
451 		SDCR_BLMT |	/* Little endian transmit */
452 		SDCR_BLMR |	/* Little endian receive */
453 		SDCR_RC_MAX_RETRANS,	/* Max retransmit count */
454 		&regs->sdma_conf);
455 	/* Port Configuration */
456 	writel(PCR_HS, &regs->pconf);	/* Hash size is 1/2kb */
457 
458 	/* Set extended port configuration */
459 	writel(PCXR_2BSM |		/* Two byte suffix aligns IP hdr */
460 		PCXR_DSCP_EN |		/* Enable DSCP in IP */
461 		PCXR_MFL_1536 |		/* Set MTU = 1536 */
462 		PCXR_FLP |		/* do not force link pass */
463 		PCXR_TX_HIGH_PRI,	/* Transmit - high priority queue */
464 		&regs->pconf_ext);
465 
466 	update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr);
467 
468 	/* Update TX and RX queue descriptor register */
469 	temp = (u32)&regs->txcdp[TXQ];
470 	writel((u32)darmdfec->p_txdesc, temp);
471 	temp = (u32)&regs->rxfdp[RXQ];
472 	writel((u32)darmdfec->p_rxdesc, temp);
473 	temp = (u32)&regs->rxcdp[RXQ];
474 	writel((u32)darmdfec->p_rxdesc_curr, temp);
475 
476 	/* Enable Interrupts */
477 	writel(ALL_INTS, &regs->im);
478 
479 	/* Enable Ethernet Port */
480 	setbits_le32(&regs->pconf, PCR_EN);
481 
482 	/* Enable RX DMA engine */
483 	setbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);
484 
485 #ifdef DEBUG
486 	eth_dump_regs(dev);
487 #endif
488 
489 #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII))
490 
491 #if defined(CONFIG_PHY_BASE_ADR)
492 	miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR);
493 #else
494 	/* Search phy address from range 0-31 */
495 	phy_adr = ethernet_phy_detect(dev);
496 	if (phy_adr < 0) {
497 		printf("ARMD100 FEC: PHY not detected at address range 0-31\n");
498 		return -1;
499 	} else {
500 		debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr);
501 		miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr);
502 	}
503 #endif
504 
505 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)
506 	/* Wait up to 5s for the link status */
507 	for (i = 0; i < 5; i++) {
508 		u16 phy_adr;
509 
510 		miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr);
511 		/* Return if we get link up */
512 		if (miiphy_link(dev->name, phy_adr))
513 			return 0;
514 		udelay(1000000);
515 	}
516 
517 	printf("ARMD100 FEC: No link on %s\n", dev->name);
518 	return -1;
519 #endif
520 #endif
521 	return 0;
522 }
523 
armdfec_halt(struct eth_device * dev)524 static void armdfec_halt(struct eth_device *dev)
525 {
526 	struct armdfec_device *darmdfec = to_darmdfec(dev);
527 	struct armdfec_reg *regs = darmdfec->regs;
528 
529 	/* Stop RX DMA */
530 	clrbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);
531 
532 	/*
533 	 * Abort any transmit and receive operations and put DMA
534 	 * in idle state.
535 	 */
536 	abortdma(dev);
537 
538 	/* Disable interrupts */
539 	writel(0, &regs->im);
540 	writel(0, &regs->ic);
541 	writel(0, &regs->iwc);
542 
543 	/* Disable Port */
544 	clrbits_le32(&regs->pconf, PCR_EN);
545 }
546 
armdfec_send(struct eth_device * dev,void * dataptr,int datasize)547 static int armdfec_send(struct eth_device *dev, void *dataptr, int datasize)
548 {
549 	struct armdfec_device *darmdfec = to_darmdfec(dev);
550 	struct armdfec_reg *regs = darmdfec->regs;
551 	struct tx_desc *p_txdesc = darmdfec->p_txdesc;
552 	void *p = (void *)dataptr;
553 	int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS;
554 	u32 cmd_sts, temp;
555 
556 	/* Copy buffer if it's misaligned */
557 	if ((u32)dataptr & 0x07) {
558 		if (datasize > PKTSIZE_ALIGN) {
559 			printf("ARMD100 FEC: Non-aligned data too large (%d)\n",
560 					datasize);
561 			return -1;
562 		}
563 		memcpy(darmdfec->p_aligned_txbuf, p, datasize);
564 		p = darmdfec->p_aligned_txbuf;
565 	}
566 
567 	p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC;
568 	p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC;
569 	p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA;
570 	p_txdesc->cmd_sts |= TX_EN_INT;
571 	p_txdesc->buf_ptr = p;
572 	p_txdesc->byte_cnt = datasize;
573 
574 	/* Apply send command using high priority TX queue */
575 	temp = (u32)&regs->txcdp[TXQ];
576 	writel((u32)p_txdesc, temp);
577 	writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, &regs->sdma_cmd);
578 
579 	/*
580 	 * wait for packet xmit completion
581 	 */
582 	cmd_sts = readl(&p_txdesc->cmd_sts);
583 	while (cmd_sts & BUF_OWNED_BY_DMA) {
584 		/* return fail if error is detected */
585 		if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) ==
586 			(TX_ERROR | TX_LAST_DESC)) {
587 			printf("ARMD100 FEC: (%s) in xmit packet\n", __func__);
588 			return -1;
589 		}
590 		cmd_sts = readl(&p_txdesc->cmd_sts);
591 		if (!(retry--)) {
592 			printf("ARMD100 FEC: (%s) xmit packet timeout!\n",
593 					__func__);
594 			return -1;
595 		}
596 	}
597 
598 	return 0;
599 }
600 
armdfec_recv(struct eth_device * dev)601 static int armdfec_recv(struct eth_device *dev)
602 {
603 	struct armdfec_device *darmdfec = to_darmdfec(dev);
604 	struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr;
605 	u32 cmd_sts;
606 	u32 timeout = 0;
607 	u32 temp;
608 
609 	/* wait untill rx packet available or timeout */
610 	do {
611 		if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) {
612 			timeout++;
613 		} else {
614 			debug("ARMD100 FEC: %s time out...\n", __func__);
615 			return -1;
616 		}
617 	} while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA);
618 
619 	if (p_rxdesc_curr->byte_cnt != 0) {
620 		debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x"
621 				"(cmd_sts= %08x)\n", __func__,
622 				(u32)p_rxdesc_curr->byte_cnt,
623 				(u32)p_rxdesc_curr->buf_ptr,
624 				(u32)p_rxdesc_curr->cmd_sts);
625 	}
626 
627 	/*
628 	 * In case received a packet without first/last bits on
629 	 * OR the error summary bit is on,
630 	 * the packets needs to be dropeed.
631 	 */
632 	cmd_sts = readl(&p_rxdesc_curr->cmd_sts);
633 
634 	if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
635 			(RX_FIRST_DESC | RX_LAST_DESC)) {
636 		printf("ARMD100 FEC: (%s) Dropping packet spread on"
637 			" multiple descriptors\n", __func__);
638 	} else if (cmd_sts & RX_ERROR) {
639 		printf("ARMD100 FEC: (%s) Dropping packet with errors\n",
640 				__func__);
641 	} else {
642 		/* !!! call higher layer processing */
643 		debug("ARMD100 FEC: (%s) Sending Received packet to"
644 		      " upper layer (net_process_received_packet)\n", __func__);
645 
646 		/*
647 		 * let the upper layer handle the packet, subtract offset
648 		 * as two dummy bytes are added in received buffer see
649 		 * PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit.
650 		 */
651 		net_process_received_packet(
652 			p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET,
653 			(int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET));
654 	}
655 	/*
656 	 * free these descriptors and point next in the ring
657 	 */
658 	p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
659 	p_rxdesc_curr->buf_size = PKTSIZE_ALIGN;
660 	p_rxdesc_curr->byte_cnt = 0;
661 
662 	temp = (u32)&darmdfec->p_rxdesc_curr;
663 	writel((u32)p_rxdesc_curr->nxtdesc_p, temp);
664 
665 	return 0;
666 }
667 
armada100_fec_register(unsigned long base_addr)668 int armada100_fec_register(unsigned long base_addr)
669 {
670 	struct armdfec_device *darmdfec;
671 	struct eth_device *dev;
672 
673 	darmdfec = malloc(sizeof(struct armdfec_device));
674 	if (!darmdfec)
675 		goto error;
676 
677 	memset(darmdfec, 0, sizeof(struct armdfec_device));
678 
679 	darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE);
680 	if (!darmdfec->htpr)
681 		goto error1;
682 
683 	darmdfec->p_rxdesc = memalign(PKTALIGN,
684 			ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1);
685 
686 	if (!darmdfec->p_rxdesc)
687 		goto error1;
688 
689 	darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1);
690 	if (!darmdfec->p_rxbuf)
691 		goto error1;
692 
693 	darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN);
694 	if (!darmdfec->p_aligned_txbuf)
695 		goto error1;
696 
697 	darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1);
698 	if (!darmdfec->p_txdesc)
699 		goto error1;
700 
701 	dev = &darmdfec->dev;
702 	/* Assign ARMADA100 Fast Ethernet Controller Base Address */
703 	darmdfec->regs = (void *)base_addr;
704 
705 	/* must be less than sizeof(dev->name) */
706 	strcpy(dev->name, "armd-fec0");
707 
708 	dev->init = armdfec_init;
709 	dev->halt = armdfec_halt;
710 	dev->send = armdfec_send;
711 	dev->recv = armdfec_recv;
712 
713 	eth_register(dev);
714 
715 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
716 	int retval;
717 	struct mii_dev *mdiodev = mdio_alloc();
718 	if (!mdiodev)
719 		return -ENOMEM;
720 	strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
721 	mdiodev->read = smi_reg_read;
722 	mdiodev->write = smi_reg_write;
723 
724 	retval = mdio_register(mdiodev);
725 	if (retval < 0)
726 		return retval;
727 #endif
728 	return 0;
729 
730 error1:
731 	free(darmdfec->p_aligned_txbuf);
732 	free(darmdfec->p_rxbuf);
733 	free(darmdfec->p_rxdesc);
734 	free(darmdfec->htpr);
735 error:
736 	free(darmdfec);
737 	printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__);
738 	return -1;
739 }
740